首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Questions: How do species composition and abundance of soil seed bank and standing vegetation vary over the course of a post‐fire succession in northern heathlands? What is the role of seed banks – do they act as a refuge for early successional species or can they simply be seen as a spillover from the extant local vegetation? Location: Coastal Calluna heathlands, Western Norway. Methods: We analysed vegetation and seed bank along a 24‐year post‐fire chronosequence. Patterns in community composition, similarity and abundances were tested using multivariate analyses, Sørensen's index of similarity, vegetation cover (%) and seedling counts. Results: The total diversity of vegetation and seed bank were 60 and 54 vascular plant taxa, respectively, with 39 shared species, resulting in 68% similarity overall. Over 24 years, the heathland community progressed from open newly burned ground via species rich graminoid‐ and herb‐dominated vegetation to mature Calluna heath. Post‐fire succession was not reflected in the seed bank. The 10 most abundant species constituted 98% of the germinated seeds. The most abundant were Calluna vulgaris (49%; 12 018 seeds m?2) and Erica tetralix (34%; 8 414 seeds m?2). Calluna showed significantly higher germination the first 2 years following fire. Conclusions: Vegetation species richness, ranging from 23 to 46 species yr?1, showed a unimodal pattern over the post‐fire succession. In contrast, the seed bank species richness, ranging from 21 to 31 species yr?1, showed no trend. This suggests that the seed bank act as a refuge; providing a constant source of recruits for species that colonise newly burned areas. The traditional management regime has not depleted or destroyed the seed banks and continued management is needed to ensure sustainability of northern heathlands.  相似文献   

2.
Leaf gas‐exchange regulation plays a central role in the ability of trees to survive drought, but forecasting the future response of gas exchange to prolonged drought is hampered by our lack of knowledge regarding potential acclimation. To investigate whether leaf gas‐exchange rates and sensitivity to drought acclimate to precipitation regimes, we measured the seasonal variations of leaf gas exchange in a mature piñon–juniper Pinus edulisJuniperus monosperma woodland after 3 years of precipitation manipulation. We compared trees receiving ambient precipitation with those in an irrigated treatment (+30% of ambient precipitation) and a partial rainfall exclusion (?45%). Treatments significantly affected leaf water potential, stomatal conductance and photosynthesis for both isohydric piñon and anisohydric juniper. Leaf gas exchange acclimated to the precipitation regimes in both species. Maximum gas‐exchange rates under well‐watered conditions, leaf‐specific hydraulic conductance and leaf water potential at zero photosynthetic assimilation all decreased with decreasing precipitation. Despite their distinct drought resistance and stomatal regulation strategies, both species experienced hydraulic limitation on leaf gas exchange when precipitation decreased, leading to an intraspecific trade‐off between maximum photosynthetic assimilation and resistance of photosynthesis to drought. This response will be most detrimental to the carbon balance of piñon under predicted increases in aridity in the southwestern USA.  相似文献   

3.
地形气候因子与物种分布的关系影响着高寒植被群落的演替,同时对山地水源涵养林功能和结构的维持具有重要的意义。以祁连山东段水源涵养林为研究对象,基于野外植物群落物种组成及地形气候因子调查数据,运用数量分类与排序等方法,探究了高寒植物群落特征及其与地形气候因子的关系。结果表明:65个调查样方中出现181个植物种,隶属40科,124属。科的物种组成及占总物种数比例分别为菊科30个种,占16.57%;蔷薇科17个,占9.44%;禾本科13个种,占7.22%;豆科11个种,占6.11%。毛茛科10个种,占5.56%。单属种82个,占总属数的66.13%。群落层片由乔木层、灌木层和草本层组成,乔木8种,灌木25种,草本148种。乔木层优势种有青海云杉、祁连圆柏、红桦。灌木层优势种有金露梅、山生柳、匙叶小檗、高山绣线菊。草本层优势种有甘肃薹草、珠芽蓼、早熟禾、唐松草、甘青蒿。TWINSPAN将高寒植被群落划分为7个群丛类型:群丛I红桦-红花蔷薇-甘肃薹草B.albosinensis-Rosa moyesii-C.kansuensis,群丛II青海云杉-匙叶小檗-甘肃薹草P.crassifolia-B....  相似文献   

