首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modulation of epithelial tubule formation by Rho kinase   总被引:4,自引:0,他引:4  
We have developed a model system for studying integrin regulation of mammalian epithelial tubule formation. Application of collagen gel overlays to Madin-Darby canine kidney (MDCK) cells induced coordinated disassembly of junctional complexes that was accompanied by lamellipodia formation and cell rearrangement (termed epithelial remodeling). In this study, we present evidence that the Rho signal transduction pathway regulates epithelial remodeling and tubule formation. Incubation of MDCK cells with collagen gel overlays facilitated formation of migrating lamellipodia with membrane-associated actin. Inhibitors of myosin II and actin prevented lamellipodia formation, which suggests that actomyosin function was involved in regulation of epithelial remodeling. To determine this, changes in myosin II distribution, function, and phosphorylation were studied during epithelial tubule biogenesis. Myosin II colocalized with actin at the leading edge of lamellipodia thereby providing evidence that myosin is important in epithelial remodeling. This possibility is supported by observations that inhibition of Rho kinase, a regulator of myosin II function, alters formation of lamellipodia and results in attenuated epithelial tubule development. These data and those demonstrating myosin regulatory light-chain phosphorylation at the leading edge of lamellipodia strongly suggest that Rho kinase and myosin II are important modulators of epithelial remodeling. They support a hypothesis that the Rho signal transduction pathway plays a significant role in regulation of epithelial tubule formation. signaling pathway; polarity  相似文献   

2.
Using MDCK cells as a model system, evidence is presented demonstrating that the signaling pathways mammalian target of rapamycin (mTOR) and phosphoinositide 3-kinase (PI 3-kinase) play important roles in the regulation of epithelial tubule formation. Incubation of cells with collagen gel overlays induced early (4-8 h) reorganization of cells (epithelial remodeling) into three-dimensional multicellular tubular structures over 24 h. An MDCK cell line stably expressing the PH domain of Akt, a PI 3-kinase downstream effector, coupled to green fluorescent protein (GFP-Akt-PH) was used to determine the distribution of phosphatidyl inositol-3,4,5-P(3) (PIP(3)), a product of PI 3-kinase. GFP-Akt-PH was associated with lateral membranes in control cells. After incubation with collagen gel overlays, GFP-Akt-PH redistributed into the lamellipodia of migrating cells suggesting that PIP(3) plays a role in epithelial remodeling. Using the small molecule inhibitor LY-294002 that inhibits both mTOR and PI 3-kinase, we demonstrated that kinase activity was required for epithelial remodeling, disruption of cell junctions and subsequent modulation of tubule formation. Since the mTOR signaling pathway is downstream of PI 3-kinase, the effects of rapamycin, a specific mTOR inhibitor, on tubule formation were assessed. Rapamycin did not affect epithelial remodeling or GFP-Akt-PH redistribution but inhibited elongated tubule formation that occurred later (24 h) in morphogenesis. These results were further supported by using RNA interference to down-regulate mTOR and inhibit tubule formation. Our studies demonstrate that PI 3-kinase regulates early epithelial remodeling stages while mTOR modulates latter stages of tubule development.  相似文献   

3.
4.
Eph kinases and their ephrin ligands are widely expressed in epithelial cells in vitro and in vivo. Our results show that activation of endogenous EphA kinases in Madin-Darby canine kidney (MDCK) cells negatively regulates hepatocyte growth factor/scatter factor (HGF)-induced branching morphogenesis in collagen gel. Cotreatment with HGF and ephrin-A1 reduced sprouting of cell protrusions, an early step in branching morphogenesis. Moreover, addition of ephrin-A1 after HGF stimulation resulted in collapse and retraction of preexisting cell protrusions. In a newly developed assay that simulates the localized interactions between Ephs and ephrins in vivo, immobilized ephrin-A1 suppressed HGF-induced MDCK cell scattering. Ephrin-A1 inhibited basal ERK1/2 mitogen-activated protein kinase activity; however, the ephrin-A1 effect on cell protrusion was independent of the mitogen-activated protein kinase pathway. Ephrin-A1 suppressed HGF-induced activation of Rac1 and p21-activated kinase, whereas RhoA activation was retained, leading to the preservation of stress fibers. Moreover, dominant-negative RhoA or inhibitor of Rho-associated kinase (Y27632) substantially negated the inhibitory effects of ephrin-A1. These data suggest that interfering with c-Met signaling to Rho GTPases represents a major mechanism by which EphA kinase activation inhibits HGF-induced MDCK branching morphogenesis.  相似文献   

