首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrite, NO, CO, and C2H2 inhibited O2-dependent H2 uptake (H3H oxidation) in denitrifying Azospirillum brasilense Sp7 grown anaerobically on N2O or NO3-. The apparent Ki values for inhibition of O2-dependent H2 uptake were 20 microM for NO2-, 0.4 microM for NO, 28 microM for CO, and 88 microM for C2H2. These inhibitors also affected methylene blue-dependent H2 uptake, presumably by acting directly on the hydrogenase. Nitrite and NO inhibited H2 uptake irreversibly, whereas inhibition due to CO was easily reversed by repeatedly evacuating and backfilling with N2. The C2H2 inhibition was not readily reversed, partly due to difficulty in removing the last traces of this gas from solution. The NO2- inhibition of malate-dependent respiration was readily reversed by repeatedly washing the cells, in contrast to the effect of NO2- on H2-dependent respiration. These results suggest that the low hydrogenase activities observed in NO3(-)-grown cultures of A. brasilense may be due to the irreversible inhibition of hydrogenase by NO2- and NO produced by NO3- reduction.  相似文献   

2.
Respiration of NO resulted in transient proton translocation in anaerobically grown cells of four physiologically diverse denitrifiers. Paracoccus denitrificans, Rhodopseudomonas sphaeroides subsp. denitrificans, "Achromobacter cycloclastes," and Rhizobium japonicum gave, respectively, H+/NO ratios of 3.65, 4.96, 1.94, and 1.12. Antimycin A completely inhibited NO-dependent proton translocation in P. denitrificans and severely restricted translocation in the R. sphaeroides strain. Proton uptake during NO respiration with antimycin A-inhibited cells supplied with an artificial electron source provided evidence for the periplasmic consumption of protons. Values obtained were consistent with the expected ratios of 0.5 mol of H+/mol of NO for reduction of NO to N2O and 1.0 mol of H+/mol of NO for reduction of NO to N2. These data are consistent with the presence of a unique NO reductase found only in anaerobically grown denitrifying cells.  相似文献   

3.
Hydrogenobacter thermophilus strain TK-6 was observed to grow anaerobically on nitrate as an electron acceptor when molecular hydrogen was used as an energy source. Nitrite was detected as the product of a respiratory reaction. 15NO, 15N2O, and 15N2 were detected with Na15NO3 as an electron acceptor. Western immunoblot analysis showed that cell-free extracts from cells grown on nitrate reacted with antibodies against heme cd1-type nitrite reductase from Pseudomonas aeruginosa. The positive bands, which had molecular masses similar to that of the heme cd1-type nitrite reductase, were also stained by heme staining. These results indicate that nitrite reductase of strain TK-6 is a heme cd1-type enzyme. Activity of ATP:citrate lyase, one of the key enzymes of the reductive TCA cycle, was detected in cell-free extract of cells cultivated on nitrate, which indicates that the cycle operates during anaerobic growth.  相似文献   

4.
5.
A highly sensitive denitrification bioassay was developed for detection of NO3- and NO2- in rhizosphere soil samples. Denitrifying Pseudomonas aeruginosa ON12 was grown anaerobically in citrate (30 mM) minimal medium with KClO3 (10 mM) and NaNO2 (3 mM), which gave cells capable of NO2- reduction to N2O but incapable of NO3- reduction to NO2-. Growth on citrate minimal medium further resulted in the absence of N2O reduction. When added to small soil samples in O2-free vials, such cells could be used to convert the indigenous NO2- pool to N2O, which was subsequently quantified by gas chromatography. Cells grown in KClO3-free citrate medium with 10 mM NaNO3 as the electron acceptor were capable of reducing both NO3- and NO2-, and these cells could subsequently be added to the sample to convert the indigenous NO3- pool to N2O. Concentrations of both NO3- and NO2- were thus determined as N2O, with a detection limit of approximately 10 pmol of N. The bioassay could be used to determine NO3- and NO2- pools in 10-mg soil samples taken along a microgradient in the rhizosphere of field-grown barley plants. At both low (10%, wt/wt) and high (18%, wt/wt) water content, relatively high levels of NO2- were found in the rhizosphere compared with bulk soil. Under dry conditions, NO3- was also more abundant in the rhizosphere than in the bulk soil, whereas such a difference was not observed at the high water content. The roles of plant metabolism and bacterial nitrification and denitrification processes for NO3- and NO2- availability in the rhizosphere are discussed.  相似文献   