4.
Abstract. The soil seed bank composition was determined at four sites in the dune slack ‘Koegelwieck’ on the Dutch Wadden Sea island of Terschelling. At three different sites in the slack, where sod-cutting experiments down to the mineral sand had been carried out, the established vegetation and seed bank were assessed after 5, 9 and 39 yr of undisturbed development, respectively. In addition, a fourth site in the slack was investigated, where vegetation development had proceeded for 80 yr since plant colonization of bare soil and where nowadays a vegetation dominated by Calamagrostis epigejos and Salix repens occurs. Together these four sites can be regarded as a chronosequence of dune slack formation. Clear time sequences were detected in the seed bank data. Many late successional species showed a significant increase in the number of seeds during the succession. Some of the early successional basiphilous pioneer species such as Anagallis minima, Centaurium littorale, Littorella uniflora, Radiola linoides and Samolus valerandi, showed either a decrease during the time of succession or an optimum in the vegetation while remaining present in the seed bank in low but detectable numbers. They could, therefore, play a role in re-establishment of the vegetation after sod-cutting. One of the target species, Schoenus nigricans, established within a few years after removal of the sod. However, no seeds of this species have been detected in the soil below either of the successional stages. Based on the species disappearance from the established vegetation and based on the independent data of Thompson et al. (1997) an estimation of seed longevity could be made for several Red List species of wet dune slacks.  相似文献   

5.
Morphology, biomass accumulation and allocation, gas exchange, and chlorophyll fluorescence were compared for one-year-old seedlings of Salix psammophila and Artemisia ordosica, two dominant desert species, in response to two water supplies (equivalent to 315.0 mm for present precipitation in growing season and to 157.5 mm for future decreasing precipitation) during 105 d. For both species, photochemical efficiency of photosystem 2 (Fv/Fm), net photosynthetic rate, transpiration rate, stomatal conductance, biomass accumulation in different organs, tree height, number of leaves, and leaf area were reduced in response to the decrease in water supply. For both species, instantaneous water use efficiency was not affected by the water deficit. However, diurnal patterns of gas exchange and biomass allocation were affected in different ways for the two species, with notably a decrease in specific leaf area and an increase in root : shoot ratio for S. psammophila only. Overall, S. psammophila was more responsive to the decreasing precipitation than A. ordosica.  相似文献   

6.
Primary plant succession was investigated on a well-vegetated glacier foreland on Ellesmere Island in high arctic Canada. A field survey was carried out on four glacier moraines differing in time after deglaciation to assess vegetation development and microsite modification in the chronosequence of succession. The results showed evidence of directional succession without species replacement, which is atypical in the high arctic, reflecting the exceptionally long time vegetation development. During this successional process, Salix arctica dominated throughout all moraines. The population structures of S. arctica on these moraines implied the population growth of this species with progressing succession. The population density of S. arctica reflected the abundance of vascular plants, suggesting that development of the plant community might be related to structural changes and the growth of constituting populations. Through such growths of the population and the whole community with progressing succession, the spatial heterogeneity of vegetation gradually declines. Moreover, this vegetation homogenization is accompanied by changes in the spatial heterogeneity of microsite environments, suggesting significant plant effects on the modification of microsite environments. Accordingly, it was concluded that the directional primary succession observed on this glacier foreland is characterized by the initial sporadic colonization of plants, subsequent population growths, and the community assembly of vascular plants, accompanied by microsite modification.  相似文献   