5.
Small GTPase Rho has been thought to be important for the formation and the maintenance of tight junction in epithelial cells, but the role of Rho in the regulation of barrier function of tight junction is not well understood. We here examined whether Rho was involved in the barrier function of tight junction in Madin-Darby canine kidney (MDCK) cells. The activation of prostaglandin EP3beta receptor, coupled to a Rho activation pathway, induced the increase in transepithelial electrical resistance (TER) but the increase in paracellular flux of mannitol in the preformed monolayer of the MDCK cells expressing the EP3beta receptor. This effect of the EP3 receptor was mimicked by the expression of constitutively active RhoA but not by active Rac1 in MDCK cells, using an isopropyl-beta-D-thiogalactoside-inducible expression system. On the other hand, the activation of EP3beta receptor suppressed the elevation of TER and the decrease in paracellular mannitol flux during Ca(2+) switch-induced tight junction formation, whereas the expression of active RhoA or Rac1 did not apparently affect the TER development in the Ca(2+) switch. These results demonstrate that the EP3 receptor and active RhoA regulate permeabilities of ionic and nonionic molecules in opposite directions in the preformed monolayer, and the EP3 receptor suppresses the elevation of TER during the tight junction formation.  相似文献   

6.
Hepatocyte growth factor (HGF), the ligand for the Met receptor tyrosine kinase, is a potent modulator of epithelial-mesenchymal transition and dispersal of epithelial cells, processes that play crucial roles in tumor development, invasion, and metastasis. Little is known about the Met-dependent proximal signals that regulate these events. We show that HGF stimulation of epithelial cells leads to activation of the Rho GTPases, Cdc42 and Rac, concomitant with the formation of filopodia and lamellipodia. Notably, HGF-dependent activation of Rac but not Cdc42 is dependent on phosphatidylinositol 3-kinase. Moreover, HGF-induced lamellipodia formation and cell spreading require phosphatidylinositol 3-kinase and are inhibited by dominant negative Cdc42 or Rac. HGF induces activation of the Cdc42/Rac-regulated p21-activated kinase (PAK) and c-Jun N-terminal kinase, and translocation of Rac, PAK, and Rho-dependent Rho-kinase to membrane ruffles. Use of dominant negative and activated mutants reveals an essential role for PAK but not Rho-kinase in HGF-induced epithelial cell spreading, whereas Rho-kinase activity is required for the formation of focal adhesions and stress fibers in response to HGF. We conclude that PAK and Rho-kinase play opposing roles in epithelial-mesenchymal transition induced by HGF, and provide new insight regarding the role of Cdc42 in these events.  相似文献   

7.
The Gram-negative pathogen Pseudomonas aeruginosa invades epithelial cells in vivo and in vitro . We have examined the pathway(s) by which epithelial cells internalize P. aeruginosa strain PA103 using Madin-Darby canine kidney (MDCK) cells. We have recently demonstrated that P. aeruginosa internalization occurs by an actin-dependent Toxin B-inhibited pathway which becomes downregulated as epithelial cells become polarized, suggesting that one or more of the Rho family GTPases is involved in bacterial internalization. Here, we demonstrate that activation of the Rho family GTPases by cytotoxic necrotizing factor 1 (CNF-1) stimulates P. aeruginosa internalization. Examination of the roles of the individual Rho family GTPases in internalization shows that expression of a constitutively active allele of RhoA (RhoAV14), but not of constitutively active Rac1 (Rac1V12) or Cdc42 (Cdc42V12), is sufficient to increase uptake of PA103 pscJ . This relative increase persists when bacterial infection is established at the basolateral surface of polarized cells, suggesting that the effect of RhoAV14 is not simply due to its known ability to disrupt tight junction integrity in polarized cells. RhoAV14-mediated stimulation of bacterial uptake is actin dependent as it is abrogated by exposure to latrunculin A. We also find that endogenous Rho GTP levels in epithelial cells are increased by infection with an internalized strain of P. aeruginosa; conversely, a poorly internalized isogenic strain expressing the bacterial anti-internalization protein ExoT causes decreased Rho GTP levels. Experimental inhibition of Rho, either by expressing dominant negative RhoAN19 or by inhibiting native Rho using a membrane permeable fusion construct of a Rho-specific inhibitor, C3 ADP-ribosyltransferase, does not inhibit PA103 pscJ internalization in MDCK or HeLa cells. Models consistent with these data are presented.  相似文献   

