首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-microelectrode voltage-clamp measurements were made to determine the kinetics and voltage dependence of ionic currents across the soma membrane of the Hermissenda type B photoreceptor. The voltage-dependent outward potassium currents, IA and ICa(2+)-K+, the inward voltage-dependent calcium current, ICa2+ and the light-induced current, IIgt, were then described with Hodgkin-Huxley-type equations. The fast-activating and inactivating potassium current, IA, was described by the equation; IA(t) = gA(max)(ma infinity[1-exp(-t/tau ma)])3 x (ha infinity [1-exp(-t/tau ha)] + exp(-t/tau ha)) (Vm-EK), where the parameters ma infinity, ha infinity, tau ma, and tau ha are functions of membrane potential, Vm, and ma infinity and ha infinity are steady-state activation and inactivation parameters. Similarly, the calcium-dependent outward potassium current, ICa(2+)-K+, was described by the equation, ICa(2+)-K+ (t) = gc(max)(mc infinity(VC)(1-exp[-t/tau mc (VC)]))pc (hc infinity(VC) [1-exp(-t/tau hc)] + exp(-t/tau hc(VC)])pc(VC-EK). In high external potassium, ICa(2+)-K+ could be measured in approximate isolation from other currents as a voltage-dependent inward tail current following a depolarizing command pulse from a holding potential of -60 mV. A voltage-dependent inward calcium current across the type B soma membrane, ICa2+, activated rapidly, showed little inactivation, and was described by the equation: ICa2+ = gCa(max) [1 + exp](-Vm-5)/7]-1 (Vm-ECa), where gCa(max) was 0.5 microS. The light-induced current with both fast and slow phases was described by: IIgt(t) = IIgt1 + IIgt2 + IIgt3, IIgti = gIgti [1-exp(- ton/tau mi)] exp(-ton/tau hi)(Vm-EIgti) (i = 1, 2).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
Single ventricular myocytes of adult mice were prepared by enzymatic dissociation for voltage clamp experiments with the one suction pipette dialysis method. After blocking the Na current by 10(-4) mol/l TTX early outward currents (IEO) with incomplete inactivation could be elicited by clamping from -50 mV to test potentials (VT) positive to -30 mV. Interfering Ca currents were very small (less than 0.6 nA at VT = 0 mV). The approximation of IEO by the q4r-model showed a pronounced decrease in the time constant of activation (tau q) to more positive potentials. At 50 ms test pulses the time course of the incomplete inactivation could be described by two exponentials and a constant. The time constant of the fast exponential (tau r1) showed a slight decline towards more positive test potentials (8.1 +/- 1.0 ms at -10 mV; 5.8 +/- 1.2 ms at +50 mV, mean +/- SD, n = 5) whereas the time constant of the slow exponential (tau r2) was voltage independent (41.1 +/- 7.9 ms, mean +/- SD, n = 5). The contributions of the fast exponential and the pedestal increased towards positive test potentials. The Q10 value for the time constants of activation and fast inactivation was 2.36 +/- 0.19 and 2.51 +/- 0.09 (mean +/- SD, n = 3), respectively. After an initial delay the recovery of IEO at a recovery potential of -50 mV could be fitted monoexponentially with a time constant of 16.3 +/- 2.9 ms (mean +/- SD, n = 3). The time course of the onset of inactivation determined with the double pulse protocol was slower than the decay at the same potential, and could be described as sum of a fast (tau = 18.4 +/- 6.0 ms) and a slow (tau = 62.1 +/- 19.9ms, mean +/- SD, n = 3) exponential. IEO could be blocked completely by 1 mmol/l 4-aminopyridine at potentials up to +20 mV. Stronger depolarizations had an unblocking effect.  相似文献   

4.
Y Palti  G Ganot    R Stmpfli 《Biophysical journal》1976,16(3):261-273
The kinetics of potassium conductance changes were determined in the voltage clamped frog node (Rana esculenta), as a function of conditioning prepotential. The conditioning potential duration varied from 1 to 50 ms and the amplitude between -60 and +130 mV (relative to rest). The conductance kinetics were determined at a single test potential of +20 mV (depolarization) by means of the slope of log [ninfinity - nt] vs. time relationship which defines the time constant of the process (tau). The values of tau, after conditioning hyperpolarizations, were around 5 ms, up to 10 times greater than values obtained following a strong depolarization. The tau vs. pre-potential curve was sigmoid in shape. These differences were only slightly dependent on [K+]0 or conditioning pulse duration. The steady-state current values were also found to be a function of conditioning potential. After conditioning hyperpolarizations, the log [ninfinity - nt] vs. time curve could not be fitted by a single exponent regardless of the power of n chosen. The prepotential dependency of potassium current kinetics is inconsistent with the Hodgkin-Huxley axon model where the conductance parameters are assumed to be in either one of two possible states, and where the rate of transfer from one state to the other follows first order kinetics. In contrast the described kinetics may be consistent with complex multistate potassium "channel" models or membranes consisting of a number of types of channels.  相似文献   

