首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
During inflammation and tissue injury, there is an increase in the plasma concentration of several proteins, the acute-phase proteins. The levels of some acute-phase proteins have been reported to increase in pregnant and tumour-bearing animals. Rat alpha 2-macroglobulin is classified as an acute-phase protein. In this study we report the expression of alpha 2-macroglobulin in various tissues during development of the rat embryo by analysis of mRNA. The tissues studied are liver, visceral yolk sac, placental labyrinth, decidua and trophoblast. In addition, the sites of alpha 2-macroglobulin expression are localized by in situ hybridization of cDNA for alpha 2-macroglobulin to mid-sagittal cryosections of rat embryos. The level of mRNA coding for alpha 2-macroglobulin is determined in the liver of rats aged between 12 days gestation and 2 days postnatal. alpha 2-Macroglobulin mRNA is first observed in fetal liver from 12 days of gestation and increases after day 17, reaching a maximum on day 20. At this time the level is greater than that found in the liver of an adult rat suffering from acute inflammation. alpha 2-Macroglobulin mRNA is detectable in the yolk sac, placental labyrinth, trophoblast tissue and decidua. In the decidua the alpha 2-macroglobulin message is first detected at 8 days of gestation, with high levels observed from 10 to 21 days of gestation. These observations are supported by in situ hybridization studies. Experiments using cultured hepatocytes show that cells derived from rats at 15 days and 19 days of gestation are capable of synthesizing and secreting alpha 2-macroglobulin. Both synthesis and secretion can be induced by the addition of dexamethasone to the culture medium.  相似文献   

5.
The ontogeny of gamma-glutamyl transferase (GGTase; E.C.2.3.2.2) and tyrosine aminotransferase (TAT; E.C.2.6.1.5) activities in 14 to 36 weeks gestational and neonatal hepatocytes during development of human fetal liver was studied. Subsequently, 20-24 weeks gestational hepatocytes were cultured in media supplemented with epidermal growth factor (EGF) and insulin with or without glucagon and dexamethasone to investigate the proliferation and differentiation of fetal hepatocyte in vitro using GGTase and TAT as biochemical markers. During the development of the liver, the activity of GGTase increased continuously from the first trimester through the third trimester and decreased (p < 0.001) in neonates. A low basal level of TAT activity was seen only during the third trimester, which then increased significantly (p < 0.001) in neonates. Fetal hepatocytes, in the presence of EGF and insulin, undergo proliferation from the fourth to 10th day with an increase in cell number (p < 0.001) and concomitant increase (p < 0.001) in GGTase activity. As the cells attain confluence, enzyme activity decreased significantly (p < 0.001) from the 10th to 16th day. Maximal TAT activity (p < 0.001) was observed at 48 h of culture, which decreased, but not significantly, during cell proliferation and the enzyme activity was regained as the cultures attained confluence. Furthermore, TAT activity was induced synergistically (p<0.001) in the presence of glucagon and dexamethasone, while GGTase was inhibited (p<0.001). These results indicate that GGTase increases with proliferation, whereas TAT, once it has been expressed, is not suppressed during cell proliferation. In conclusion, human fetal hepatocytes undergo enzymic differentiation by 48 h of culture, and proliferate with an increase in GGTase in the presence of growth factors with maintenance of differentiated status up to the studied 16 days of culture.  相似文献   

