首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolution has resoundingly favored protein enzymes over RNA-based catalysts, yet ribozymes occupy important niches in modern cell biology that include the starring role in catalysis of protein synthesis on the ribosome. Recent results from structural and biochemical studies show that natural ribozymes use an impressive range of catalytic mechanisms, beyond metalloenzyme chemistry and analogous to more chemically diverse protein enzymes. These findings make it increasingly possible to compare details of RNA- and protein-based catalysis.  相似文献   

2.
Catalytic antibodies have emerged as powerful tools for the efficient and specific catalysis of a wide range of chemical transformations. Generating antibody catalysts that achieve enzymatic efficiency remains a challenging task, which has long been the source of great interest both in the design of more effective haptens for immunization and in the development of more direct and efficient screening methods for the selection of antibodies with desired catalytic capacities. In this review, we describe the development of different hapten design strategies, including a transition state analog (TSA) approach, 'bait-and-switch' catalysis, and reactive immunization. We also comment on recent developments in the screening process that allow for a more efficient identification of antibody catalysts.  相似文献   

3.
Principles of antibody catalysis   总被引:6,自引:0,他引:6  
Antibodies have now been shown to catalyze a variety of chemical transformations, including hydrolytic, concerted, and bimolecular reactions. The inherent chirality of the antibody binding pocket has been exploited to exert precise stereochemical control over their catalyzed reactions. The mechanisms by which antibodies catalyze reactions are not expected to differ in any general way from those of natural enzymes. Antibodies use their binding energy to stabilize species of higher free energy which appear along the reaction coordinate or effect general acid/base catalysis. The advent of catalytic antibodies promises new catalysts that extend the range of catalysis by proteins to chemical transformations that were not required during the evolution of enzymes.  相似文献   

4.
Dendrimers are well-defined hyperbranched macromolecules with characteristic globular structures for the larger systems. The recent impressive strides in synthetic procedures increased the accessibility of functionalized dendrimers at a practicable scale, resulting in a rapid development of dendrimer chemistry. Dendrimers have inspired many chemists to develop new materials and several applications have been explored, catalysis being one of them. The position of the catalytic site(s) as well as the spatial separation of the catalysts within the dendritic framework is of crucial importance. Dendrimers that are functionalized with transition metals in the core can potentially mimic properties of enzymes, their efficient natural counterparts, whereas the surface-functionalized systems have been proposed to fill the gap between homogeneous and heterogeneous catalysis. We prepared both core- and periphery-functionalized dendritic catalysts that are sufficiently large to enable separation by modern nanofiltration techniques. Here we review our recent findings using these promising novel transition metal-functionalized dendrimers as catalysts in several reactions. We will discuss some of the consequences of the architecturally different systems that have been studied and will elaborate on a novel non-covalent strategy of dendrimer functionalization.  相似文献   

5.
One of the challenges of modern inorganic chemistry is translating the potential of metal catalysts to living systems to achieve controlled non-natural transformations. This field poses numerous issues associated with the metal compounds biocompatibility, stability, and reactivity in complex aqueous environment. Moreover, it should be noted that although referring to ‘metal catalysis’, turnover has not yet been fully demonstrated in most of the examples within living systems. Nevertheless, transition metal catalysts offer an opportunity of modulating bioprocesses through reactions that are complementary to enzymes. In this context, gold complexes, both coordination and organometallic, have emerged as promising tools for bio-orthogonal transformations, endowed with excellent reactivity and selectivity, compatibility within aqueous reaction medium, fast kinetics of ligand exchange reactions, and mild reaction conditions. Thus, a number of examples of gold-templated reactions in a biologically relevant context will be presented and discussed here in relation to their potential applications in biological and medicinal chemistry.  相似文献   

6.
New structural data on nonhydrolytic antibody catalysts gained over the past two years confirm that antibodies elicited against transition-state analogues function by differential stabilisation of the transition-state over the ground state through electrostatic, van der Waals, cation-pi and hydrogen-bonding interactions. The lack of chemical catalysis correlates with the low catalytic efficiency. Novel strategies that precisely position a key functional residue in the antibody catalyst combining site have therefore emerged, as demonstrated by crystallographic studies. Whereas antibodies with a bulky residue at position H100c of hypervariable loop H3 adopt different cavity shapes, other antibodies share a common deep combining site. This structural restriction might reflect the use of similar hydrophobic haptens to generate the antibody; novel hapten design or new immunisation strategies may, in the future, lead to more structurally diversified active sites.  相似文献   