5.
The kinetics of the voltage-sensitive potassium channel in crayfish axon have been examined. The conductance increase after a step depolarization from rest can be described by a first-order kinetic process raised to the third power. When conditioning voltage levels preceded the test pulse, the steady-state conductance was found to be independent of initial conditions. Depolarizing conditioning voltages in general allowed superposition of test voltage potassium currents by a shift along the time axis. Hyperpolarizing conditioning voltages produced a delay in onset of conductance during the test pulse and changed the kinetics so that superposition was not possible. The delay increased during the hyperpolarization with a first-order lag having a time constant in the range of 1.5-3 ms. Return to the resting level caused recovery from the delayed state to follow a single exponential decay with a time constant of 1.9-2.2 ms. The steady state delay vs. voltage curves were not saturated at potentials as negative as -180 mV.  相似文献   

6.
The properties of acetylcholine-activated excitatory currents on the gm1 muscle of three marine decapod crustaceans, the spiny lobsters Panulirus argus and interruptus, and the crab Cancer borealis, were examined using either noise analysis, analysis of synaptic current decays, or analysis of the voltage dependence of ionophoretically activated cholinergic conductance increases. The apparent mean channel open time (tau n) obtained from noise analysis at -80 mV and 12 degrees C was approximately 13 ms; tau n was prolonged e-fold for about every 100-mV hyperpolarization in membrane potential; tau n was prolonged e- fold for every 10 degrees C decrease in temperature. Gamma, the single- channel conductance, at 12 degrees C was approximately 18 pS and was not affected by voltage; gamma was increased approximately 2.5-fold for every 10 degrees C increase in temperature. Synaptic currents decayed with a single exponential time course, and at -80 mV and 12 degrees C, the time constant of decay of synaptic currents, tau ejc, was approximately 14-15 ms and was prolonged e-fold about every 140-mV hyperpolarization; tau ejc was prolonged about e-fold for every 10 degrees C decrease in temperature. The voltage dependence of the amplitude of steady-state cholinergic currents suggests that the total conductance increase produced by cholinergic agonists is increased with hyperpolarization. Compared with glutamate channels found on similar decapod muscles (see the following article), the acetylcholine channels stay open longer, conduct ions more slowly, and are more sensitive to changes in the membrane potential.  相似文献   

7.
Sodium current and intramembrane gating charge movement (Q) were monitored in voltage-clamped frog node of Ranvier after modification of all sodium channels by batrachotoxin (BTX). Sodium current activation followed a single-exponential time course, provided a delay was interposed between the onset of the step ON depolarization and that of the current change. The delay decreased with increased ON depolarization and, for a constant ON depolarization, increased with prehyperpolarization. ON charge movement followed a single-exponential time course with time constants tau Q,ON slightly larger than tau Na, ON. For pulses between -70 and -50 mV, tau Q,ON/tau Na,ON = 1.14 +/- 0.08. The OFF charge movement and OFF sodium current tails after a depolarizing pulse followed single-exponential time courses, with tau Q, OFF larger than tau Na, OFF. tau Q,OFF/tau Na,OFF increased with OFF voltage from 1 near -100 mV to 2 near -160 mV. At a set OFF potential (-120 mV), both tau Q,OFF and tau Na,OFF increased with ON pulse duration. The delay in INa activation and the effect of ON pulse duration on tau Q,OFF and tau Na,OFF are inconsistent with a simple two-state, single-transition model for the gating of batrachotoxin-modified sodium channels.  相似文献   

8.
In voltage clamped crayfish muscle fibers the time constant tau of decay of the EPSC was measured at different clamp potentials E. At 6 degrees C, the average potential dependence of tau is described by tau = 2.3 ms.eE/328 mV. tau was shorter in fast fibers than in slow ones. Concanavalin A supressed the potential dependence by tau, resulting in an increase in tau compared with the control, especially at high negative potentials.  相似文献   