7.
Using optical and photosynthetic assays from a canopy access crane, we examined the photosynthetic performance of tropical dry forest canopies during the dry season in Parque Metropolitano, Panama City, Panama. Photosynthetic gas exchange, chlorophyll fluorescence, and three indices derived from spectral reflectance (the normalized difference vegetation index, the simple ratio, and the photochemical reflectance index) were used as indicators of structural and physiological components of photosynthetic activity. Considerable interspecific variation was evident in structural and physiological behavior in this forest stand, which included varying degrees of foliage loss, altered leaf orientation, stomatal closure, and photosystem II downregulation. The normalized difference vegetation index and the simple ratio were closely related to canopy structure and absorbed radiation for most species, but failed to capture the widely divergent photosynthetic behavior among evergreen species exhibiting various degrees of downregulation. The photochemical reflectance index and chlorophyll fluorescence were related indicators of photosynthetic downregulation, which was not detectable with the normalized difference vegetation index or simple ratio. These results suggest that remote sensing methods that ignore downregulation cannot capture within‐stand variability in actual carbon flux for this diverse forest type. Instead, these findings support a sampling approach that derives photosynthetic fluxes from a consideration of both canopy light absorption (e.g., normalized difference vegetation index) and photosynthetic light‐use efficiency (e.g., photochemical reflectance index). Such sampling should improve our understanding of controls on photosynthetic carbon uptake in diverse tropical forest stands.  相似文献   

8.
Sphagnum growth and ecophysiology during mire succession   总被引:1,自引:0,他引:1  
Laine AM  Juurola E  Hájek T  Tuittila ES 《Oecologia》2011,167(4):1115-1125
Sphagnum mosses are widespread in areas where mires exist and constitute a globally important carbon sink. Their ecophysiology is known to be related to the water level, but very little is currently known about the successional trend in Sphagnum. We hypothesized that moss species follow the known vascular plant growth strategy along the successional gradient (i.e., decrease in production and maximal photosynthesis while succession proceeds). To address this hypothesis, we studied links between the growth and related ecophysiological processes of Sphagnum mosses from a time-since-initiation chronosequence of five wetlands. We quantified the rates of increase in biomass and length of different Sphagnum species in relation to their CO2 assimilation rates, their photosynthetic light reaction efficiencies, and their physiological states, as measured by the chlorophyll fluorescence method. In agreement with our hypothesis, increase in biomass and CO2 exchange rate of Sphagnum mosses decreased along the successional gradient, following the tactics of more intensely studied vascular plants. Mosses at the young and old ends of the chronosequence showed indications of downregulation, measured as a low ratio between variable and maximum fluorescence (F v/F m). Our study divided the species into three groups; pioneer species, hollow species, and ombrotrophic hummock formers. The pioneer species S. fimbriatum is a ruderal plant that occurred at the first sites along the chronosequence, which were characterized by low stress but high disturbance. Hollow species are competitive plants that occurred at sites with low stress and low disturbance (i.e., in the wet depressions in the middle and at the old end of the chronosequence). Ombrotrophic hummock species are stress-tolerant plants that occurred at sites with high stress and low disturbance (i.e., at the old end of the chronosequence). The three groups along the mire successional gradient appeared to be somewhat analogous to the three primary strategies suggested by Grime.  相似文献   

9.
Although tropical forests have been rapidly converted into human‐modified landscapes, tree species response to forest edges remains poorly examined. In this study, we addressed four pioneer tree species to document demographic shifts experienced by this key ecological group and make inferences about pioneer response to forest edges. All individuals with dbh ≥ 1 cm of two short‐lived (Bellucia grossularioides and Cecropia sciadophylla) and two long‐lived species (Goupia glabra and Laetia procera) were sampled in 20 1‐ha forest edge plots and 20 1‐ha forest interior plots in Oiapoque and Manaus, Northeast and Central Amazon, respectively. As expected, pioneer stem density with dbh ≥ 1 cm increased by around 10–17‐fold along forest edges regardless of species, lifespan, and study site. Edge populations of long‐lived pioneers presented 84–94 percent of their individuals in sapling/subadult size classes, whereas edge populations of short‐lived pioneers showed 56–97 percent of their individuals in adult size classes. These demographic biases were associated with negative and positive net adult recruitment of long‐ and short‐lived pioneers, respectively. Our population‐level analyses support three general statements: (1) native pioneer tree species proliferate along forest edges (i.e., increased density), at least in terms of non‐reproductive individuals; (2) pioneer response to edge establishment is not homogeneous as species differ in terms of demographic structure and net adult recruitment; and (3) some pioneer species, particularly long‐lived ones, may experience population decline due to adult sensitivity to edge‐affected habitats.  相似文献   