6.
A highly sensitive denitrification bioassay was developed for detection of NO3- and NO2- in rhizosphere soil samples. Denitrifying Pseudomonas aeruginosa ON12 was grown anaerobically in citrate (30 mM) minimal medium with KClO3 (10 mM) and NaNO2 (3 mM), which gave cells capable of NO2- reduction to N2O but incapable of NO3- reduction to NO2-. Growth on citrate minimal medium further resulted in the absence of N2O reduction. When added to small soil samples in O2-free vials, such cells could be used to convert the indigenous NO2- pool to N2O, which was subsequently quantified by gas chromatography. Cells grown in KClO3-free citrate medium with 10 mM NaNO3 as the electron acceptor were capable of reducing both NO3- and NO2-, and these cells could subsequently be added to the sample to convert the indigenous NO3- pool to N2O. Concentrations of both NO3- and NO2- were thus determined as N2O, with a detection limit of approximately 10 pmol of N. The bioassay could be used to determine NO3- and NO2- pools in 10-mg soil samples taken along a microgradient in the rhizosphere of field-grown barley plants. At both low (10%, wt/wt) and high (18%, wt/wt) water content, relatively high levels of NO2- were found in the rhizosphere compared with bulk soil. Under dry conditions, NO3- was also more abundant in the rhizosphere than in the bulk soil, whereas such a difference was not observed at the high water content. The roles of plant metabolism and bacterial nitrification and denitrification processes for NO3- and NO2- availability in the rhizosphere are discussed.  相似文献   

7.
Spontaneous ethylenediamine-resistant mutants of Azospirillum brasilense were selected on the basis of their excretion of NH(4). Two mutants exhibited no repression of their nitrogenase enzyme systems in the presence of high (20 mM) concentrations of NH(4). The nitrogenase activities of these mutants on nitrogen-free minimal medium were two to three times higher than the nitrogenase activity of the wild type. The mutants excreted substantial amounts of ammonia when they were grown either under oxygen-limiting conditions (1 kPa of O(2)) or aerobically on nitrate or glutamate. The mutants grew well on glutamate as a sole nitrogen source but only poorly on NH(4)Cl. Both mutants failed to incorporate [C]methylamine. We demonstrated that nitrite ammonification occurs in the mutants. Wild-type A. brasilense, as well as the mutants, became established in the rhizospheres of axenically grown wheat plants at levels of > 10 cells per g of root. The rhizosphere acetylene reduction activity was highest in the preparations containing the mutants. When plants were grown on a nitrogen-free nutritional medium, both mutants were responsible for significant increases in root and shoot dry matter compared with wild-type-treated plants or with noninoculated controls. Total plant nitrogen accumulation increased as well. When they were exposed to a N(2)-enriched atmosphere, both A. brasilense mutants incorporated significantly higher amounts of N inside root and shoot material than the wild type did. The results of our nitrogen balance and N enrichment studies indicated that NH(4)-excreting A. brasilense strains potentially support the nitrogen supply of the host plants.  相似文献   

8.
N balance and N dilution were determined from growth of Azospirillum brasilense Sp7 and two unidentified gram-negative nitrogen-fixing microorganisms in continuous culture supplied with NH(4)Cl. At the 1.1 and 2.2 mM NH(4)Cl steady states (N-to-C ratios of 1:68 and 1:34, respectively), the organisms grew with NH(4)Cl and N(2) as N sources simultaneously under carbon limitation. No ammonium could be detected in the supernatant of these cultures.  相似文献   