9.
The rapid inward sodium current in spherical clusters of 11-d-old embryonic chick heart cells, ranging in size between 65 and 90 micron diameter, was studied using the two-microelectrode voltage-clamp technique. Using these preparations, it was possible to resolve the activation phase of the rapid inward current for potentials negative to -25 mV at 37 degrees C. The rapid inward current exhibited a voltage and time dependence similar to that observed in other excitable tissues. It was initiated at potential steps more positive than -45 mV. The magnitude of the current reached its maximum value at a potential of approximately -20 mV. The measured reversal potential was that predicted by the Nernst equation for sodium ions. The falling phase of the current followed a single exponential time-course with a time constant of inactivation, tau h, ranging between 2.14 ms at -40 mV and 0.18 ms at -5 mV. The time constant of inactivation, tau h, determined by a single voltage-step protocol was compared to the constant, tau c, determined by a double voltage-step protocol and no significant different between the two constants of inactivation was found. Furthermore, the time constants of inactivation and reactivation at the same potential in the same preparation were similar. The results of this study demonstrate that the sodium current of heart cells recorded at 37 degrees C can be described by Hodgkin-Huxley kinetics with speeds approximately four times faster than the squid giant axon at 15 degrees C.  相似文献   

10.
Activation kinetics of the sodium and potassium conductances were re-examined in fresh axons of Loligo forbesi exhibiting very little if any potassium accumulation and a very small leak conductance, special attention being paid to the initial lag phase which precedes the turning-on of the conductances. The axons were kept intact and voltage-clamped at 2–3°C.In all cases, the rising phase of the currents could be fitted with very good accuracy using the Hodgkin-Huxley (1952) equations although, in most cases, the turning-on of the conductance did not coincide with the beginning of the depolarizing test pulse. The delay which separates the change in potential and the turning-on of current (the activation delay) was analyzed quantitatively for different prepulse and pulse potentials. The measured activation delay differed significantly from the delay predicted by the original HH equations. This difference (the non-HH delay) varied with prepulse and pulse potentials. For the potassium current, the relationship between the non-HH delay and pulse potential for a constant prepulse was bell shaped, the maximum value (0.7 ms for a prepulse to –80 mV) being reached for about 0 mV For this same current, the relationship between the non-HH delay and the prepulse potential for a constant pulse potential was sigmoidal, starting from a minimum value of around 0.5 ms at –100 mV and rising to 5 ms at –15 mV Essentially similar results were obtained for the sodium current although the non-HH delay was three to five times smaller and the dependency upon prepulse potential not significant. These results are in agreement with previous observations on squid axons and frog nodes of Ranvier and suggest that the opening of an ionic channel is preceded by a short but essential voltage-dependent conformational change of the channel protein. Offprint requests to: Y. Pichon  相似文献   

11.
The whole-cell patch electrode voltage clamp technique was used to study the inactivation properties of the delayed rectifying potassium current of single cultured embryonic chick hepatocytes at 20 degrees C. The potassium current activates maximally within 250-500 ms of membrane depolarization, after which it decays with a monoexponential time course. Both steady-state activation and inactivation are voltage dependent. Steady-state inactivation declines from 100% at -5 mV to 0 near -70 mV. with half inactivation at -41 mV. At the resting potential (EM) of these cells (-21.5 +/- 6.0 mV, n = 36) 6-18% of the IK channels are not inactivated and less than 5% are open. Development and removal of inactivation follow single exponential time courses. The inactivation time constant attains a maximum of around 30 s at -35 mV and is sharply voltage dependent at the EM of these cells. Measurement of EM under current clamp shows random oscillations of 5-10 mV amplitude. We suggest that the voltage- and time-dependent properties of IK, in tandem with a time- and voltage-independent, non-selective current also seen here, would provide the mechanism for a fluctuating EM.  相似文献   