6.
Changes in the expression of two isoenzymic forms of pyruvate kinase in fetal hepatocyte cultures derived from 15- and 19-day gestation rats are studied by immunocytochemical localization of the respective antigens. Initially, in cultures established from 15-day gestation rats only the ‘embryonic’ form of the enzyme (M2-PK) is detected in all cells. Cells which stain positively for the liver specific form of the enzyme (L-PK) are not observed. After 2 days' culture, a significant number of cells have become positive for L-PK. All the positive cells have a morphology which is typical of liver parenchymal cells. However, the majority of parenchymal cells remain negative for L-PK while retaining M2-PK. In contrast, all cells which display a fibroblastic morphology, as well as clear epithelial cells are M2-PK positive, but L-PK negative. In 5-day-old cultures, all hepatocytes have become L-PK positive. Hepatocytes derived from 19-day gestation rat liver stain positively for L-PK on day 1 of culture in agreement with previously published biochemical data. A minor population of negative cells is non-parenchymal in appearance. All parenchymal cells are negative when the culture is stained with M2-PK specific antibody. Five days after the culture is established, many non-parenchymal cells are present. Such cells are L-PK negative and M2-PK positive and their presence in cultures derived from both 15- and 19-day gestation rats explains the persistence of M2-PK. This study reveals that during enzymic differentiation of fetal hepatocytes, all immature hepatocytes are initially capable of expressing M2-PK while they do not produce L-PK. During culture, a sub-population of these cells initiates synthesis of L-PK, indicating that only a fraction of the cells differentiate. At the same time, hepatocytes which do not stain for M2-PK appear, which suggests that cells which initiate L-PK synthesis have ceased to make M2-PK. Eventually all hepatocytes are L-PK positive and M2-PK negative, indicating that a switchover in expression of the pyruvate kinase isoenzymes has occurred.  相似文献   

7.
When primary cultures of hepatocytes are maintained for 2 weeks from the time of perfusion, the activity of the enzyme glucokinase decreases rapidly, so that the activity can no longer be detected after the fourth day in culture. Concomitantly, there occurs an increase in the activity of hexokinases, the low-KM isozymes, which predominate in fetal liver. We have made several modifications of the culture medium in an attempt to prevent the decrease in glucokinase activity. When the medium was supplemented with a mixture of insulin, thyroxine, glucagon, dexamethasone, testosterone, and estradiol, the activity of the enzyme in the hepatocytes was present at approximately 15% of in vivo levels after 2 weeks in culture. When this hormone mixture was present during the first 4 hrs of culture and when the hepatocytes were allowed to attach to the collagen support and were maintained thereafter in medium supplemented with fetal bovine serum, insulin, and dexamethasone, the activity of glucokinase increased after an initial decrease for 3 days and was maintained thereafter at levels comparable to those observed in vivo. This effect of the hormone mixture was found to be the result of the presence of glucagon in the mixture, since the presence of glucagon with no other hormones added, except insulin, during the attachment period produced the same pattern of increased glucokinase activity. Immunoprecipitation of glucokinase from the hepatocytes, using monospecific antibody, indicated that the increase in enzyme activity was the result of increased glucokinase enzyme protein and not an increased synthesis of the other hexokinase isozymes. These studies demonstrate the specific hormonal requirements for the maintenance of glucokinase levels in primary hepatocyte culture at those seen in vivo and lends support to the hypothesis that fetal gene expression in primary hepatocyte cultures is selectively regulated rather than being a general effect with a common regulatory mechanism.  相似文献   

8.
9.
Summary Late gestation fetal rat hepatocytes can proliferate under defined in vitro conditions in the absence of added mitogens. However, this capacity declines with advancing gestational age of the fetus from which the hepatocytes are derived. The present studies were undertaken to investigate this change in fetal hepatocyte growth regulation. Examination of E19 fetal hepatocyte primary cultures using immunocytochemistry for 5-bromo-2′-deoxyuridine (BrdU) incorporation showed that approximately 80% of these cells traverse S-phase of the cell cycle over the first 48 h in culture. Similarly, 65% of E19 hepatocytes maintained in culture under defined mitogen-free conditions for 24 h showed nuclear expression of proliferating cell nuclear antigen (PCNA). These in vitro findings correlated with a high level of immunoreactive PCNA in immunofluorescent analyses of E19 liver. In contrast, E21 (term) liver showed little immunoreactive PCNA. The in vivo finding was recapitulated by in vitro studies showing that E21 hepatocytes had low levels of BrdU incorporation during the first day in culture and were PCNA negative shortly after isolation. However, within 12 h of plating, E21 hepatocytes showed cytoplasmic staining for PCNA. Although maintained under mitogen-free conditions, PCNA expression progressed synchronously to a nucleolar staining pattern at 24 to 48 h in culture followed by intense, diffuse nuclear staining at 60 h which disappeared by 72 h. This apparently synchronous cell cycle progression was confirmed by studies showing peak BrdU incorporation on the third day in culture. Whereas DNA synthesis by both E19 and E21 hepatocytes was potentiated by transforming growth factor α (TGFα), considerable mitogen-independent DNA synthesis was seen in hepatocytes from both gestational ages. These results may indicate that fetal hepatocytes come under the influence of an exogenous, in vivo growth inhibitory factor as term approaches and that this effect is relieved when term fetal hepatocytes are cultured.  相似文献   

