首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The gene encoding malate dehydrogenase (MDH) was overexpressed in a pflB ldhA double mutant of Escherichia coli, NZN111, for succinic acid production. With MDH overexpression, NZN111/pTrc99A-mdh restored the ability to metabolize glucose anaerobically and 0.55 g/L of succinic acid was produced from 3 g/L of glucose in shake flask culture. When supplied with 10 g/L of sodium bicarbonate (NaHCO3), the succinic acid yield of NZN111/pTrc99A-mdh reached 1.14 mol/mol glucose. Supply of NaHCO3 also improved succinic acid production by the control strain, NZN111/pTrc99A. Measurement of key enzymes activities revealed that phosphoenolpyruvate (PEP) carboxykinase and PEP carboxylase in addition to MDH played important roles. Two-stage culture of NZN111/pTrc99A-mdh was carried out in a 5-L bioreactor and 12.2 g/L of succinic acid were produced from 15.6 g/L of glucose. Fed-batch culture was also performed, and the succinic acid concentration reached 31.9 g/L with a yield of 1.19 mol/mol glucose.  相似文献   

2.
Li B  Mao D  Liu Y  Li L  Kuang T 《Photosynthesis research》2005,83(3):297-305
A pure, active cytochrome b 6 f was isolated from the chloroplasts of the marine green alga, Bryopsis corticulans. To investigate and characterize this cytochrome b 6 f complex, sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE), absorption spectra measurement and HPLC were employed. It was shown that this purified complex contained four large subunits with apparent molecular masses of 34.8, 24, 18.7 and 16.7 kD. The ratio of Cyt b 6 to Cytf was 2.01 : 1. The cytochromeb 6 f was shown to catalyze the transfer of 73 electrons from decylplastoquinol to plastocyanin–ferricyanide per Cyt f per second. α-Carotene, one kind of carotenoid that has not been found to present in cytochrome b 6 f complex, was discovered in this preparation by reversed phase HPLC. It was different from β-carotene usually found in cytochrome b 6 f complex. The configuration of the major α-carotene component was assigned to be 9-cis by resonance Raman spectroscopy. Different from the previous reports, the configuration of this α-carotene in dissociated state was determined to be all-trans. Besides this carotene, chlorophyll a was also found in this complex. It was shown that the molecular ratios of chlorophylla, cis and all-trans-α-carotene to Cyt f in this complex were 1.2, 0.7 and 0.2, respectively.  相似文献   

3.
NAD-dependent aminoaldehyde dehydrogenase (AMADH, EC 1.2.1.-) from Avena shoots was purified by DEAE Sephacel, hydroxyapatite, 5′-AMP Sepharose 4B, Mono Q, and TSK-GEL column chromatographies to homogeneity by the criterion of native PAGE. SDS–PAGE yielded a single band at a molecular mass of 55 kDa. IEF studies showed a band with a pI value of 5.3. In contrast to AMADHs from other species, the TSK-GEL chromatography showed that Avena AMADH exists as a monomer in the native state. The purified enzyme catalyzed the oxidations of 3-aminopropionaldehyde (APAL), 4-aminobutyraldehyde (ABAL) N-(3-aminopropyl)-4-aminobutyraldehyde (APBAL), and 4-guanidinobutyraldehyde (GBAL), but not of betaine aldehyde or indoleacetaldehyde. The K m values for APAL, ABAL, and GBAL were 1.5×10–6, 2.2×10–6, and 1.3×10–5 M, respectively. Although N-terminal amino acid sequence of Avena AMADH could not be determined due to a modification of the amino residue, the sequence of the fragment of AMADH cleaved by V8 protease showed greater similarity to the barley BADH than to the pea AMADH. Electronic Publication  相似文献   

4.
A degradation experiment on dibenzo-p-dioxin (DD) and 2,7-dichlorodibenzo-p-dioxin (2,7-DCDD) was carried out using basidiomycetous fungi belonging to the genera Coprinus, Coprinellus, and Coprinopsis. Some species showed a high rate of decrease in DD for the 2-week test period. Among them, Coprinellus disseminatus showed the highest ability to decrease the DD level, close to 100% by the end of 2 weeks. Further examination showed that Coprinellus disseminatus and Coprinellus micaceus, belonging to the genus Coprinellus, were able to metabolize 2,7-DCDD to a monohydroxylated compound, probably mediated by the P450 system. The metabolism of chlorinated DD by fungi capable of living in soil conditions is reported here for the first time.  相似文献   