8.
It has known for many years that MDCK cells blister structures, termed domes. During an examination of the morphbology of a large number of MDCK clones, we found that two stable morphotypes exist in an MDCK cell population namely, dome-forming and tubule-forming clones. When maintained at high cell density, tubule-forming clones displayed large numbers of anastomosing tubules which contained lumens. The frequency of obseration of the tubule forming clones in an MDCK population was 0.7% Tubule-forming MDCK clones should be useful in studying tubule morphogenesis. While agents that affect protein kinase A actiity increased dome formation, the same agents abolished the formation of tubules in all tubule-forming clones. In contrast, drugs that stimulate protein kinase C actity (phorbol esters and staurosporine) decreased dome formation and increased tubule morphogenesis in all MDCK morphotyes. Tubules-forming clones were found to have lower resting levels of cyclic-AMP and to respond to forskolin stimulation of adenylate cyclase readily. Hence, sigals transmitted by the protein kinase C pathway appear to lead to tubule formation MDCK cells, while signals transmitted through the protein A pathway lead to dome formation. © 1995 Wiley-Liss, Inc.  相似文献   

9.
Integrin-ligand binding regulates tumor cell motility and invasion. Cell migration also involves the Rho GTPases that control the interplay between adhesion receptors and the cytoskeleton. We evaluated how specific extracellular matrix ligands modulate Rho GTPases and control motility of human squamous cell carcinoma cells. On laminin-5 substrates, the epithelial cells rapidly spread and migrated, but on type I collagen the cells spread slowly and showed reduced motility. We found that RhoA activity was suppressed in cells attached to laminin-5 through the alpha3 integrin receptor. In contrast, RhoA was strongly activated in cells bound to type I collagen and this was mediated by the alpha2 integrin. Inhibiting the RhoA pathway by expression of a dominant-negative RhoA mutant or by directly inhibiting ROCK, reduced focal adhesion formation and enhanced cell migration on type I collagen. Cdc42 and Rac and their downstream target PAK1 were activated following adhesion to laminin-5. PAK1 activation induced by laminin-5 was suppressed by expression of a dominant-negative Cdc42. Moreover, constitutively active PAK1 stimulated migration on collagen I substrates. Our results indicate that in squamous epithelial cells, collagen-alpha2beta1 integrin binding activates RhoA, slowing cell locomotion, whereas laminin-5-alpha3beta1 integrin interaction inhibits RhoA and activates PAK1, stimulating cell migration. The data demonstrate that specific ligand-integrin pairs regulate cell motility differentially by selectively modulating activities of Rho GTPases and their effectors.  相似文献   

10.
Hepatocyte growth factor/scatter factor (HGF/SF) induces cell scattering, migration, and branching tubule formation of MDCK cells. To examine the role of the Ras protein in the HGF/SF-induced responses, we constructed MDCK cell clones expressing either inducible dominant-negative Ras or constitutively activated Ras and analyzed their effects on responses of cells to HGF/SF. Induced expression of dominant-negative Ras prevented cell dissociation required for cell scattering, migration, and cystic formation as well as branching morphology required for branching tubule formation. Constitutively activated Ras induced cell dissociation, but not a scattered fibroblastic morphology even in the presence of HGF/SF. MDCK cells expressing constitutively activated Ras migrated at a level similar to that of wild-type MDCK cells stimulated by HGF/SF. MDCK cells expressing constitutively activated Ras showed disorganized growth in three-dimensional culture and did not form the branching tubule structures. These results indicate that activation of the Ras protein is essential for the cell scattering, migration, and branching tubule formation of MDCK cells induced by HGF/SF, and a properly regulated activation is required for some stages of the HGF/SF-induced responses of MDCK cells.  相似文献   