10.
Treatment of primary cultures of adult rat hepatocytes with 5 mM butyrate inhibited the spontaneous decrease in basal activity and mRNA levels of tyrosine aminotransferase (TAT) that occurred during culture (Staecker et al., submitted). We report here that butyrate treatment of primary cultures of rat hepatocytes initially inhibited the induction of TAT. This inhibition was followed by a period of accelerated TAT induction. TAT induction in butyrate-treated primary cultures of adult rat hepatocytes occurred only after metabolism of butyrate by the cultured hepatocytes. The accelerated induction of TAT in hepatocyte cultures treated with sodium butyrate was reflected by increased TAT activity and mRNA levels. Cultured hepatocytes rapidly metabolized butyrate, but the addition of more butyrate into cultures after its initial metabolism resulted in a rapid reduction in TAT activity. These findings indicate that butyrate treatment can affect the expression of TAT in primary hepatocyte cultures in both a positive (increased basal TAT expression) and a negative (inhibition of the induced expression of TAT) manner.  相似文献   

11.
The actions of polycyclic aromatic hydrocarbons and glucocorticoids to regulate the synthesis of cytochrome P-450c (the major isozyme induced by polycyclic aromatic hydrocarbons) were investigated in fetal rat hepatocytes maintained in primary monolayer culture. Treatment of hepatocytes in culture with 1,2-benzanthracene resulted in a 50-fold increase in 7-ethoxycoumarin O-deethylase activity. The level of P-450c increased in the cells in a time-dependent fashion as determined by immunoelectrophoretic analysis. The inductive effect of BA was potentiated approximately 1.6- to 2.3-fold when 1 microM dexamethasone was included in the culture medium. However, dexamethasone alone had little or no effect on the induction of P-450c. The rate of synthesis of P-450c was examined by immunoisolation of the specific isozyme from total cellular proteins radiolabeled with [35S]methionine and from the protein products formed during in vitro translation of the isolated mRNA. In addition, the amount of mRNA specific for cytochrome P-450c was determined by Northern blot analysis of RNA extracted from cultured cells. The changes in the rates of synthesis and mRNA levels were found to parallel the changes in enzyme activity. The concentration of dexamethasone required to cause a half-maximal increase in P-450c content in the presence of 1,2-benzanthracene was between 10(-8) and 10(-7) M. It is concluded that glucocorticoids act synergistically with polycyclic aromatic hydrocarbons to increase the levels of P-450c expressed in the fetal rat liver, and that this action is likely mediated by the classical type II glucocorticoid receptor.  相似文献   

12.
Administration of cortisol to an animal induces tyrosine aminotransferase (TAT) in the liver. A similar effect was observed after stimulation of resident liver macrophages (Kupffer cells) by dextran sulfate. Actinomycin D completely blocks enzyme induction both by cortisol and dextran sulfate, whereas their combined effect gives an additive result. In primary culture of hepatocytes, dextran sulfate inhibits TAT activity, but conditioned macrophage medium reliably increases enzyme activity in hepatocytes. However, incubation of isolated macrophages in the presence of dextran sulfate and such medium transfer into hepatocyte culture results in even more pronounced increase in TAT activity. In a combined culture of hepatocytes and non-parenchymal liver cells, reproducing intercellular interactions in vitro, cortisol and non-parenchymal cells exhibit an additive effect on TAT activity. These results show that liver macrophages release a factor of unknown nature launching the mechanism of TAT induction independently of cortisol, a classic TAT inducer.  相似文献   