7.
8.
BackgroundGold nanoparticles (AuNPs) with unique physicochemical properties have received a great deal of interest in the field of biological, chemical and biomedical implementations. Despite the widespread use of AuNPs in chemical and biological sensing, catalysis, imaging and diagnosis, and more recently in therapy, no comprehensive summary has been provided to explain how AuNPs could aid in developing improved sensing and catalysts systems as well as medical settings.Scope of reviewThe chemistry of Au-based nanosystems was followed by reviewing different applications of Au nanomaterials in biological and chemical sensing, catalysis, imaging and diagnosis by a number of approaches, and finally synergistic combination therapy of different cancers. Afterwards, the clinical impacts of AuNPs, future application of AuNPs, and opportunities and challenges of AuNPs application were also discussed.Major conclusionsAuNPs show exclusive colloidal stability and are considered as ideal candidates for colorimetric detection, catalysis, imaging, and photothermal transducers, because their physicochemical properties can be tuned by adjusting their structural dimensions achieved by the different manufacturing methods.General significanceThis review provides some details about using AuNPs in sensing and catalysis applications as well as promising theranostic nanoplatforms for cancer imaging and diagnosis, and sensitive, non-invasive, and synergistic methods for cancer treatment in an almost comprehensive manner.  相似文献   

9.
In this paper, we discuss the rational design of polymeric catalysts and the positive effect of polymer supports on the catalytic asymmetric reactions. The attachment of chiral catalysts to soluble polymers, particularly dendritic polymers, offered a potential combination of the advantages of homogeneous and heterogeneous asymmetric catalysis.  相似文献   

10.
The catalysis of disfavored chemical reactions, especially those with no known natural enzyme counterparts, is one of the most promising achievements of catalytic antibody research. Antibodies 5C8, 14B9, 17F6, and 26D9, elicited by two different transition-state analogues, catalyze disfavored endo-tet cyclization reactions of trans-epoxy alcohols, in formal violation of Baldwin's rules for ring closure. Thus far, neither chemical nor enzyme catalysis has been capable of emulating the extraordinary activity and specificity of these antibodies. X-ray structures of two complexes of Fab 5C8 with the original hapten and with an inhibitor have been determined to 2.0 A resolution. The Fab structure has an active site that contains a putative catalytic diad, consisting of AspH95 and HisL89, capable of general acid/base catalysis. The stabilization of a positive charge that develops along the reaction coordinate appears to be an important factor for rate enhancement and for directing the reaction along the otherwise disfavored pathway. Sequence analysis of the four catalytic antibodies, as well as four inactive antibodies that strongly bind the transition-state analogues, suggests a conserved catalytic mechanism. The occurrence of the putative base HisL89 in all active antibodies, its absence in three out of the four analyzed inactive antibodies, and the rarity of a histidine at this position in immunoglobulins support an important catalytic role for this residue.  相似文献   

11.
Antibodies that catalyze the deprotonation of unactivated benzisoxazoles to give the corresponding salicylonitriles were prepared using as antigen a 2-aminobenzimidazolium derivative coupled to a carrier protein via its benzene ring. The hapten was designed to induce an antibody binding site with both a base and an acid, in position to initiate proton transfer and stabilize developing negative charge at the phenoxide leaving group, respectively. Consistent with this design, the catalysts exhibit bell-shaped pH-rate profiles, while chemical modification identified several functional groups that could participate in bifunctional catalysis. One of the antibodies, 13G5, is particularly notable in catalyzing the elimination of 6-glutaramidebenzisoxazole with a > 10(5)-fold rate acceleration over background and an effective molarity of > 10(4) M for its catalytic base. These properties compare favorably to the efficiencies achieved by the best previously characterized antibodies with substantially more reactive substrates.  相似文献   