5.
H. Muraguchi  T. Kamada 《Mycoscience》2002,43(1):0077-0079
The homobasidiomycete Coprinus cinereus, unlike Schizophyllum commune, is not known to exhibit an obvious heterokaryotic phenotype in common-A matings. In the present study we found that progeny isolated from a fruit-body collected in the field exhibit a distinctive mycelial development in common-A matings. Genetic analysis suggested that the common-A heterokaryotic phenotype is brought about by a nuclear factor(s) other than the mating type genes. Received: March 30, 2001 / Accepted: October 1, 2001  相似文献   

6.
The cytochrome b 6 f complex of oxygenic photosynthesis produces substantial levels of reactive oxygen species (ROS). It has been observed that the ROS production rate by b 6 f is 10–20 fold higher than that observed for the analogous respiratory cytochrome bc1 complex. The types of ROS produced (O2??, 1O2, and, possibly, H2O2) and the site(s) of ROS production within the b 6 f complex have been the subject of some debate. Proposed sources of ROS have included the heme b p , PQ p ?? (possible sources for O2??), the Rieske iron–sulfur cluster (possible source of O2?? and/or 1O2), Chl a (possible source of 1O2), and heme c n (possible source of O2?? and/or H2O2). Our working hypothesis is that amino acid residues proximal to the ROS production sites will be more susceptible to oxidative modification than distant residues. In the current study, we have identified natively oxidized amino acid residues in the subunits of the spinach cytochrome b 6 f complex. The oxidized residues were identified by tandem mass spectrometry using the MassMatrix Program. Our results indicate that numerous residues, principally localized near p-side cofactors and Chl a, were oxidatively modified. We hypothesize that these sites are sources for ROS generation in the spinach cytochrome b 6 f complex.  相似文献   

7.
The structure of oxidized Rhodopseudomonas palustris cytochrome c 556 has been modeled after that of high-spin cytochrome c from the same bacterium, the latter being the protein with the greatest sequence identity (35%) among all sequenced proteins in the genomes. The two proteins differ in the number of ligands to iron and in spin state, the former being six-coordinate low-spin and the latter five-coordinate high-spin. In order to validate this modeled structure, several structural restraints were obtained by performing a restricted set of NMR experiments, without performing a complete assignment of the protein signals. The aim was to exploit the special restraints arising from the paramagnetism of the metal ion. A total of 43 residual-dipolar-coupling and 74 pseudocontact-shift restraints, which together sampled all regions of the protein, were used in conjunction with over 40 routinely obtained NOE distance restraints. A calculation procedure was undertaken combining the program MODELLER and the solution structure determination program PARAMAGNETIC DYANA, which includes paramagnetism-based restraints. The directions and magnitude of the magnetic susceptibility anisotropy tensor were also calculated. The approach readily provides useful results, especially for paramagnetic metalloproteins of moderate to large dimensions.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00775-003-0511-2  相似文献   

8.
Mer3 is an evolutionarily conserved DNA helicase that has crucial roles in meiotic recombination and crossover formation. We have identified the MER3 homolog in Coprinus cinereus (Ccmer3) and show that it is expressed in zygotene and pachytene meiocytes. Immunostaining analysis indicated that CcMer3 was localized on chromosomes at zygotene and pachytene and CcMer3 foci were more frequent on paired than unpaired chromosomes. We generated a C. cinereus mer3 mutant (#1) and found that it showed abnormal meiosis progression and underwent apoptosis after prophase I. Basidiospore production in #1 was reduced to 0.8% of the wild-type level; the spores showed slower germination at 25°C but were similar to the wild type at 37°C. Electron microscopic analysis of chromosome spreads revealed that axial elements were formed in the mutant but that synapsis was defective, resulting in a reduction in spore production. Our results demonstrate that CcMer3 is required for synaptonemal complex formation after axial elements align and is thus essential for homologous synapsis.  相似文献   