12.
The human Na(+)-glucose cotransporter (hSGLT1) has been shown to generate, in the absence of sugar, presteady-state currents in response to a change in potential, which could be fitted with single exponentials once the voltage had reached a new constant value. By the cut-open oocyte technique (voltage rising-speed approximately 1 mV/microsecond), phlorizin-sensitive transient currents could be detected with a higher time resolution during continuous intracellular perfusion. In the absence of sugar and internal Na+, and with 90 mM external Na+ concentration ([Na+]o), phlorizin-sensitive currents exhibited two relaxation time-constants: tau 1 increased from 2 to 10 ms when Vm decreased from +60 mV to -80 mV and remained at 10 ms for more negative Vm; tau 2 ranged from 0.4 to 0.8 ms in a weakly voltage-dependent manner. According to a previously proposed model, these two time constants could be accounted for by 1) Na+ crossing a fraction of the membrane electrical field to reach its binding site on the carrier and 2) conformational change of the free carrier. To test this hypothesis, the time constants were measured as [Na+]o was progressively reduced to 0 mM. At 30 and 10 mM external Na+, tau 1 reached the same plateau value of 10 ms but at more negative potentials (-120 and -160 mV, respectively). Contrary to the prediction of the model, two time constants continued to be detected in the bilateral absence of Na+ (at pH 8.0). Under these conditions, tau 1 continuously increased through the whole voltage range and did not reach the 10 ms level even when Vm had attained -200 mV while tau 2 remained in the range of 0.4-0.8 ms. These results indicate that 1) conformational change of the free carrier across the membrane must occur in more than one step and 2) Na+ binding/debinding is not responsible for either of the two observed exponential components of transient currents. By use of the simplest kinetic model accounting for the portion of the hSGLT1 transport cycle involving extracellular Na+ binding/debinding and the dual-step conformational change of the free carrier, tau 1 and tau 2 were fitted throughout the voltage range, and a few sets of parameters were found to reproduce the data satisfactorily. This study shows that 1) tau 1 and tau 2 correspond to two steps in the conformational change of the free carrier, 2) Na+ binding/debinding modulates the slow time constant (tau 1) and 3) a voltage-independent slow conformational change of the free carrier accounts for the observed plateau value of 10 ms.  相似文献   

13.
Single-channel properties of dihydropyridine (DHP)-sensitive calcium channels isolated from transverse tubular (T-tube) membrane of skeletal muscle were explored. Single-channel activity was recorded in planar lipid bilayers after fusion of highly purified rabbit T-tube microsomes. Two populations of DHP-sensitive calcium channels were identified. One type of channel (noninactivating) was active (2 microM +/- Bay K 8644) at steady-state membrane potentials and has been studied in other laboratories. The second type of channel (inactivating) was transiently activated during voltage pulses and had a very low open probability (Po) at steady-state membrane potentials. Inactivating channel activity was observed in 47.3% of the experiments (n = 84 bilayers). The nonstationary kinetics of this channel was determined using a standard voltage pulse (HP = -50 mV, pulse to 0 mV). The time constant (tau) of channel activation was 23 ms. During the mV). The time constant (tau) of channel activation was 23 ms. During the pulse, channel activity decayed (inactivated) with a tau of 3.7 s. Noninactivating single-channel activity was well described by a model with two open and two closed states. Inactivating channel activity was described by the same model with the addition of an inactivated state as proposed for cardiac muscle. The single-channel properties were compared with the kinetics of DHP-sensitive inward calcium currents (ICa) measured at the cellular level. Our results support the hypothesis that voltage-dependent inactivation of single DHP-sensitive channels contributes to the decay of ICa.  相似文献   

14.
The Hodgkin-Huxley equations for space-clamped squid axon (18 degrees C) have been modified to approximate voltage clamp data from repetitive-firing crustacean walking leg axons and activity in response to constant current stimulation has been computed. The m infinity and h infinity parameters of the sodium conductance system were shifted along the voltage axis in opposite directions so that their relative overlap was increased approximately 7 mV. Time constants tau m and tau h, were moved in a similar manner. Voltage-dependent parameters of delayed potassium conductance, n infinity and tau n, were shifted 4.3 mV in the positive direction and tau n was uniformly increased by a factor of 2. Leakage conductance and capacitance were unchanged. Repetitive activity of this modified circuit was qualitatively similar to that of the standard model. A fifth branch was added to the circuit representing a transient potassium conductance system present in the repetitive walking leg axons and in other repetitive neurons. This model, with various parameter choices, fired repetitively down to approximately 2 spikes/s and up to 350/s. The frequency vs. stimulus current plot could be fit well by a straight line over a decade of the low frequency range and the general appearance of the spike trains was similar to that of other repetitive neurons. Stimulus intensities were of the same order as those which produce repetitive activity in the standard Hodgkin-Huxley axon. The repetitive firing rate and first spike latency (utilization time) were found to be most strongly influenced by the inactivation time constant of the transient potassium conductance (tau b), the delayed potassium conductance (tau n), and the value of leakage conductance (gL). The model presents a mechanism by which stable low frequency discharge can be generated by millisecond-order membrane conductance changes.  相似文献   