11.
Epithelial cell migration and morphogenesis require dynamic remodeling of the actin cytoskeleton and cell-cell adhesion complexes. Numerous studies in cell culture and in model organisms have demonstrated the small GTPase Rac to be a critical regulator of these processes; however, little is known about Rac function in the morphogenic movements that drive epithelial tube formation. Here, we use the embryonic salivary glands of Drosophila to understand the role of Rac in epithelial tube morphogenesis. We show that inhibition of Rac function, either through loss of function mutations or dominant-negative mutations, disrupts salivary gland invagination and posterior migration. In contrast, constitutive activation of Rac induces motile behavior and subsequent cell death. We further show that Rac regulation of salivary gland morphogenesis occurs through modulation of cell-cell adhesion mediated by the E-cadherin/beta-catenin complex and that shibire, the Drosophila homolog of dynamin, functions downstream of Rac in regulating beta-catenin localization during gland morphogenesis. Our results demonstrate that regulation of cadherin-based adherens junctions by Rac is critical for salivary gland morphogenesis and that this regulation occurs through dynamin-mediated endocytosis.  相似文献   

12.
Cadherin-dependent epithelial cell-cell adhesion is thought to be regulated by Rho family small GTPases and PI 3-kinase, but the mechanisms involved are poorly understood. Using time-lapse microscopy and quantitative image analysis, we show that cell-cell contact in MDCK epithelial cells coincides with a spatio-temporal reorganization of plasma membrane Rac1 and lamellipodia from noncontacting to contacting surfaces. Within contacts, Rac1 and lamellipodia transiently concentrate at newest sites, but decrease at older, stabilized sites. Significantly, Rac1 mutants alter kinetics of cell-cell adhesion and strengthening, but not the eventual generation of cell-cell contacts. Products of PI 3-kinase activity also accumulate dynamically at contacts, but are not essential for either initiation or development of cell-cell adhesion. These results define a role for Rac1 in regulating the rates of initiation and strengthening of cell-cell adhesion.  相似文献   

13.
The tumor-suppressor genes TSC1 and TSC2 are mutated in tuberous sclerosis, an autosomal dominant multisystem disorder. The gene products of TSC1 and TSC2 form a protein complex that inhibits the signaling of the mammalian target of rapamycin complex1 (mTORC1) pathway. mTORC1 is a crucial molecule in the regulation of cell growth, proliferation and survival. When the TSC1/TSC2 complex is not functional, uncontrolled mTORC1 activity accelerates the cell cycle and triggers tumorigenesis. Recent studies have suggested that TSC1 and TSC2 also regulate the activities of Rac1 and Rho, members of the Rho family of small GTPases, and thereby influence the ensuing actin cytoskeletal organization at focal adhesions. However, how TSC1 contributes to the establishment of cell polarity is not well understood. Here, the relationship between TSC1 and the formation of the actin cytoskeleton was analyzed in stable TSC1-expressing cell lines originally established from a Tsc1-deficient mouse renal tumor cell line. Our analyses showed that cell proliferation and migration were suppressed when TSC1 was expressed. Rac1 activity in these cells was also decreased as was formation of lamellipodia and filopodia. Furthermore, the number of basal actin stress fibers was reduced; by contrast, apical actin fibers, originating at the level of the tight junction formed a network in TSC1-expressing cells. Treatment with Rho-kinase (ROCK) inhibitor diminished the number of apical actin fibers, but rapamycin had no effect. Thus, the actin fibers were regulated by the Rho-ROCK pathway independently of mTOR. In addition, apical actin fibers appeared in TSC1-deficient cells after inhibition of Rac1 activity. These results suggest that TSC1 regulates cell polarity-associated formation of actin fibers through the spatial regulation of Rho family of small GTPases.  相似文献   

14.
Interplay between Rac and Rho in the control of substrate contact dynamics.   总被引:33,自引:0,他引:33  
BACKGROUND: Substrate anchorage and cell locomotion entail the initiation and development of different classes of contact sites, which are associated with the different compartments of the actin cytoskeleton. The Rho-family GTPases are implicated in the signalling pathways that dictate contact initiation, maturation and turnover, but their individual roles in these processes remain to be defined. RESULTS: We monitored the dynamics of peripheral, Rac-induced focal complexes in living cells in response to perturbations of Rac and Rho activity and myosin contractility. We show that focal complexes formed in response to Rac differentiated into focal contacts upon upregulation of Rho. Focal complexes were dissociated by inhibitors of myosin-II-dependent contractility but not by an inhibitor of Rho-kinase. The downregulation of Rac promoted the enlargement of focal contacts, whereas a block in the Rho pathway not only caused a dissolution of focal contacts but also stimulated membrane ruffling and formation of new focal complexes, which were associated with the advance of the cell front. CONCLUSIONS: Rac functions to signal the creation of new substrate contacts at the cell front, which are associated with the induction of ruffling lamellipodia, whereas Rho serves in the maturation of existing contacts, with both contact types requiring contractility for their formation. The transition from a focal complex to a focal contact is associated with a switch to Rho-kinase dependence. Rac and Rho also influence the development of focal contacts and focal complexes, respectively, through mutually antagonistic pathways.  相似文献   