9.
1. In electron-transport particles (ET particles) prepared from Nitrobacter winogradskyi, the uncoupling agent carbonyl cyanide phenylhydrazone increased the rate of NADH oxidation but decreased the rate of oxidation of NO2-. Its effectiveness in stimulating NADH oxidation closely paralleled its effectiveness in inhibiting NO2- oxidation. 2. In the presence of ADP and phosphate the oxidation of NADH was stimulated, whereas the oxidation of NO2- was inhibited. In the presence of excess of Pi the concentration dependence with respect to ADP was the same for acceleration of NADH oxidation and inhibition of NO2- oxidation. 3. Oligomycin inhibited NADH oxidation and stimulated the oxidation of NO2-. The concentration of oligomycin required to produce half-maximal effect in both systems was the same. 4. The apparent Km for NO2- was not affected by ADP together with Pi, by uncoupling agent or by oligomycin. 5. With NADH as substrate, classical respiratory control was observed. With NO2- as substrate the respiratory-control ratio was less than unity. 6. A reversible uptake of H+ accompanied the oxidation of NO2- by ET particles. 7. In the presence of NH4Cl or cyclohexylamine hydrochloride, H+ uptake was abolished and increased rates of NO2- oxidation were observed. When valinomycin was present in the reaction medium, low concentrations of NH4Cl inhibited NO2- oxidation. 8. Pretreatment of ET particles with oligomycin enhanced the stimulation of NO2- oxidation induced by NH4Cl or by cyclohexylamine hydrochloride. Pretreatment with the uncoupler carbonyl cyanide phenylhydrazone prevented these stimulations. 9. In the presence of dianemycin together with K+, the uptake of H+ was abolished and the rate of NO2- oxidation was increased. In contrast, in the presence of valinomycin together with K+, the uptake of H+ was increased, and the rate of NO2- oxidation decreased. 10. Sodium tetraphenylboron was found to be an inhibitor of NO2- oxidation, but caused a stimulation of NADH oxidation which was dependent on the presence of NH4Cl or cyclohexylamine hydrochloride. 11. It is concluded that the enhanced rate of NO2- oxidation observed in the absence of energy-dissipating processes clearly relates to some state before the involvement of adenine nucleotides, and it is suggested that the oxidation of NO2- generates a protonmotive force, the electrical component of which controls the rate of NO2- oxidation.  相似文献   

10.
The reversible hydrogenase in vegetative cells of A. variabilis cultured on NH4+ or N-free medium was induced by sparging with N2 for 24 hours under light. Both anaerobic condition and illumination appear to be necessary for the induction of hydrogenase in this algae. The properties of the hydrogenase in cell-free extract obtained from the cells grown on two nitrogen sources are similar: (1) Both the enzymes are able to evolve H2 in the presence of reduced methyl viotogen as electron donor, and to uptake H2 in the presence of benzyl viologen as electron acceptor. (2) The enzymes posses the thermal stability and are stable to O2. (3) The optimum pH required for H2 evolution activity of the enzymes is 7.0–7 5. (4) The Km of the enzymes obtained from NH4+ grown cells and N-free grown cells is 300 mmol/l and 295 mmol/l, respectively. So the high Km measured here suggests that the enzymes in both cases function physiologically as H2 evolution. (5) The activities of both enzymes are inhibited by CO but are not affected by C2H2. The induced H2 evolution activity of the reversible hydrogenase in cells grown on NH4+ reached 1530 nmol H2/mg dry wt, h, which was 3 to 5 times higher than from cells grown on N-free medium. Our experiment results indicate that the appearance of heterocysts of A. variabilis cultured on N-free medium affects the synthesis of reversible hydrogenase and the regulation of its activity.  相似文献   

11.
Under anaerobic conditions, Propionibacterium pentosaceum reduces nitrate to nitrite until nitrate is exhausted from the medium when nitrite is converted into N2 or N2O. In the presence of nitrate, fermentation patterns for lactate, glycerol and pyruvate were different from those obtained during anaerobic growth without an inorganic electron acceptor. In the presence of these substrates, a drastic decrease in propionate formation was observed, some pyruvate accumulated during growth with lactate, and acetate was produced from glycerol. Acetate production from lactate and pyruvate was not influenced by the presence of nitrate. Furthermore, CO2 was produced by citric acid cycle activity. The fermentation pattern during nitrite reduction resembled that of P. pentosaceum grown anaerobically without an inorganic electron acceptor. Nitrits has a toxic effect, since bacteria inoculated into a medium with 9 mM-nitrite failed to grow. The cytochrome spectrum of anaerobically grown P. pentosaceum was similar with and without nitrate. In membrane fractions of bacteria grown anaerobically with nitrate, cytochrome b functioned in the transfer of electrons from lactate, glycerol I-phosphate and NADH to nitrate. Molar growth yeilds were increased in the presence of nitrate, indicating an increased production of ATP. This could be explained by citric acid cycle activity, and by ocidative phosphorylation coupled to nitrate reduction. Assuming that I mol ATP is formed in the electron transfer from lactate or glycerol I-phosphate to nitrate, and that 2 mol ATP are formed in the electron transfer from NADH to nitrate, YATP values (g dry wt bacteria/mol ATP) were obtained of between 5-0 and 12-6. The higher YATP values were similar to those obtained during anaerobic growth without an inorganic electron acceptor. This supports the assumptions about the efficiency of oxidative phosphorylation for electron transport to nitrate. Low YAPT values were found when high concentrations of nitrite (15 to 50 mM) accumulated, and were probably due to the toxic effect of nitrite.  相似文献   