15.
Fast-deactivating calcium channels in chick sensory neurons   总被引:8,自引:3,他引:5       下载免费PDF全文
Whole-cell Ca and Ba currents were studied in chick dorsal root ganglion (DRG) cells kept 6-10 in culture. Voltage steps with a 15-microseconds rise time were imposed on the membrane using an improved patch-clamp circuit. Changes in membrane current could be measured 30 microseconds after the initiation of the test pulse. Currents through Ca channels were recorded under conditions that eliminate Na and K currents. Tail currents, associated with Ca channel closing, decayed in two distinct phases that were very well fitted by the sum of two exponentials. The time constants tau f and tau s were near 160 microseconds and 1.5 ms at -80 mV, 20 degrees C. The tail current components, called FD and SD (fast-deactivating and slowly deactivating), are Ca channel currents. They were greatly reduced when Mg2+ replaced all other divalent cations in the bath. The SD component inactivated almost completely as the test pulse duration was increased to 100 ms. It was suppressed when the cell was held at membrane potentials positive to -50 mV and was blocked by 100-200 microM Ni2+. This behavior indicates that the SD component was due to the closing of the low-voltage-activated (LVA) Ca channels previously described in this preparation. The FD component was fully activated with 10-ms test pulses to +20 mV at 20 degrees C, and inactivated to approximately 30% during 500-ms test pulses. It was reduced in amplitude by holding at -40 mV, but was only slightly reduced by micromolar concentrations of Ni2+. Replacement of Ca2+ with Ba2+ increased the FD tail current amplitudes by a factor of approximately 1.5. The deactivation kinetics did not change (a) as channels inactivated during progressively longer pulses or (b) when the degree of activation was varied. Further, tau f was affected neither by changing the holding potential nor by varying the test pulse amplitude. Lowering the temperature from 20 to 10 degrees C decreased tau f by a factor of 2.5. In all cases, the FD component was very well fitted by a single exponential. There was no indication of an additional tail component of significant size. Our findings indicate that the FD component is due to closing of a single class of Ca channels that coexist with the LVA Ca channel type in chick DRG neurons.  相似文献   

16.
Excitatory postsynaptic currents (EPSCs) have been studied in voltage- clamped bullfrog sympathetic ganglion B cells. The EPSC was small, rose to a peak within 1-3 ms, and then decayed exponentially over most of its time-course. For 36 cells at --50 mV (21-23 degrees C), peak EPSC size was --6.5 +/- 3.5 nA (mean +/- SD), and the mean decay time constant tau was 5.3 +/- 0.9 ms. tau showed a small negative voltage dependence, which appeared independent of temperature, over the range -- 90 to --30 mV; the coefficient of voltage dependence was --0.0039 +/- 0.0014 mV-1 (n = 29). The peak current-voltage relationship was linear between --120 and --30 mV but often deviated from linearity at more positive potentials. The reversal potential determined by interpolation was approximately --5 mV. EPSC decay tau had a Q10 = 3. The commonly used cholinesterase inhibitors, neostigmine and physostigmine, exhibited complex actions at the ganglia. Neostigmine (1 X 10(-5)M) produced a time-dependent slowing of EPSC decay without consistent change in EPSC size. In addition, the decay phase often deviated from a single exponential function, although it retained its negative voltage dependence. With 1 x 10(-6) M physostigmine, EPSC decay was slowed by the decay phase remained exponential. At higher concentrations of physostigmine, EPSC decay was markedly prolonged and was composed of at least two decay components. High concentrations of atropine (10(-5) to 10(-4) M) produced complex alterations in EPSC decay, creating two or more exponential components; one decay component was faster and the other was slower than that observed in untreated cells. These results suggest that the time-course of ganglionic EPSC decay is primarily determined by the kinetics of the receptor-channel complex rather than hydrolysis or diffusion of transmitter away from the postsynaptic receptors.  相似文献   