15.
Diacylglycerol kinases (Dgk) phosphorylate diacylglycerol (DG) to phosphatidic acid (PA), thus turning off and on, respectively, DG-mediated and PA-mediated signaling pathways. We previously showed that hepatocyte growth factor (HGF), vascular endothelial growth factor, and anaplastic lymphoma kinase activate Dgkalpha in endothelial and leukemia cells through a Src-mediated mechanism and that activation of Dgkalpha is required for chemotactic, proliferative, and angiogenic signaling in vitro. Here, we investigate the downstream events and signaling pathways regulated by Dgkalpha, leading to cell scatter and migration upon HGF treatment and v-Src expression in epithelial cells. We report that specific inhibition of Dgkalpha, obtained either pharmacologically by R59949 treatment, or by expression of Dgkalpha dominant-negative mutant, or by small interfering RNA-mediated down-regulation of endogenous Dgkalpha, impairs 1) HGF- and v-Src-induced cell scatter and migration, without affecting the loss of intercellular adhesions; 2) HGF-induced cell spreading, lamellipodia formation, membrane ruffling, and focal adhesions remodeling; and 3) HGF-induced Rac activation and membrane targeting. In summary, we provide evidence that Dgkalpha, activated downstream of tyrosine kinase receptors and Src, regulates crucial steps directing Rac activation and Rac-dependent remodeling of actin cytoskeleton and focal contacts in migrating epithelial cells.  相似文献   

16.
PKD is the founding member of a novel protein kinase family that also includes PKD2 and PKD3. PKD has been the focus of most studies up to date, but little is known about the mechanisms that mediate PKD3 activation. Here, we show that addition of aluminum fluoride to COS-7 cells cotransfected with PKD3 and Galpha13 or Galpha12 induced PKD3 activation, which was associated with a transient plasma membrane translocation of cytosolic PKD3. Treatment with Clostridium difficile toxin B blocked PKD3 activation induced by either bombesin or by aluminum fluoride-stimulated Galpha12/13 but did not affect Galphaq-induced PKD3 activation. Furthermore, PKD3 immunoprecipitated from cells cotransfected with a constitutively active Rac (RacV12) exhibited a marked increase in PKD3 basal catalytic activity. In contrast, cotransfection with active Rho (RhoQ63L), Cdc42 (Cdc42Q61L), or Ras (RasV12) did not promote PKD3 activation. Expression of either COOH-terminal dominant-negative fragment of Galpha13 or dominant negative Rac (Rac N17) attenuated bombesin-induced PKD3 activation. Treatment with protein kinase C (PKC) inhibitors prevented the increase in PKD3 activity induced by RacV12 and aluminum fluoride-stimulated Galpha12/13. The catalytic activation of PKD3 in response to RacV12, alpha12/13 signaling or bombesin correlated with Ser-731/Ser-735 phosphorylation in the activation loop of this enzyme. Our results indicate that Galpha12/13 and Rac are important components in the signal transduction pathways that mediate bombesin receptor-induced PKD3 activation.  相似文献   

17.
A Role for Cdc42 in Macrophage Chemotaxis   总被引:26,自引:0,他引:26       下载免费PDF全文
Three members of the Rho family, Cdc42, Rac, and Rho are known to regulate the organization of actin-based cytoskeletal structures. In Bac1.2F5 macrophages, we have shown that Rho regulates cell contraction, whereas Rac and Cdc42 regulate the formation of lamellipodia and filopodia, respectively. We have now tested the roles of Cdc42, Rac, and Rho in colony stimulating factor-1 (CSF-1)–induced macrophage migration and chemotaxis using the Dunn chemotaxis chamber. Microinjection of constitutively activated RhoA, Rac1, or Cdc42 inhibited cell migration, presumably because the cells were unable to polarize significantly in response to CSF-1. Both Rho and Rac were required for CSF-1–induced migration, since migration speed was reduced to background levels in cells injected with C3 transferase, an inhibitor of Rho, or with the dominant-negative Rac mutant, N17Rac1. In contrast, cells injected with the dominant-negative Cdc42 mutant, N17Cdc42, were able to migrate but did not polarize in the direction of the gradient, and chemotaxis towards CSF-1 was abolished.

