首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent embryological and genetic experiments have suggested that the anterior visceral endoderm and the anterior primitive streak of the early mouse gastrula function as head- and trunk-organising centers, respectively. Here, we report that HNF3beta and Lim1 are coexpressed in both organising centers suggesting synergistic roles of these genes in regulating organiser functions and hence axis development in the mouse embryo. To investigate this possibility, we generated compound HNF3beta and Lim1 mutant embryos. An enlarged primitive streak and a lack of axis formation were observed in HNF3beta (-)(/)(-);Lim1(-)(/)(-), but not in single homozygous mutant embryos. Chimera experiments indicate that the primary defect in these double homozygous mutants is due to loss of activity of HNF3beta and Lim1 in the visceral endoderm. Altogether, these data provide evidence that these genes function synergistically to regulate organiser activity of the anterior visceral endoderm. Moreover, HNF3beta (-)(/)(-);Lim1(-)(/)(-) mutant embryos also exhibit defects in mesoderm patterning that are likely due to lack of specification of anterior primitive streak cells.  相似文献   

2.
3.
4.
The anterior-posterior axis of the mouse embryo is defined before formation of the primitive streak, and axis specification and subsequent anterior development involves signaling from both embryonic ectoderm and visceral endoderm. Tauhe Wnt signaling pathway is essential for various developmental processes, but a role in anterior-posterior axis formation in the mouse has not been previously established. Beta-catenin is a central player in the Wnt pathway and in cadherin-mediated cell adhesion. We generated beta-catenin-deficient mouse embryos and observed a defect in anterior-posterior axis formation at embryonic day 5.5, as visualized by the absence of Hex and Hesx1 and the mislocation of cerberus-like and Lim1 expression. Subsequently, no mesoderm and head structures are generated. Intercellular adhesion is maintained since plakoglobin substitutes for beta-catenin. Our data demonstrate that beta-catenin function is essential in anterior-posterior axis formation in the mouse, and experiments with chimeric embryos show that this function is required in the embryonic ectoderm.  相似文献   

5.
The anterior visceral endoderm plays a pivotal role in establishing anterior-posterior polarity of the mouse embryo, but the molecular nature of the signals required remains to be determined. Here, we demonstrate that Cerberus-like(-/-);Lefty1(-/-) compound mutants can develop a primitive streak ectopically in the embryo. This defect is not rescued in chimeras containing wild-type embryonic, and Cerberus-like(-/-);Lefty1(-/-) extraembryonic, cells but is rescued in Cerberus-like(-/-); Lefty1(-/-) embryos after removal of one copy of the Nodal gene. Our findings provide support for a model whereby Cerberus-like and Lefty1 in the anterior visceral endoderm restrict primitive streak formation to the posterior end of mouse embryos by antagonizing Nodal signaling. Both antagonists are also required for proper patterning of the primitive streak.  相似文献   

6.
7.
8.
Tumor suppressor Apc (adenomatous polyposis coli) is implicated in the Wnt signaling pathway that is involved in the early embryonic development and tumorigenesis in vertebrates. While the heterozygous null mutant mice develop intestinal polyps, the homozygous embryos die before gastrulation. To investigate the role of Apc in later embryonic development, we constructed a novel hypomorphic Apc allele whose expression was attenuated by approximately 80%. In the hypomorphic Apc homozygous ES cells, reduction in Apc expression caused beta-catenin accumulation and Wnt signaling activation. The homozygous mutant mouse embryos survived 3 days longer than the null mutant embryos. Interestingly, they showed anterior truncation, partial axis duplication, and defective ventral morphogenesis. To determine the tissues where Apc functions for anterior and ventral morphogenesis, we constructed chimeric embryos whose epiblast was derived predominantly from the Apc hypomorphic homozygous cells but the visceral endoderm was from the wild type. Although these chimeric embryos still showed some anterior defects, their ventral morphogenesis was rescued. In addition, marker studies indicated that the axial mesendoderm was also defective in the homozygous embryos. Our results provide genetic evidence that expression of Apc at the normal level is essential for both anterior and ventral development, in the epiblast derivatives and visceral endoderm.  相似文献   

