首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulated changes in the cell cycle underlie many aspects of growth and differentiation. Prior to meiosis, germ cell cycles in many organisms become accelerated, synchronized, and modified to lack cytokinesis. These changes cause cysts of interconnected germ cells to form that typically contain 2(n) cells. In Drosophila, developing germ cells during this period contain a distinctive organelle, the fusome, that is required for normal cyst formation. We find that the cell cycle regulator Cyclin A transiently associates with the fusome during the cystocyte cell cycles, suggesting that fusome-associated Cyclin A drives the interconnected cells within each cyst synchronously into mitosis. In the presence of a normal fusome, overexpression of Cyclin A forces cysts through an extra round of cell division to produce cysts with 32 germline cells. Female sterile mutations in UbcD1, encoding an E2 ubiquitin-conjugating enzyme, have a similar effect. Our observations suggest that programmed changes in the expression and cytoplasmic localization of key cell cycle regulatory proteins control germline cyst production.  相似文献   

2.
Jacobs HW  Keidel E  Lehner CF 《The EMBO journal》2001,20(10):2376-2386
The destruction box (D-box) consensus sequence has been defined as a motif mediating polyubiquitylation and proteolysis of B-type cyclins during mitosis. We show here that the regions with similarity to D-boxes are not required for mitotic degradation of Drosophila Cyclin A. Instead of a simple D-box, a complex N-terminal degradation signal is present in this cyclin. Mutations that impair or abolish mitotic Cyclin A destruction delay progression through metaphase, but only when overexpressed. Moreover, these mutations prevent epidermal cells from entering the first G1 phase of embryogenesis and lead to a complete extra division cycle instead of a timely cell proliferation arrest. Residual Cyclin A activity after mitosis, therefore, has S phase-promoting activity. In principle, an S phase defect could also explain why epidermal cells fail to enter mitosis 16 in mutants lacking zygotic Cyclin A function. However, we demonstrate that this failure of mitosis is not caused simply by DNA replication or damage checkpoints. Entry into mitosis requires a function of Cyclin A that does not depend on the presence of the N-terminal region.  相似文献   

3.
Cyclin A expression is only required for particular cell divisions during Drosophila embryogenesis. In the epidermis, Cyclin A is strictly required for progression through mitosis 16 in cells that become post-mitotic after this division. By contrast, Cyclin A is not absolutely required in epidermal cells that are developmentally programmed for continuation of cell cycle progression after mitosis 16. Our analyses suggest the following explanation for the special Cyclin A requirement during terminal division cycles. Cyclin E is known to be downregulated during terminal division cycles to allow a timely cell cycle exit after the final mitosis. Cyclin E is therefore no longer available before terminal mitoses to prevent premature Fizzy-related/Cdh1 activation. As a consequence, Cyclin A, which can also function as a negative regulator of Fizzy-related/Cdh1, becomes essential to provide this inhibition before terminal mitoses. In the absence of Cyclin A, premature Fizzy-related/Cdh1 activity results in the premature degradation of the Cdk1 activators Cyclin B and Cyclin B3, and apparently of String/Cdc25 phosphatase as well. Without these activators, entry into terminal mitoses is not possible. However, entry into terminal mitoses can be restored by the simultaneous expression of versions of Cyclin B and Cyclin B3 without destruction boxes, along with a Cdk1 mutant that escapes inhibitory phosphorylation on T14 and Y15. Moreover, terminal mitoses are also restored in Cyclin A mutants by either the elimination of Fizzy-related/Cdh1 function or Cyclin E overexpression.  相似文献   

4.
We have previously shown that caspase-mediated cleavage of Cyclin E generates p18-Cyclin E in hematopoietic tumor cells. Its expression can induce apoptosis or sensitize to apoptotic stimuli in many cell types. However, p18-cyclin E has a much shorter half-life than Cyclin E, being more effectively ubiquitinated and degraded by the 26 S proteasome. A two-step process has emerged that regulates accelerated degradation of Cyclin E, with a caspase-mediated cleavage followed by enhanced proteasome-mediated degradation. We show that recognition of p18-Cyclin E by the Skp1-Cul1-Fbw7 (SCF) complex and its interaction with the Fbw7 protein isoforms can take place independently of phosphorylation of p18-Cyclin E at a C-terminal phosphodegron. In addition to the SCF(Fbw7) pathway, Ku70 binding that facilitates Hdm2 recruitment may also be implicated in p18-Cyclin E ubiquitination. Blocking p18-Cyclin E degradation with proteasome inhibitors increases levels of p18-Cyclin E and enhances its association with Ku70, thus leading to Bax release, its activation, and apoptosis. Moreover, cells expressing p18-Cyclin E are more sensitive to treatment with proteasome inhibitors, such as Bortezomib. By preventing its proteasomal degradation, p18-Cyclin E, but not Cyclin E, may become an effective therapeutic target for Bortezomib and apoptotic effectors in hematopoietic malignancies.  相似文献   