13.
Modulation of alkaline phosphodiesterase I in cultured rat hepatocytes   总被引:1,自引:0,他引:1  
Alkaline phosphodiesterase I activity was measured in adult and foetal rat hepatocytes maintained in primary culture under various conditions. This enzyme was found to be expressed in both cell populations and could be resolved into two bands having apparent molecular weights of 130,000 and 250,000, respectively. Alkaline phosphodiesterase I activity was already at high levels in 15 day foetal liver and, as early as the 19th day of gestation, it reached adult levels. Alkaline phosphodiesterase I levels were well maintained during culture. In the absence of serum, its level continued to increase with time in foetal cells. It dramatically increased by days 4 and 5, in adult cells maintained on fibronectin and plastic, respectively. Dexamethasone stimulated alkaline phosphodiesterase I activity after a lag phase of 8 h, with a maximum reached after 40 h. As this induction was prevented by addition of actinomycin D or cycloheximide, it could be concluded that it required RNA and protein synthesis. Only the major Mr 250,000 form responded to dexamethasone and was sensitive to serum.  相似文献   

14.
In the presence of phenobarbital (PB) at 3 mM, hepatocytes isolated from adult rats by a collagenase-perfusion technique survived well on plastic dishes for at least 49 days after initiation of primary culture. PB at concentrations less than 3 mM was ineffective for the maintenance of hepatocytes, and the maintenance of them was attained only in the continuous presence of 3 mM PB. The hepatocytes surviving in the presence of 3 mM PB were morphologically indistinguishable from the hepatocytes after 1-day attachment period, except for the presence of prominent nucleoli in the former. Although both the albumin secretion and tyrosine aminotransferase (TAT) activities of the cells decreased gradually up to day 7 with time in culture, both were thereafter maintained at relatively high levels at least up to day 35 of primary culture. The addition of 10 microM dexamethasone caused a 3-5-fold induction in TAT activity, and the cells were capable of responding to the hormone in this manner at least up to day 28 of primary culture. Furthermore, the cells also had glucose-6-phosphatase activity, even though the level of this enzyme activity was relatively low as compared with that of TAT activity. Survival of hepatocytes in the presence of 3 mM PB was further enhanced by simultaneous addition of dexamethasone (10 microM) and insulin (10 micrograms/ml). The sensitivity of hepatocytes to 3'-methyl-4-dimethylaminoazobenzene (0.24 mM) was remarkably reduced by treatment with PB at 3 mM. PB treatment decreased efficiently the falling rate of total cytochrome P-450 content, but did not induce P-450PB, which is the specific form of cytochrome P-450 induced by PB, in primary cultured hepatocytes. On the other hand, 3-methylcholanthrene (MC, 10 microM) caused an increase of both contents of total cytochrome P-450 and P-450MC, which is the specific form of cytochrome P-450 induced by MC, in primary cultured hepatocytes. However, MC was ineffective for the maintenance of hepatocytes in primary culture. The possible biological actions of PB on primary cultured hepatocytes are discussed on the basis of the experimental data obtained.  相似文献   

15.
Since skin collagenase is required for initiation of the degradation of types I and III collagens, the major collagens of the human dermis, we examined its expression during embryonic and fetal development. When using skin fibroblasts cultured from human embryos and fetuses, immunoreactive collagenase concentrations were strongly correlated with estimated gestational age (p less than 0.001), with levels at 7-8 weeks of gestation that were about one-twentieth of those in the 29-week cell cultures. In crude culture medium, the apparent catalytic efficiency (activity per unit immunoreactive protein) was variable, an observation attributable in part to variable expression of a collagenase-inhibitory protein. Following chromatographic purification, four of ten fetal collagenases were found to have greater than or equal to 4-fold decrease in specific activity, suggesting that these particular fetal collagenases may be structurally and/or catalytically altered. Since the decreased levels of immunoreactive protein suggested that decreased enzyme synthesis was the major mechanism, we examined collagenase synthesis in a cell-free translation system. Here, we quantitated collagenase expression in the culture medium of intact cells prior to harvesting mRNA. Compared with the intact adult cells, the fetal cells had 3-17 times less collagenase activity in the medium, while in cell-free translation there was a 2- to 3-fold decrease in collagenase synthesis. These data suggest that decreased in vitro expression is correlated with decreased levels of translatable collagenase mRNA but that other factors, such as the collagenase inhibitor and altered specific activity of the enzyme, may be important in modulating collagenase activity.  相似文献   