9.
The orientation of the anterior-posterior (A-P) axis was examined in gastrula-stage Hnf3beta, Otx2 and Lim1 null mutant embryos that display defective axis development. In situ hybridization analysis of the expression pattern of genes associated with the posterior germ layer tissues and the primitive streak (T, Wnt3 and Fgf8) and anterior endoderm (Cer1 and Sox17) revealed that the A-P axis of mutant embryos remains aligned with the proximo-distal plane of the gastrula. Further analysis revealed that cells which express Chrd activity are either absent in Hnf3beta mutant embryos or localised in heterotopic sites in Lim1 and Otx2 null mutants. Lim1-expressing cells are present in the Hnf3beta mutant embryo albeit in heterotopic sites. In all three mutants, Gsc-expressing cells are missing from the anterior mesendoderm. These findings suggest that although some cells with organizer activity may be present in the mutant embryo, they are not properly localised and fail to contribute to the axial mesoderm of the head. By contrast, in T/T mutant embryos that display normal head fold development, the expression domains of organizer, primitive streak and anterior endoderm genes are regionalised correctly in the gastrula.  相似文献   

10.
The Xenopus cerberus gene encodes a secreted factor expressed in the Spemann organizer that can cause ectopic head formation when its mRNA is injected into Xenopus embryos. In mouse, the cerberus-related gene, Cerr1, is expressed in the anterior mesendoderm that underlies the presumptive anterior neural plate and its expression is downregulated in Lim1 headless embryos. To determine whether Cerr1 is required for head formation we generated a null mutation in Cerr1 by gene targeting in mouse embryonic stem cells. We found that head formation is normal in Cerr1(-/-) embryos and we detected no obvious phenotypic defects in adult Cerr1(-/-) mice. However, in embryonic tissue layer recombination assays, Cerr1(-/-) presomitic/somitic mesoderm, unlike Cerr1-expressing wild-type presomitic/somitic mesoderm, was unable to maintain expression of the anterior neural marker gene Otx2 in ectoderm explants. These findings suggest that establishment of anterior identity in the mouse may involve the action of multiple functionally redundant factors.  相似文献   

11.
12.
13.
Recent genetic and embryological experiments have demonstrated that head formation in the mouse embryo is dependent on signals provided by two organising centers during gastrulation, the anterior visceral endoderm (AVE) and the anterior primitive streak (also called the Early Gastrula Organiser, EGO). However the molecular nature of the signals triggering anterior neural formation from the epiblast is not clearly understood. The analysis of mouse mutants has allowed the identification of some of the molecular players involved in the process of head formation. In this review, we describe different mutant embryos in which impairment of visceral endoderm function leads to similar defects in antero-posterior axis specification. These phenotypes are consistent with a role of the AVE in protecting anterior embryonic regions from signals that promote posterior development. We propose that a genetic cascade in the AVE, involving HNF3beta, Lim1, Otx2, Smad2 and ActRIB, leads to the production of secreted TGFbeta antagonists that protect the anterior epiblast region from Nodal signalling.  相似文献   

14.
Furin, the mammalian prototype of a family of serine proteases, is required for ventral closure and axial rotation, and formation of the yolk sac vasculature. Here we show additionally that left-sided expression of pitx2 and lefty-2 are also perturbed in Furin-deficient embryos. These tissue abnormalities are preceded by a marked delay in the expansion of the definitive endoderm during gastrulation. Using a chimera approach, we show that Furin activity is required in epiblast derivatives, including the primitive heart, gut and extraembryonic mesoderm, whereas it is nonessential in the visceral endoderm. Thus, chimeric embryos, derived by injecting wild-type embryonic stem (ES) cells into fur(-/-) blastocysts, develop normally until at least 9.5 d.p.c. In contrast, Furin-deficient chimeras developing in the context of wild-type visceral endoderm fail to undergo ventral closure, axial rotation and yolk sac vascularization. Fur(-/-) cells are recruited into all tissues examined, including the yolk sac vasculature and the midgut, even though these structures fail to form in fur mutants. The presence of wild-type cells in the gut strikingly correlates with the ability of chimeric embryos to undergo turning. Overall, we conclude that Furin activity is essential in both extraembryonic and precardiac mesoderm, and in definitive endoderm derivatives.  相似文献   