12.
The origin of life necessitated the formation of catalytic functionalities in order to realize a number of those capable of supporting reactions that led to the proliferation of biologically accessible molecules and the formation of a proto-metabolic network. Here, the discussion of the significance of quantum behavior on biological systems is extended from recent hypotheses exploring brain function and DNA mutation to include origins of life considerations in light of the concept of quantum decoherence and the transition from the quantum to the classical. Current understandings of quantum systems indicate that in the context of catalysis, substrate-catalyst interaction may be considered as a quantum measurement problem. Exploration of catalytic functionality necessary for life’s emergence may have been accommodated by quantum searches within metal sulfide compartments, where catalyst and substrate wave function interaction may allow for quantum based searches of catalytic phase space. Considering the degree of entanglement experienced by catalytic and non catalytic outcomes of superimposed states, quantum contributions are postulated to have played an important role in the operation of efficient catalysts that would provide for the kinetic basis for the emergence of life.  相似文献   

13.
Protein kinases are fascinating biological catalysts with a rapidly expanding knowledge base, a growing appreciation in cell regulatory control, and an ascendant role in successful therapeutic intervention. To better understand protein kinases, the molecular underpinnings of phosphoryl group transfer, protein phosphorylation, and inhibitor interactions are examined. This analysis begins with a survey of phosphate group and phosphoprotein properties which provide context to the evolutionary selection of phosphorylation as a central mechanism for biological regulation of most cellular processes. Next, the kinetic and catalytic mechanisms of protein kinases are examined with respect to model aqueous systems to define the elements of catalysis. A brief structural biology overview further delves into the molecular basis of catalysis and regulation of catalytic activity. Concomitant with a prominent role in normal physiology, protein kinases have important roles in the disease state. To facilitate effective kinase drug discovery, classic and emerging approaches for characterizing kinase inhibitors are evaluated including biochemical assay design, inhibitor mechanism of action analysis, and proper kinetic treatment of irreversible inhibitors. As the resulting protein kinase inhibitors can modulate intended and unintended targets, profiling methods are discussed which can illuminate a more complete range of an inhibitor's biological activities to enable more meaningful cellular studies and more effective clinical studies. Taken as a whole, a wealth of protein kinase biochemistry knowledge is available, yet it is clear that a substantial extent of our understanding in this field remains to be discovered which should yield many new opportunities for therapeutic intervention.  相似文献   

14.
In the past few years, antibodies that catalyze a variety of reactions with enzyme-like properties have been produced. The present review is of a critical nature, rather than a survey or an introduction to the field of catalytic antibodies. Here, we examine the performance of catalytic antibodies in light of the features that define an enzyme: substrate specificity, rate enhancement, and turnover. We also refer to some limitations of the technologies currently used for their generation. In the future, antibodies may provide a new repertoire of tailor-made, enzyme-like, catalysts with possible applications in biology, medicine, and biotechnology. In the following sections, we emphasize that these applications will require far more efficient catalysts than are presently available, and we point to several trends for future research that may offer more efficient catalytic antibodies.  相似文献   

15.
The article describes the observation of novel catalytic activities in the alphabeta-hydrolase superfamily apparently unrelated to ester hydrolysis and unexpected biochemical observations relating to the structure and function of the serine catalytic triad in these enzymes. One common feature of these novel activities is the activation of a small diatomic molecule, but via diverse chemistry. Possible mechanisms of catalysis are discussed.  相似文献   

16.
Understanding how the catalytic mechanisms of enzymes are optimized through evolution remains a major challenge in molecular biology. The concept of co-evolution implicates that compensatory mutations occur to preserve the structure and function of proteins. We have combined statistical analysis of protein sequences with the sensitivity of single molecule force-clamp spectroscopy to probe how catalysis is affected by structurally distant correlated mutations in Escherichia coli thioredoxin. Our findings show that evolutionary anti-correlated mutations have an inhibitory effect on enzyme catalysis, whereas positively correlated mutations rescue the catalytic activity. We interpret these results in terms of an evolutionary tuning of both the enzyme-substrate binding process and the chemistry of the active site. Our results constitute a direct observation of distant residue co-evolution in enzyme catalysis.  相似文献   