12.
Thioalkalivibrio denitrificans is the first example of an alkaliphilic, obligately autotrophic, sulfur-oxidizing bacterium able to grow anaerobically by denitrification. It was isolated from a Kenyan soda lake with thiosulfate as electron donor and N2O as electron acceptor at pH 10. The bacterium can use nitrite and N2O, but not nitrate, as electron acceptors during anaerobic growth on reduced sulfur compounds. Nitrate is only utilized as nitrogen source. In batch culture at pH 10, rapid growth was observed on N2O as electron acceptor and thiosulfate as electron donor. Growth on nitrite was only possible after prolonged adaptation of the culture to increasing nitrite concentrations. In aerobic thiosulfate-limited chemostats, Thioalkalivibrio denitrificans strain ALJD was able to grow between pH values of 7.5 and 10.5 with an optimum at pH 9.0. Growth of the organism in continuous culture on N2O was more stable and faster than in aerobic cultures. The pH limit for growth on N2O was 10.6. In nitrite-limited chemostat culture, growth was possible on thiosulfate at pH 10. Despite the observed inhibition of N2O reduction by sulfide, the bacterium was able to grow in sulfide-limited continuous culture with N2O as electron acceptor at pH 10. The highest anaerobic growth rate with N2O in continuous culture at pH 10 was observed with polysulfide (S8(2-)) as electron donor. Polysulfide was also the best substrate for oxygen-respiring cells. Washed cells at pH 10 oxidized polysulfide to sulfate via elemental sulfur in the presence of N2O or O2. In the absence of the electron acceptors, elemental sulfur was slowly reduced which resulted in regeneration of polysulfide. Cells of strain ALJD grown under anoxic conditions contained a soluble cd1-like cytochrome and a cytochrome-aa3-like component in the membranes.  相似文献   

13.
The specific activities of glutamine synthetase (GS) and glutamate synthase (GOGAT) were 4.2- and 2.2-fold higher, respectively, in cells of Azospirillum brasilense grown with N2 than with 43 mM NH4+ as the source of nitrogen. Conversely, the specific activity of glutamate dehydrogenase (GDH) was 2.7-fold higher in 43 mM NH4+-grown cells than in N2-grown cells. These results indicate that NH4+ could be assimilated and that glutamate could be formed by either the GS-GOGAT or GDH pathway or both, depending on the cellular concentration of NH4+. The routes of in vivo synthesis of glutamate were identified by using 13N as a metabolic tracer. The products of assimilation of 13NH4+ were, in order of decreasing radioactivity, glutamine, glutamate, and alanine. The formation of [13N]glutamine and [13N]glutamate by NH4+-grown cells was inhibited in the additional presence of methionine sulfoximine (an inhibitor of GS) and diazooxonorleucine (an inhibitor of GOGAT). Incorporation of 13N into glutamine, glutamate, and alanine decreased in parallel in the presence of carrier NH4+. These results imply that the GS-GOGAT pathway is the primary route of NH4+ assimilation by A. brasilense grown with excess or limiting nitrogen and that GDH has, at best, a minor role in the synthesis of glutamate.  相似文献   

14.
1. Cells of Nitrosomonas europaea produced N(2)O during the oxidation of ammonia and hydroxylamine. 2. The end-product of ammonia oxidation, nitrite, was the predominant source of N(2)O in cells. 3. Cells also produced N(2)O, but not N(2) gas, by the reduction of nitrite under anaerobic conditions. 4. Hydroxylamine was oxidized by cell-free extracts to yield nitrite and N(2)O aerobically, but to yield N(2)O and NO anaerobically. 5. Cell extracts reduced nitrite both aerobically and anaerobically to NO and N(2)O with hydroxylamine as an electron donor. 6. The relative amounts of NO and N(2)O produced during hydroxylamine oxidation and/or nitrite reduction are dependent on the type of artificial electron acceptor utilized. 7. Partially purified hydroxylamine oxidase retained nitrite reductase activity but cytochrome oxidase was absent. 8. There is a close association of hydroxylamine oxidase and nitrite reductase activities in purified preparations.  相似文献   