We conclude that Rho and Rac are required for the process of cell migration, whereas Cdc42 is required for cells to respond to a gradient of CSF-1 but is not essential for cell locomotion.

  相似文献   

18.
Adenovirus (Ad) endocytosis via αv integrins requires activation of the lipid kinase phosphatidylinositol-3-OH kinase (PI3K). Previous studies have linked PI3K activity to both the Ras and Rho signaling cascades, each of which has the capacity to alter the host cell actin cytoskeleton. Ad interaction with cells also stimulates reorganization of cortical actin filaments and the formation of membrane ruffles (lamellipodia). We demonstrate here that members of the Rho family of small GTP binding proteins, Rac and CDC42, act downstream of PI3K to promote Ad endocytosis. Ad internalization was significantly reduced in cells treated with Clostridium difficile toxin B and in cells expressing a dominant-negative Rac or CDC42 but not a H-Ras protein. Viral endocytosis was also inhibited by cytochalasin D as well as by expression of effector domain mutants of Rac or CDC42 that impair cytoskeletal function but not JNK/MAP kinase pathway activation. Thus, Ad endocytosis requires assembly of the actin cytoskeleton, an event initiated by activation of PI3K and, subsequently, Rac and CDC42.  相似文献   

19.
Rac1 protects epithelial cells against anoikis   总被引:6,自引:0,他引:6  
Rho family members play a critical role in malignant transformation. Anchorage-independent growth and the ability to avoid apoptosis caused by loss of anchorage (anoikis) are important features of transformed cells. Here we show that constitutive activation of Rac1 inhibits anoikis in Madin-Darby canine kidney (MDCK) epithelial cells. Constitutively active Rac1-V12 decreases DNA fragmentation and caspase activity by 50% in MDCK cells kept in suspension. In addition, expression of Rac1-V12 in MDCK cells in suspension conditions causes an increase in the number of surviving cells. We also investigated the signaling pathways that are activated by Rac1 to stimulate cell survival. We show that expression of Rac1-V12 in MDCK cells in suspension stimulates a number of signaling cascades that have been implicated in the control of cell survival, including the p42/44 ERK, p38, protein kinase B, and nuclear factor kappaB pathways. Using specific chemical or protein inhibitors of these respective pathways, we show that Rac1-mediated cell survival strongly depends on phosphatidylinositol 3-kinase activity and that activation of ERK, p38, and NF-kappaB are largely dispensable for Rac1 survival signaling. In conclusion, these studies demonstrate that Rac1 can suppress apoptosis in epithelial cells in anchorage-independent conditions and suggest a potential role for Rac1-mediated survival signaling in cell transformation.  相似文献   

20.
Numb is an endocytic adaptor protein that regulates internalization and post-endocytic trafficking of cell surface proteins. In polarized epithelial cells Numb is localized to the basolateral membrane, and recent work has implicated Numb in regulation of cell adhesion and migration, suggesting a role for Numb in epithelial–mesenchymal transition (EMT). We depleted MDCK cells of Numb and examined the effects downstream of EMT-promoting stimuli. While knockdown of Numb did not affect apicobasal polarity, we show that depletion of Numb destabilizes E-cadherin-based cell–cell adhesion and promotes loss of epithelial cell morphology. In addition, Numb knockdown in MDCK cells potentiates HGF-induced lamellipodia formation and cell dispersal. Examination of Rac1-GTP levels in Numb knockdown cells revealed hyperactivation of Rac1 following extracellular calcium depletion and HGF stimulation, which corresponds with enhanced loss of cell adhesions and lamellipodia formation. Furthermore, inhibition of Rac1 in Numb depleted cells stabilized cell–cell contacts following depletion of extracellular calcium. Together, these data indicate that Numb acts to suppress Rac1-GTP accumulation, and its loss leads to increased sensitivity toward extracellular signals that disrupt cell–cell adhesion to induce epithelial–mesenchymal transition (EMT) and cell dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号