9.
 Two Exobasidium species causing Exobasidium leaf blister on Rhododendron spp. are described. An Exobasidium leaf blister on Rhododendron yedoense var. yedoense f. yedoense has been recognized in Hokkaido Prefecture, Japan, since the first report was issued in 1950. The causal fungus is identified with Exobasidium dubium from the morphology of its hymenial structure and mode of germination of the basidiospores. Another Exobasidium leaf blister on Rhododendron dauricum has been observed in Hokkaido Prefecture, Japan. In comparison with morphology based on hymenial structure and mode of germination of the basidiospores of the 100 validly described taxa, this fungus differs from those known taxa in the size of basidia and basidiospores, the numbers of sterigmata and septa of basidiospores, and the mode of germination of basidiospores. Thus, a new species, Exobasidium miyabei, is established and illustrated. Received: February 13, 2002 / Accepted: September 25, 2002  Present address: National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan Acknowledgments We profoundly appreciate the cooperation of Dr. V. Melnik in providing Russian papers and Dr. L. Vasilyeva for translating them into English. We thank Prof. H. Takahashi for loaning the materials in the Herbarium of the Hokkaido University Museum and Dr. W. Abe, Graduate School of Science, University of Hokkaido, for his kind help with the sampling of R. dauricum in Teshikaga, Hokkaido Prefecture. This study was supported in part by a Grant-in-Aid for Scientific Research (B) (No. 13460019), Japan Society for the Promotion of Science (JSPS). Contribution No. 171, Laboratory of Plant Parasitic Mycology, Institute of Agriculture and Forestry, University of Tsukuba. Correspondence to:M. Kakishima  相似文献   

10.
11.
A potential mechanism of light regulation of the succinate dehydrogenase (SDH) expression in Arabidopsis thaliana leaves was studied. As was shown by dot-hybridization and polymerase chain reaction in real time (RT-PCR), the SDH mRNA level in wild-type Arabidopsis thaliana plants changed depending on light conditions. The level of SDH mRNA in darkness was higher than in the light. The analysis of Arabidopsis thaliana plants carrying the mutant genes of phytochromes A and B showed that phytochrome A was involved in the regulation of the SDH enzyme activity. The active form of phytochrome A suppressed the SDHI-2 gene expression, and that resulted in decreasing activity of SDH.  相似文献   

12.
This work demonstrates the first example of a fungal lactate dehydrogenase (LDH) expressed in yeast. A L(+)-LDH gene, ldhA, from the filamentous fungus Rhizopus oryzae was modified to be expressed under control of the Saccharomyces cerevisiae adh1 promoter and terminator and then placed in a 2μ-containing yeast-replicating plasmid. The resulting construct, pLdhA68X, was transformed and tested by fermentation analyses in haploid and diploid yeast containing similar genetic backgrounds. Both recombinant strains utilized 92 g glucose/l in approximately 30 h. The diploid isolate accumulated approximately 40% more lactic acid with a final concentration of 38 g lactic acid/l and a yield of 0.44 g lactic acid/g glucose. The optimal pH for lactic acid production by the diploid strain was pH 5. LDH activity in this strain remained relatively constant at 1.5 units/mg protein throughout the fermentation. The majority of carbon was still diverted to the ethanol fermentation pathway, as indicated by ethanol yields between 0.25–0.33 g/g glucose. S. cerevisiae mutants impaired in ethanol production were transformed with pLdhA68X in an attempt to increase the lactic acid yield by minimizing the conversion of pyruvate to ethanol. Mutants with diminished pyruvate decarboxylase activity and mutants with disrupted alcohol dehydrogenase activity did result in transformants with diminished ethanol production. However, the efficiency of lactic acid production also decreased. Electronic Publication  相似文献   

13.
L-Lactate cytochrome c oxidoreductase (flavocytochrome b 2, FC b 2) from the thermotolerant methylotrophic yeast Hansenula polymorpha (Pichia angusta) is, unlike the enzyme form baker’s yeast, a thermostable enzyme potentially important for bioanalytical technologies for highly selective assays of L-lactate in biological fluids and foods. This paper describes the construction of flavocytochrome b 2 producers with over-expression of the H. polymorpha CYB2 gene, encoding FC b 2. The HpCYB2 gene under the control of the strong H. polymorpha alcohol oxidase promoter in a plasmid for multicopy integration was transformed into the recipient strain H. polymorpha C-105 (grc1 catX), impaired in glucose repression and devoid of catalase activity. A method was developed for preliminary screening of the transformants with increased FC b 2 activity in permeabilized yeast cells. The optimal cultivation conditions providing for the maximal yield of the target enzyme were found. The constructed strain is a promising FC b 2 producer characterized by a sixfold increased (to 3 μmol min?1 mg?1 protein in cell-free extract) activity of the enzyme.  相似文献   