17.
Editorial     
The field of biocatalysis and biotransformations has grown considerably in recent years, as witnessed at Biotrans '99 (the 4th international symposium on Biocatalysis and Biotransformations, held in Sicily) which was an outstanding scientific success. BIOCATALYSIS AND BIOTRANSFORMA-TION (BCBT), which is the official journal of the Working Party on Applied Biocatalysis of the European Federation of Biotechnology, intends to be at the forefront of developments in this field and, together with its established coverage, is particularly keen to present work on novel biocatalysis (nucleozymes, catalytic antibodies, synzymes etc.) and biomimetic chemical catalysts which could help in understanding the functioning of biological catalysts.  相似文献   

18.
Ligand binding to enzymes and antibodies is often accompanied by protein conformational changes. Although such structural adjustments may be conducive to enzyme catalysis, much less is known about their effect on reactions promoted by engineered catalytic antibodies. Crystallographic and pre-steady state kinetic analyses of antibody 34E4, which efficiently promotes the conversion of benzisoxazoles to salicylonitriles, show that the resting catalyst adopts two interconverting active-site conformations, only one of which is competent to bind substrate. In the predominant isomer, the indole side chain of Trp(L91) occupies the binding site and blocks ligand access. Slow conformational isomerization of this residue, on the same time scale as catalytic turnover, creates a deep and narrow binding site that can accommodate substrate and promote proton transfer using Glu(H50) as a carboxylate base. Although 34E4 is among the best catalysts for the deprotonation of benzisoxazoles, its efficiency appears to be significantly limited by this conformational plasticity of its active site. Future efforts to improve this antibody might profitably focus on stabilizing the active conformation of the catalyst. Analogous strategies may also be relevant to other engineered proteins that are limited by an unfavorable conformational pre-equilibrium.  相似文献   

19.
BACKGROUND: Small organic molecules coupled to a carrier protein elicit an antibody response on immunisation. The diversity of this response has been found to be very narrow in several cases. Some antibodies also catalyse chemical reactions. Such catalytic antibodies are usually identified among those that bind tightly to an analogue of the transition state (TSA) of the relevant reaction; therefore, catalytic antibodies are also thought to have restricted diversity. To further characterise this diversity, we investigated the structure and biochemistry of the catalytic antibody 7C8, one of the most efficient of those which enhance the hydrolysis of chloramphenicol esters, and compared it to the other catalytic antibodies elicited in the same immunisation. RESULTS: The structure of a complex of the 7C8 antibody Fab fragment with the hapten TSA used to elicit it was determined at 2.2 A resolution. Structural comparison with another catalytic antibody (6D9) raised against the same hapten revealed that the two antibodies use different binding modes. Furthermore, whereas 6D9 catalyses hydrolysis solely by transition-state stabilisation, data on 7C8 show that the two antibodies use mechanisms where the catalytic residue, substrate specificity and rate-limiting step differ. CONCLUSIONS: Our results demonstrate that substantial diversity may be present among antibodies catalysing the same reaction. Therefore, some of these antibodies represent different starting points for mutagenesis aimed at boosting their activity. This increases the chance of obtaining more proficient catalysts and provides opportunities for tailoring catalysts with different specificities.  相似文献   

20.
Synthetic metallonucleases are versatile metal ion catalysts that use multiple catalytic strategies for the cleavage of RNA. Recent work in the design of more active metallonucleases combines a single metal ion with functional groups that interact with RNA, including amino acid fragments or additional metal ions. Rate enhancements by multifunctional catalysts for cleavage of simple model substrates with good leaving groups are as high as 10(6) but somewhat lower (10(5)) for real RNA. However, cleavage of RNA substrates is complicated by different binding modes and steric interactions that can interfere with catalysis. Antisense oligonucleotides, peptides and small molecules that act as RNA recognition agents increase the strength of substrate binding, but not necessarily the catalytic rate constant. In general, catalytic strategies used by synthetic metallonucleases are probably not optimized. A better grasp of the mechanism of RNA cleavage by metal ions and more effort on positioning the metal ion complex with respect to the cleavage site may lead to improved catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号