10.
Abstract. Inundation of tropical dune slacks is an irregular phenomenon produced by consecutive years with high precipitation and also by intense tropical storms. Our hypothesis was that the distribution, structure and composition of vegetation in tropical dune slacks have changed over time as a result of various factors, principally their topographical position with respect to the water table, frequency and duration of inundation, and historical fluctuations in climate. We tested this hypothesis in two different slacks that represent the slack community at the study site. Inundation caused changes in species composition and distribution, as well as in vegetation structure. In one slack, inundation was considered as disturbance because its intensity increased when areas remained inundated for longer periods of time, causing death of vegetation cover and favouring invasion of more aggressive, secondary species (Pluchea odorata, Ambrosia artemisiifolia, Panicum maximum). When inundation lasted less than three months, rhizomatous herbs remained (Cyperus articulatus, Lippia nodiflora, Hydrocotyle bonariensis) inhibiting the succession process. The results suggest that the different degrees of inundation and the irregular frequency and intensity of inundation in the slacks under study, have favoured different successional tendencies.  相似文献   

11.
We compared the CO2- and light-dependence of photosynthesis of four tree species (Acer rubrum, Carya glabra, Cercis canadensis, Liquidambar styraciflua) growing in the understory of a loblolly pine plantation under ambient or ambient plus 200 μl l–1 CO2. Naturally-established saplings were fumigated with a free-air CO2 enrichment system. Light-saturated photosynthetic rates were 159–190% greater for Ce. canadensis saplings grown and measured under elevated CO2. This species had the greatest CO2 stimulation of photosynthesis. Photosynthetic rates were only 59% greater for A. rubrum saplings under CO2 enrichment and Ca. glabra and L. styraciflua had intermediate responses. Elevated CO2 stimulated light-saturated photosynthesis more than the apparent quantum yield. The maximum rate of carboxylation of ribulose-1,5-bisphosphate carboxylase, estimated from gas-exchange measurements, was not consistently affected by growth in elevated CO2. However, the maximum electron transport rate estimated from gas- exchange measurements and from chlorophyll fluorescence, when averaged across species and dates, was approximately 10% higher for saplings in elevated CO2. The proportionately greater stimulation of light-saturated photosynthesis than the apparent quantum yield and elevated rates of maximum electron transport suggests that saplings growing under elevated CO2 make more efficient use of sunflecks. The stimulation of light-saturated photosynthesis by CO2 did not appear to correlate with shade-tolerance ranking of the individual species. However, the species with the greatest enhancement of photosynthesis, Ce. canadensis and L. styraciflua, also invested the greatest proportion of soluble protein in Rubisco. Environmental and endogenous factors affecting N partitioning may partially explain interspecific variation in the photosynthetic response to elevated CO2. Received: 16 February 1999 / Accepted: 30 August 1999  相似文献   