15.
Formation of nitrate reductase (NaR) and nitrous oxide reductase (N2OR) by a Pseudomonas sp. G59 did not occur in aerobic or anaerobic conditions, but was observed in a microaerobic incubation in which an anaerobically grown culture was agitated in a sealed vessel initially containing 20 kPa oxygen in the headspace. During the microaerobic incubation, the oxygen concentration in the headspace decreased and dissolved oxygen reached 0.1-0.2 kPa. NaR activity was detected immediately and N2OR activity after 3 h of incubation irrespective of the presence or absence of NO3- or N2O. In the presence of NO3-, NO2- was accumulated as a major product, but N2O was observed in low concentrations only after N2OR appeared. After microaerobic incubation for 3 h, N2OR formation continued even anaerobically in an atmosphere of N2O. In contrast, Escherichia coli formed NaR not only microaerobically but also anaerobically. However, NaR formation by E. coli was inhibited by sodium fluoride under anaerobic, but not under microaerobic conditions. The Pseudomonas culture did not possess fermentative activity. It is suggested that the dependence on microaerobiosis for the formation of these reductases by the Pseudomonas culture was due to an inability to produce energy anaerobically until these anaerobic respiratory enzymes were formed.  相似文献   

16.
Shewanella putrefaciens 200 is a nonfermentative bacterium that is capable of dehalogenating tetrachloromethane to chloroform and other, unidentified products under anaerobic conditions. Since S. putrefaciens 200 can respire anaerobically by using a variety of terminal electron acceptors, including NO3-, NO2-, and Fe(III), it provides a unique opportunity to study the competitive effects of different electron acceptors on dehalogenation in a single organism. The results of batch studies showed that dehalogenation of CT by S. putrefaciens 200 was inhibited by O2, 10 mM NO3-, and 3 mM NO2-, but not by 15 mM Fe(III), 15 mM fumarate, or 15 mM trimethylamine oxide. Using measured O2, Fe(III), NO2-, and NO3- reduction rates, we developed a speculative model of electron transport to explain inhibition patterns on the basis of (i) the kinetics of electron transfer at branch points in the electron transport chain, and (ii) possible direct inhibition by nitrogen oxides. In additional experiments in which we used 20 mM lactate, 20 mM glucose, 20 mM glycerol, 20 mM pyruvate, or 20 mM formate as the electron donor, dehalogenation rates were independent of the electron donor used. The results of other experiments suggested that sufficient quantities of endogenous substrates were present to support transformation of tetrachloromethane even in the absence of an exogenous electron donor. Our results should be significant for evaluating (i) the bioremediation potential at sites contaminated with both halogenated organic compounds and nitrogen oxides, and (ii) the bioremediation potential of iron-reducing bacteria at contaminated locations containing significant amounts of iron-bearing minerals.  相似文献   

17.
phi PS5, a double-stranded DNA bacteriophage of Pseudomonas stutzeri JM604 that adsorbs specifically to the outer-membrane protein NosA, was isolated from stagnant irrigation ditch water. Mutant strains that do not produce NosA are resistant to phi PS5 and cannot grow anaerobically with N2O as the sole electron acceptor. phi PS5 did not adsorb to nosA mutants and adsorption to the wild-type strain was reduced when cells were grown with a high concentration of copper, a condition that represses the synthesis of NosA. The isolation of spontaneous phi PS5-resistant mutants yielded strains that were clearly defective in growth on N2O at about a 10% incidence. About half of these strains could respire N2O when supplied with a high concentration of exogenous copper.  相似文献   

18.
Significant spatial variability in NH4+, NO3- and H+ net fluxes was measured in roots of young seedlings of Douglas-fir (Pseudotsuga menziesii) and lodgepole pine (Pinus contorta) with ion-selective microelectrodes. Seedlings were grown with NH4+, NO3-, NH4NO3 or no nitrogen (N), and were measured in solutions containing one or both N ions, or no N in a full factorial design. Net NO3- and NH4+ uptake and H+ efflux were greater in Douglas-fir than lodgepole pine and in roots not exposed to N in pretreatment. In general, the rates of net NH4+ uptake were the same in the presence or absence of NO3-, and vice versa. The highest NO3- influx occurred 0-30 mm from the root apex in Douglas-fir and 0-10 mm from the apex in lodgepole pine. Net NH4+ flux was zero or negative (efflux) at Douglas-fir root tips, and the highest NH4+ influx occurred 5-20 mm from the root tip. Lodgepole pine had some NH4+ influx at the root tips, and the maximum net uptake 5 mm from the root tip. Net H+ efflux was greatest in the first 10 mm of roots of both species. This study demonstrates that nutrient uptake by conifer roots can vary significantly across different regions of the root, and indicates that ion flux profiles along the roots may be influenced by rates of root growth and maturation.  相似文献   