17.
Na inactivation was studied in Myxicola (two-pulse procedure, 6-ms gap between conditioning and test pulses). Inactivation developed with an initial delay (range 130-817 microseconds) followed by a simple exponential decline (time constant tau c). Delays (deviations from a simple exponential) are seen only for brief conditioning pulses were gNa is slightly activated. Hodgkin-Huxley kinetics with series resistance, Rs, predict deviations from a simple exponential only for conditioning pulses that substantially activate gNa. Reducing INa fivefold (Tris substitution) had no effect on either tau c or delay. Delay in not generated by Rs or by contamination from activation development. The slowest time constant in Na tails is approximately 1 ms (Goldman and Hahin, 1978) and the gap was 6 ms. Shortening the gap to 2 ms had no effect on either tau c or delay. Delay is a true property of the channel. Delay decreased with more positive conditioning potentials, and also decreased approximately proportionally with time to peak gNa during the conditioning pulse, as expected for sequentially coupled activation and inactivation. In a few cases the difference between Na current values for brief conditioning pulses and the tau c exponential could be measured. Difference values decayed exponentially with time constant tau m. The inactivation time course is described by a model that assumes a process with the kinetics of gNa activation as a precursor to inactivation.  相似文献   

18.
A survival model Eq.1 was presented for cells irradiated simultaneously with multiple types of radiation using the extended Zaider-Rossi model, which is model for mixed irradiation with two types of radiation. [equation : see text] Eq.1. Where q(t)=2t0/t-2(t0/t)2 ?1-exp(-t0/t)? Eq.2. Eq.1 was proved by mathematical induction using the concept that mixed irradiation with n types of radiation is considered as mixed irradiation with two types of radiation regarding n-1 types as one type of radiation. The model is not limited by the dose rate of radiation, because its effect is corrected by reduction factor Eq.2. The problem of the model is that Eq.2 was led assuming repair function to be exponential given by Eq.3. tau(t)=exp(-t/t0) Eq.3. However, the repair function is usually expressed by biphasic Eq.4 rather than monophasic Eq.3. tau(t)=Aexp(-t/01)+(1-A)exp(-t/t02) Eq.4. It is, therefore, important to keep in mind that Eq. 4 should be used instead of Eq.3.  相似文献   

19.
Sodium current (INa) inactivation kinetics in neonatal cardiac myocytes were analyzed using whole cell voltage clamp before and after acute treatments with thyroid hormone (3,5,3'-triiodo-L-thyronine, T3). In untreated neonatal myocytes, INa inactivation was predominantly mono-exponential, with 93 +/- 3% (S.D.; n = 9) of the peak amplitude decaying with a time constant, tau h1, of 1.8 +/- 0.5 ms at -30 mV. The remaining 7% of control INa decayed more slowly, with a time constant, tau h2, of 9.3 +/- 3.0 ms at -30 mV. The contribution of slowly-inactivating channels to peak current was increased from 7% to 43 +/- 27% within 5 min of exposure to 5-20 nM T3 (nine cells; P less than 0.005). The time constants for both the fast- and slow-inactivating components of peak current (tau h1 and tau h2) were not significantly changed by acute T3 treatment, nor was steady-state INa inactivation (h infinity) affected. Thyroid hormone action on sodium inactivation was partially reversible by lidocaine. These findings indicate that T3 acts at the neonatal cardiac cell membrane to promote slow inactivation kinetics in sodium channels.  相似文献   

20.
We have examined the kinetics of whole-cell T-current in HEK 293 cells stably expressing the alpha1G channel, with symmetrical Na(+)(i) and Na(+)(o) and 2 mM Ca(2+)(o). After brief strong depolarization to activate the channels (2 ms at +60 mV; holding potential -100 mV), currents relaxed exponentially at all voltages. The time constant of the relaxation was exponentially voltage dependent from -120 to -70 mV (e-fold for 31 mV; tau = 2.5 ms at -100 mV), but tau = 12-17 ms from-40 to +60 mV. This suggests a mixture of voltage-dependent deactivation (dominating at very negative voltages) and nearly voltage-independent inactivation. Inactivation measured by test pulses following that protocol was consistent with open-state inactivation. During depolarizations lasting 100-300 ms, inactivation was strong but incomplete (approximately 98%). Inactivation was also produced by long, weak depolarizations (tau = 220 ms at -80 mV; V(1/2) = -82 mV), which could not be explained by voltage-independent inactivation exclusively from the open state. Recovery from inactivation was exponential and fast (tau = 85 ms at -100 mV), but weakly voltage dependent. Recovery was similar after 60-ms steps to -20 mV or 600-ms steps to -70 mV, suggesting rapid equilibration of open- and closed-state inactivation. There was little current at -100 mV during recovery from inactivation, consistent with 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号