12.
蔺佳玮  张全智  王传宽 《生态学报》2023,43(21):8793-8802
干扰作为森林恢复和生态演替的重要影响因子,通过其改变植被群落的组成和微环境,进而影响森林生态系统碳动态及固碳潜力。针对帽儿山地区阔叶红松原始林不同时期皆伐后形成的次生林干扰系列,包括林木采伐一次(NS,林龄56a)、采伐两次(MS,林龄25a)和采伐两次且扰动表层土壤(YD,林龄15a)的次生林,采用森林清查和异速生长方程结合的方法,旨在量化干扰方式对温带森林恢复进程中生态系统碳密度及分配格局的影响。结果表明:YD、MS和NS的0—50 cm各层次土壤有机碳含量的波动范围依次分别为10.46—29.27 mg/g、6.37—108.40 mg/g、5.21—114.34 mg/g;且随土层的加深土壤有机碳含量显著降低。表层土壤(0—20 cm)有机碳含量在各干扰处理间存在显著差异(P<0.01),而深层土壤有机碳含量差异不显著;土壤有机碳含量与容重呈显著负相关关系。表层土壤有机碳密度占土壤总有机碳密度(0—100 cm)的50%以上,YD的表层土壤有机碳密度(30.91 t/hm2)显著低于MS(54.09 t/hm2)和NS(55.1...  相似文献   

13.
Aim Fire affects the structure and dynamics of ecosystems world‐wide, over long time periods (decades and centuries) and at large spatial scales (landscapes and regions). A pressing challenge for ecologists is to develop models that explain and predict faunal responses to fire at broad temporal and spatial scales. We used a 105‐year post‐fire chronosequence to investigate small mammal responses to fire across an extensive area of ‘tree mallee’ (i.e. vegetation characterized by small multi‐stemmed eucalypts). Location The Murray Mallee region (104,000 km²) of semi‐arid Australia. Methods First, we surveyed small mammals at 260 sites and explored the fire responses of four species using nonlinear regression models. Second, we assessed the predictive accuracy of models using cross‐validation and by testing with independent data. Third, we examined our results in relation to an influential model of animal succession, the habitat accommodation model. Results Two of four study species showed a clear response to fire history. The distribution of the Mallee Ningaui Ningaui yvonneae, a carnivorous marsupial, was strongly associated with mature vegetation characterized by its cover of hummock grass. The occurrence of breeding females was predicted to increase up to 40–105 years post‐fire, highlighting the extensive time periods over which small mammal populations may be affected by fire. Evaluation of models for N. yvonneae demonstrated that accurate predictions of species occurrence can be made from fire history and vegetation data, across large geographical areas. The introduced House Mouse Mus domesticus was the only species positively associated with recently burnt vegetation. Main conclusions Understanding the impact of fire over long time periods will benefit ecological and conservation management. In this example, tracts of long‐unburnt mallee vegetation were identified as important habitat for a fire‐sensitive native mammal. Small mammal responses to fire can be predicted accurately at broad spatial scales; however, a conceptual model of post‐fire change in community structure developed in temperate Australia is not, on its own, sufficient for small mammals in semi‐arid systems.  相似文献   

14.
黄土高原子午岭林区典型树种叶片N、P再吸收特征   总被引:1,自引:0,他引:1  
为揭示黄土高原子午岭林区不同演替阶段和植被类型主要树种养分再吸收特征,研究选取4种次生植被树种(白桦、山杨、辽东栎和油松)和2种人工植被树种(刺槐和侧柏),测定其成熟叶、凋落叶和林下土壤碳(C)、氮(N)、磷(P)含量,研究了叶片N、P再吸收率及其与养分指标的关系。结果表明:(1)不同树种叶片养分和林下土壤养分含量存在显著差异,土壤C、N含量和C∶N∶P计量比均表现为演替后期林地(辽东栎和油松)>演替前期林地(山杨和白桦)>人工林(侧柏和刺槐);(2)不同树种叶片N、P再吸收率分别为17.18%—43.34%和27.13%—58.12%,均表现为演替后期林地>人工林>演替前期林地,且P的再吸收率总体高于N的再吸收率;(3)不同树种叶片N、P再吸收率与叶片养分指标的关系强于土壤,与养分计量比的相关性大于养分含量的相关性。说明子午岭典型植被会通过叶片N、P再吸收来适应养分限制环境,尤其是演替后期植被再吸收能力更强,研究可为黄土高原植被恢复提供理论依据。  相似文献   