14.
15.
Exobasidium symploci-japonicae var. carpogenum, causing Exobasidium fruit deformation on Symplocos lucida collected in Fukuoka Prefecture, Japan, is newly described based on morphological observations of hymenial structure and mode of basidiospore germination. This new variety differs morphologically from the type variety, particularly in the septal number of basidiospores and in the shapes and sizes of conidia formed on the medium. Colonies of this new variety are also distinguishable from those of the type variety by yeast-like growth, morphology, and color of colonies.Contribution no.178, Laboratory of Plant Parasitic Mycology, Institute of Agriculture and Forestry, University of Tsukuba, Japan  相似文献   

16.
Melanins are enigmatic pigments that are produced by a wide variety of microorganisms including several species of bacteria and fungi. For more than 40 years, fungi have been known to produce pigments called melanins. Melanin pigment production by mushrooms was not intensively studied. The present study was carried out on isolation and characterization of melanin from an edible mushroom Pleurotus cystidiosus var. formosensis. The mushroom produced dark mucous mass of hyaline arthrospores on mycelium. The coremia exclusively produced dikaryotic arthrospores with the remnant of a clamp connection. Continuous cell extension and division in the coremium stipe supplied cells for arthroconidiation at the coremium apex, which is surrounded by a liquid droplet (coremioliquid). The black coloured coremea (conidia) were produced by Antromycopsis macrocarpa (anamorph of P. cystidiosus) when cultured on potato dextrose agar medium. The agar plate was incubated at continuous light illumination for high amount of pigment (coremea) production. The slimy layer of the coremea was extracted and partially purified by alkaline and acid treatment. The black pigment was confirmed as melanin based on UV, IR and EPR spectra apart from chemical analysis. This is the first report on characterization of melanin obtained from Pleurotus cystidiosus var. formosensis.  相似文献   

17.
The generation of superoxide anion radical (O2 ·−) in the cytochrome b 6 f complex (Cyt b 6 f) of spinach under high-light illumination was studied using electron paramagnetic resonance spectroscopy. The generation of O2 ·− was lost in the absence of molecular oxygen. It was also suppressed in the presence of NaN3 and could be scavenged by extraneous antioxidants such as ascorbate, β-carotene, and glutathione. The results also indicate that O2 ·−, which is produced under high-light illumination of the Cyt b 6 f from spinach, might be generated from a reaction involing 1O2, and the Rieske Fe-S protein could serve as the electron donor in the O2 ·− production. The mechanism of photoprotection of the Cyt b 6 f complex by antioxidants is discussed.  相似文献   

18.
Li G  Hu W  Qin R  Jin H  Tan G  Zhu L  He G 《Genetica》2008,134(2):169-180
Wild rice is a valuable resource for the genetic improvement of cultivated rice (Oryza sativa L., AA genome). Molecular markers are important tools for monitoring gene introgression from wild rice into cultivated rice. In this study, Simple sequence repeat (SSR) markers were used to analyze interspecific hybrids of O. sativa-O. officinalis (CC genome), the backcrossing progenies and the parent plants. Results showed that most of the SSR primers (335 out of 396, 84.6%) developed in cultivated rice successfully amplified products from DNA samples of wild rice O. officinalis. The polymorphism ratio of SSR bands between O. sativa and O. officinalis was as high as 93.9%, indicating differences between the two species with respect to SSRs. When the SSR markers were applied in the interspecific hybrids, only a portion of SSR primers amplified O. officinalis-specific bands in the F(1) hybrid (52.5%), BC(1) (52.5%), and MAALs (37.0%); a number of the bands disappeared. Of the 124 SSR loci that detected officinalis-specific bands in MAAL plants, 96 (77.4%) showed synteny between the A and C-genomes, and 20 (16.1%) showed duplication in the C-genome. Sequencing analysis revealed that indels, substitution and duplication contribute to the diversity of SSR loci between the genomes of O. sativa and O. officinalis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号