19.
The use of the redox dye 5-cyano-2,3,-ditolyl tetrazolium chloride (CTC) for evaluating the metabolic activity of aerobic bacteria has gained wide application in recent years. In this study, we examined the utility of CTC in capturing the metabolic activity of anaerobic bacteria. In addition, the factors contributing to abiotic reduction of CTC were also examined. CTC was used in conjunction with the fluorochrome 5-(4,6-dichlorotriazinyl) aminofluorescein (DTAF), that targets bacterial cell wall proteins, to quantitate the active fraction of total bacterial numbers. Facultative anaerobic bacteria, including Escherichia coli grown fermentatively, and Pseudomonas chlorophis, P. fluorescens, P. stutzeri, and P. pseudoalcalegenes subsp. pseudoalcalegenes grown under nitrate-reducing conditions, actively reduced CTC during all phases of growth. Greater than 95% of these cells accumulated intracellular CTC-formazan crystals during the exponential phase. Obligate anaerobic bacteria, including Syntrophus aciditrophicus grown fermentatively, Geobacter sulfurreducens grown with fumarate as the electron acceptor, Desulfovibrio desulfuricans subsp. desulfuricans and D. halophilus grown under sulfate-reducing conditions, Methanobacterium formicicum grown on formate, H2 and CO2, and Methanobacterium thermoautotrophicum grown autotrophically on H2 and CO2 all reduced CTC to intracellular CTC-formazan crystals. The optimal CTC concentration for all organisms examined was 5 mM. Anaerobic CTC incubations were not required for quantification of anaerobically grown cells. CTC-formazan production by all cultures examined was proportional to biomass production, and CTC reduction was observed even in the absence of added nutrients. CTC was reduced by culture fluids containing ferric citrate as electron acceptor following growth of either G. metallireducens or G. sulfurreducens. Abiotic reduction of CTC was observed in the presence of ascorbic acid, cysteine hydrochloride, dithiothreitol, NADH, NADPH, Fe(II)Cl2, sodium thioglycolic acid and sodium sulfide. These results suggest that while CTC can be used to capture the metabolic activity of anaerobic bacteria, care must be taken to avoid abiotic reduction of CTC.  相似文献   

20.
1. Aerobic respiration by cells of Paracoccus dentrificans drives the uptake of the lipophilic cation butyltriphenylphosphonium. Anaerobiosis or addition of an uncoupler of oxidative phosphorylation (carbonyl cyanide p-trifluoromethoxyphenylhydrazone) results in efflux of the cation. Changes in the concentration of butyltriphenylphosphonium in the suspension medium were measured by using an ion-selective electrode, the construction of which is described. 2. If the uptake of butyltriphenylphosphonium is used as an indicator of membrane potential, then at pH 7.3 an estimate of about 160 mV is obtained for cells of P. dentrificans respiring aerobically in 100 mM-Hepes [4-(2-hydroxyethyl)-1-piperazine-ethanesulphonic acid/NaOH or 100mM-NaH2PO4/NaOH. This potential, however, is decreased by more than 20 mV in reaction media containing a high concentration of phosphate (100 mM) together with at least 1 mM-K+. 3. Anaerobic electron transport with NO3-, NO2- or N2O as terminal electron acceptor generates a membrane potential of about 150mV in described suspension media. The presence of these species under aerobic conditions, moreover, has negligible effect upon the extent of uptake of butyltriphenylphosphonium normally driven by aerobic respiration. These data indicate that none of these molecules exert a significant uncoupling effect on the protonmotive force. 4. No 204Tl+ uptake into respiring cells was detected. This adds to the evidence that 204Tl+ is not a freely permeable cation in bacterial cells and therefore not an indicator of membrane potential as has been proposed. The absence of respiration-driven 204Tl+ uptake indicates that P. denitrificans cells grown under the conditions specified in the present work do not possess K+-transport systems of either the Kdp or TrkA types that have been described in Escherichia coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号