15.
SMAD4 serves as a common mediator for signaling of TGF-β superfamily. Previous studies illustrated that SMAD4-null mice die at embryonic day 6.5 (E6.5) due to failure of mesoderm induction and extraembryonic defects; however, functions of SMAD4 in each germ layer remain elusive. To investigate this, we disrupted SMAD4 in the visceral endoderm and epiblast, respectively, using a Cre-loxP mediated approach. We showed that mutant embryos lack of SMAD4 in the visceral endoderm (Smad4(Co/Co);TTR-Cre) died at E7.5-E9.5 without head-fold and anterior embryonic structures. We demonstrated that TGF-β regulates expression of several genes, such as Hex1, Cer1, and Lim1, in the anterior visceral endoderm (AVE), and the failure of anterior embryonic development in Smad4(Co/Co);TTR-Cre embryos is accompanied by diminished expression of these genes. Consistent with this finding, SMAD4-deficient embryoid bodies showed impaired responsiveness to TGF-β-induced gene expression and morphological changes. On the other hand, embryos carrying Cre-loxP mediated disruption of SMAD4 in the epiblasts exhibited relatively normal mesoderm and head-fold induction although they all displayed profound patterning defects in the later stages of gastrulation. Cumulatively, our data indicate that SMAD4 signaling in the epiblasts is dispensable for mesoderm induction although it remains critical for head patterning, which is significantly different from SMAD4 signaling in the AVE, where it specifies anterior embryonic patterning and head induction.  相似文献   

16.
Anterior-posterior polarity of the mouse embryo has been thought to be established when distal visceral endoderm (DVE) at embryonic day (E) 5.5 migrates toward the future anterior side to form anterior visceral endoderm (AVE). Lefty1, a marker of DVE and AVE, is asymmetrically expressed in implanting mouse embryos. We now show that Lefty1 is expressed first in a subset of epiblast progenitor cells and then in a subset of primitive endoderm progenitors. Genetic fate mapping indicated that the latter cells are destined to become DVE. In contrast to the accepted notion, however, AVE is not derived from DVE but is newly formed after E5.5 from Lefty1(-) visceral endoderm cells that move to the distal tip. Concomitant with DVE migration, all visceral endoderm cells in the embryonic region undergo global movement. In embryos subjected to genetic ablation of Lefty1-expressing DVE cells, AVE was formed de novo but the visceral endoderm including the newly formed AVE failed to migrate, indicating that DVE guides the migration of AVE by initiating the global movement of visceral endoderm cells. Future anterior-posterior polarity is thus already determined by Lefty1(+) blastomeres in the implanting blastocyst.  相似文献   

17.
The anterior visceral endoderm (AVE) plays an important role in anterior-posterior axis formation in the mouse. The AVE functions in part by expressing secreted factors that antagonize growth factor signaling in the proximal epiblast. Here we report that the Secreted frizzled-related protein 5 (Sfrp5) gene, which encodes a secreted factor that can antagonize Wnt signaling, is expressed in the AVE and foregut endoderm during early mouse development. At embryonic day (E) 5.5, Sfrp5 is expressed in the visceral endoderm at the distal tip region of the embryo and at E6.5 in the AVE opposite the primitive streak. In Lim1 embryos, which lack anterior neural tissue and sometimes form a secondary body axis, Sfrp5-expressing cells fail to move towards the anterior and remain at the distal tip of E6.5 embryos. When compared with Dkk1, which encodes another secreted Wnt antagonist molecule present in the visceral endoderm, Sfrp5 and Dkk1 expression overlap but Sfrp5 is expressed more broadly in the AVE. Between E7.5 and 8, Sfrp5 is expressed in the foregut endoderm underlying the cardiac mesoderm. At E8.5, Sfrp5 is expressed in the ventral foregut endoderm that gives rise to the liver. Additional domains of Sfrp5 expression occur in the dorsal neural tube and in the forebrain anterior to the optic placode. These findings identify a gene encoding a secreted Wnt antagonist that is expressed in the extraembryonic visceral endoderm and anterior definitive endoderm during axis formation and organogenesis in the mouse.  相似文献   

18.
Dickkopf1 (Dkk1) is a secreted protein that acts as a Wnt inhibitor and, together with BMP inhibitors, is able to induce the formation of ectopic heads in Xenopus. Here, we show that Dkk1 null mutant embryos lack head structures anterior of the midbrain. Analysis of chimeric embryos implicates the requirement of Dkk1 in anterior axial mesendoderm but not in anterior visceral endoderm for head induction. In addition, mutant embryos show duplications and fusions of limb digits. Characterization of the limb phenotype strongly suggests a role for Dkk1 both in cell proliferation and in programmed cell death. Our data provide direct genetic evidence for the requirement of secreted Wnt antagonists during embryonic patterning and implicate Dkk1 as an essential inducer during anterior specification as well as a regulator during distal limb patterning.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号