15.
Measurements of the ratio of deuterium to hydrogen (D/H) in stem xylem water were used to determine the relative uptake of summer precipitation by four co-occurring plant species in southern Utah. The species compared included two trees, Juniperus osteosperma and Pinus edulis, and two shrubs, Artemisia tridentata and Chrysothamnus nauseousus. There were significant differences among species in the relative use of summer precipitation. Chrysothamnus nauseosus had stem water D/H ratios in May through August 1990 that were not significantly different from that of groundwater. In contrast, the other three species had stem water D/H ratios that were intermediate between the groundwater value and summer precipitation values, indicating that a mixture of both precipitation and groundwater was being used by these species. The two tree species generally had higher D/H values than did A. tridentata indicating a higher average uptake of summer precipitation, although the roots of J. osteosperma and P. edulis may not be as responsive to small precipitation events as A. tridentata. There was a strong negative correlation between stem water D/H ratios and predawn water potential, which suggests a relationship between plant rooting pattern and water source use. In addition, water-use efficiency during photosynthetic gas exchange, calculated from leaf carbon isotope composition, differed among species and was strongly correlated with differences in the relative uptake of summer precipitation.  相似文献   

16.
The abundance of two native rodent species, Rattus lutreolus and Pseudomys gracilicaudatus, has been shown to correlate with vegetation density in coastal wet heath. Fox's habitat accommodation model relates relative abundances of such small mammal species to heathland vegetation regeneration following disturbance. Implicit in the model is recognition that it is successional changes in vegetation, not time per se, that drives the responses of small mammal species along a regeneration axis. Using a brush‐cutter we deliberately removed approximately 85% of vegetation around trapping stations and recorded significant reductions in the abundance of both P. gracilicaudatus (an earlier‐stage colonizing species) and R. lutreolus (a late seral‐stage species). A significant decrease in the abundance of only the latter had been demonstrated previously when 60–70% of the vegetation had been removed. Following the brush‐cutting both species re‐entered the mammalian secondary succession at different times, first P. gracilicaudatus followed by R. lutreolus after the vegetation cover thresholds of each species had been reached. The impact of this habitat manipulation experiment was to produce a retrogression of the small mammal succession, experimentally demonstrating causality between changes in vegetation density and subsequent small mammal habitat use.  相似文献   

17.
To date, the implications of the predicted greater intra‐annual variability and extremes in precipitation on ecosystem functioning have received little attention. This study presents results on leaf‐level physiological responses of five species covering the functional groups grasses, forbs, and legumes in the understorey of a Mediterranean oak woodland, with increasing precipitation variability, without altering total annual precipitation inputs. Although extending the dry period between precipitation events from 3 to 6 weeks led to increased soil moisture deficit, overall treatment effects on photosynthetic performance were not observed in the studied species. This resilience to prolonged water stress was explained by different physiological and morphological strategies to withstand periods below the wilting point, that is, isohydric behavior in Agrostis, Rumex, and Tuberaria, leaf succulence in Rumex, and taproots in Tolpis. In addition, quick recovery upon irrigation events and species‐specific adaptations of water‐use efficiency with longer dry periods and larger precipitation events contributed to the observed resilience in productivity of the annual plant community. Although none of the species exhibited a change in cover with increasing precipitation variability, leaf physiology of the legume Ornithopus exhibited signs of sensitivity to moisture deficit, which may have implications for the agricultural practice of seeding legume‐rich mixtures in Mediterranean grassland‐type systems. This highlights the need for long‐term precipitation manipulation experiments to capture possible directional changes in species composition and seed bank development, which can subsequently affect ecosystem state and functioning.  相似文献   