16.
The glucocorticoid receptor activity that can be detected in the liver from 15-day foetal rats would appear to be associated with the haemopoietic cells. In hepatocytes, purified by culture for 1-2 days from 15-day foetal rats, the glucocorticoid receptor activity is low and dexamethasone does not induce the enzyme tyrosine aminotransferase. If culture is continued both receptor activity and steroid responsiveness are acquired. Cultured hepatocytes from 19-day foetal liver contain receptor from the first day of culture and, furthermore, the subsequent level of response to glucocorticoids is directly correlated with the actual receptor concentration. It would appear that the glucocorticoid receptor is not acquired by hepatocytes until after 18 days of gestation. Nevertheless, the fact that bromodeoxyuridine has no effect on the rate of accumulation of receptor in hepatocytes suggests that the differentiative event leading to the subsequent appearance of the receptor has already occurred before day 15 of gestation. However, the acquisition of the receptor would appear to be dependent on mitosis as cytosine arabinoside can inhibit the process.  相似文献   

17.
Activity of cholesterol 7 alpha-hydroxylase (EC 1.14.13.17) in freshly isolated hepatocytes from unweaned piglets (2 to 3 weeks old) was 16-times lower as compared to hepatocytes from weaned piglets (7 to 8 weeks old). The monolayer culture activity of the enzyme remained low in unweaned piglet hepatocytes. In contrast, in cultured hepatocytes from weaned piglets, cholesterol 7 alpha-hydroxylase activity declined during the first day of culture, but was restored during the next 2 culture days, provided that fetal bovine serum (10%) was added to the culture medium. Addition of dexamethasone (50 nM) and insulin (135 nM) to the medium, further enhanced cholesterol 7 alpha-hydroxylase activity to values similar to those in freshly isolated hepatocytes and retarded the decline of enzyme activity after the 3rd culture day. Cultured hepatocytes from weaned and unweaned piglets synthesized similar types of bile acids from [14C]cholesterol, among which hyocholic acid (the most prominent), hyodeoxycholic acid, chenodeoxycholic acid, murocholic acid and lithocholic acid could be identified. 95% of radiolabelled bile acids synthesized was conjugated, mainly with glycine, but also with taurine, sulfate and glucuronic acid. The rate of mass production of bile acids by cultured hepatocytes of weaned piglets (as measured by gas-chromatography) parallelled cholesterol 7 alpha-hydroxylase activity, and was low in the absence of serum, but increased in medium containing fetal bovine serum, dexamethasone and insulin to a rate lying in the range of 75% of the in vivo bile acid production during the 3rd culture day. Bile acid production by unweaned piglet hepatocytes was 3-times lower under these conditions. It is concluded that hepatocytes from young weaned pigs cultured in medium containing 10% fetal bovine serum, offer a suitable in vitro model for the study of bile acid synthesis, in view of the high cholesterol 7 alpha-hydroxylase activities and bile acid production rates.  相似文献   

18.
19.
Abstract: The alterations in astrocyte proliferation and differentiation induced by prenatal exposure to alcohol (PEA) suggest that ethanol exposure affects the radial glial cells, the main astrocytic precursors. We have investigated the effects of ethanol on the early stages of astrogliogenesis by analyzing the developmental pattern of vimentin and glial fibrillary acidic protein (GFAP) immunoreactivity and their mRNA levels during embryonic/fetal brain development and in radial glia in primary culture. GFAP appeared late in gestation and at day 5 of culture of radial glial, whereas GFAP mRNA was first detected on fetal day 15 and increased in content on fetal day 21. In contrast, the levels of vimentin and its mRNA were high at fetal day 15 but decreased on day 21. Alcohol exposure delays the appearance of GFAP and its mRNA and significantly decreases the GFAP expression in fetal brain and in primary culture of radial glial. In addition, some morphological alterations were observed in PEA glial cells in culture. These results demonstrate that astroglial precursor cells are damaged by prenatal exposure to ethanol and suggest that abnormalities in the astrogliogenesis may underlie the disruption in neuronal migration and other CNS alterations observed after prenatal ethanol exposure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号