18.
Information on the photosynthetic process and its limitations is essential in order to predict both the capacity of species to adapt to conditions associated with climate change and the likely changes in plant communities. Considering that high‐mountain species are especially sensitive, three species representative of subalpine forests of the Central Catalan Pyrenees: mountain pine (Pinus uncinata Mill.), birch (Betula pendula Roth) and rhododendron (Rhododendron ferrugineum L.) were studied under conditions associated with climate change, such as low precipitation, elevated atmospheric [CO2] and high solar irradiation incident at Earth's surface, in order to detect any photosynthetic limitations. Short‐term high [CO2] increased photosynthesis rates (A) and water use efficiency (WUE), especially in birch and mountain pine, whereas stomatal conductance (gs) was not altered in either species. Birch showed photosynthesis limitation through stomatal closure related to low rainfall, which induced photoinhibition and early foliar senescence. Rhododendron was especially affected by high irradiance, showing early photosynthetic saturation in low light, highest chlorophyll content, lowest gas exchange rates and least photoprotection. Mountain pine had the highest A, photosynthetic capacity (Amax) and light‐saturated rates of net CO2 assimilation (Asat), which were maintained under reduced precipitation. Furthermore, maximum quantum yield (Fv/Fm), thermal energy dissipation, PRI and SIPI radiometric index, and ascorbate content indicated improved photoprotection with respect to the other two species. However, maximum velocity of carboxylation of RuBisco (Vcmax) indicated that N availability would be the main photosynthetic limitation in this species.  相似文献   

19.
Dynamics of vesicular-arbuscular mycorrhizae during old field succession   总被引:8,自引:0,他引:8  
Summary The species composition of vesicular-arbuscular mycorrhizal (VAM) fungal communities changed during secondary succession of abandoned fields based on a field to forest chronosequence. Twenty-five VAM fungal species were identified. Seven species were clearly early successional and five species were clearly late successional. The total number of VAM fungal species did not increase with successional time, but diversity as measured by the Shannon-Wiener index tended to increase, primarily because the community became more even as a single species, Glomus aggregatum, became less dominant in the older sites. Diversity of the VAM fungal community was positively correlated with soil C and N. The density of VAM fungi, as measured by infectivity and total spore count, first increased with time since abandonment and then decreased in the late successional forest sites. Within 12 abandoned fields, VAM fungal density increased with increasing soil pH, H2O soluble soil C, and root biomass, but was inversely related to extractable soil P and percent cover of non-host plant species. The lower abundance of VAM fungi in the forest sites compared with the field sites agrees with the findings of other workers and corresponds with a shift in the dominant vegetation from herbaceous VAM hosts to woody ectomycorrhizal hosts.  相似文献   

20.
Moola  F.M.  Vasseur  L. 《Plant Ecology》2004,172(2):183-197
We investigated the impacts of clearcutting on the ground vegetation of remnant late-successional coastal Acadian forests in southwestern Nova Scotia. Vegetation was sampled in 750 1-m2 quadrats established in 16 stands belonging to different recovery periods since clearcutting (3–54 years) and 9 late-successional forests (100–165 years) with no signs of significant human disturbance. Our objectives were to: i) describe the changes in species richness, diversity, and abundance of ground vegetation after clearcutting; ii) examine the responses of residual species (i.e., late-successional flora) to clearcutting; and iii) determine whether any forest species were restricted to or dependent upon the late-successional stages of stand development for maximal frequency and/or abundance. Although clearcutting had no immediate impact on overall alpha richness or diversity, the richness and diversity of residual plants declined after canopy removal and showed no evidence of recovery over 54 years of secondary succession. Consequently, compositional differences between secondary and late-seral stands persisted for many decades after clearcutting. Several understory herbs (e.g., Coptis trifolia (L.) , Oxalis montana (L.), Monotropa uniflora (L.)) were restricted to or attained their highest frequency and abundance in late-seral forests. These results suggest that the preservation of remnant old stands may be necessary for the maintenance of some residual plants in highly disturbed and fragmented forest landscapes in eastern Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号