5.
Fbw7, a substrate receptor for Cul1-RING-ligase (CRL1), facilitates the ubiquitination and degradation of several proteins, including Cyclin E and c-Myc. In spite of much effort, the mechanisms underlying Fbw7 regulation are mostly unknown. Here, we show that Glomulin (Glmn), a protein found mutated in the vascular disorder glomuvenous malformation (GVM), binds directly to the RING domain of Rbx1 and inhibits its E3 ubiquitin ligase activity. Loss of Glmn in a variety of cells, tissues, and GVM lesions results in decreased levels of Fbw7 and increased levels of Cyclin E and c-Myc. The increased turnover of Fbw7 is dependent on CRL and proteasome activity, indicating that Glmn modulates the E3 activity of CRL1(Fbw7). These data reveal an unexpected functional connection between Glmn and Rbx1 and demonstrate that defective regulation of Fbw7 levels contributes to GVM.  相似文献   

6.
The spindle assembly checkpoint (SAC) is a mechanism that prevents premature chromosome segregation in anaphase before all chromosomes are correctly attached to the mitotic spindle. Errors in chromosome segregation lead to aneuploidy, which may be causally involved in tumorgenesis. Kinetochore complexes are the structural components of the SAC, which are tightly regulated by various mechanisms including phosphorylation and ubiquitin-dependent proteolysis. Recent studies shed new light on the regulatory pathways of the ubiquitin proteasome system involved in SAC signaling. Here we present evidence that a Cul3-based E3 ubiquitin-ligase is required to maintain SAC signaling in human cells. Inactivation of the Cul3/KLHL9/KLHL13 ligase leads to premature degradation of Cyclin B and exit from the mitotic state in the presence of microtubule poisons. We discuss possible mechanisms how Cul3 may be required to maintain SAC activity by ubiquitination of the chromosomal passenger protein Aurora B.  相似文献   

7.
Terminal deoxynucleotidyltransferase (TdT), which template-independently synthesizes DNA during V(D)J recombination in lymphoid cells, is ubiquitylated by a BPOZ-2/Cul3 complex, as the ubiquitin ligase, and then degraded by the 26 S proteasome. We show here that TdT is ubiquitylated by the Cul3-based ubiquitylation system in vitro. Because TdT could also be ubiquitylated in the absence of Cul/BPOZ-2, we determined that it could also be directly ubiquitylated by the E2 proteins UbcH5a/b/c and UbcH6, E3-independently. Furthermore, the ubiquitylated TdT inhibited its nucleotidyltransferase activity.  相似文献   

8.
9.
When mitosis is bypassed, as in some cancer cells or in natural endocycles, sister chromosomes remain paired and produce four-stranded diplochromosomes or polytene chromosomes. Cyclin/Cdk1 inactivation blocks entry into mitosis and can reset G2 cells to G1, allowing another round of replication. Reciprocally, persistent expression of Cyclin A/Cdk1 or Cyclin E/Cdk2 blocks Drosophila endocycles. Inactivation of Cyclin A/Cdk1 by mutation or overexpression of the Cyclin/Cdk1 inhibitor, Roughex (Rux), converts the 16(th) embryonic mitotic cycle to an endocycle; however, we show that Rux expression fails to convert earlier cell cycles unless Cyclin E is also downregulated. Following induction of a Rux transgene in Cyclin E mutant embryos during G2 of cell cycle 14 (G2(14)), Cyclins A, B, and B3 disappeared and cells reentered S phase. This rereplication produced diplochromosomes that segregated abnormally at a subsequent mitosis. Thus, like the yeast CKIs Rum1 and Sic1, Drosophila Rux can reset G2 cells to G1. The observed cyclin destruction suggests that cell cycle resetting by Rux was associated with activation of the anaphase-promoting complex (APC), while the presence of diplochromosomes implies that this activation of APC outside of mitosis was not sufficient to trigger sister disjunction.  相似文献   

10.
Cullin-RING ubiquitin ligases (CRLs), which comprise the largest class of E3 ligases, regulate diverse cellular processes by targeting numerous proteins. Conjugation of the ubiquitin-like protein Nedd8 with Cullin activates CRLs. Cullin-associated and neddylation-dissociated 1 (Cand1) is known to negatively regulate CRL activity by sequestering unneddylated Cullin1 (Cul1) in biochemical studies. However, genetic studies of Arabidopsis have shown that Cand1 is required for optimal CRL activity. To elucidate the regulation of CRLs by Cand1, we analyzed a Cand1 mutant in Drosophila. Loss of Cand1 causes accumulation of neddylated Cullin3 (Cul3) and stabilizes the Cul3 adaptor protein HIB. In addition, the Cand1 mutation stimulates protein degradation of Cubitus interruptus (Ci), suggesting that Cul3-RING ligase activity is enhanced by the loss of Cand1. However, the loss of Cand1 fails to repress the accumulation of Ci in Nedd8AN015 or CSN5null mutant clones. Although Cand1 is able to bind both Cul1 and Cul3, mutation of Cand1 suppresses only the accumulation of Cul3 induced by the dAPP-BP1 mutation defective in the neddylation pathway, and this effect is attenuated by inhibition of proteasome function. Furthermore, overexpression of Cand1 stabilizes the Cul3 protein when the neddylation pathway is partially suppressed. These data indicate that Cand1 stabilizes unneddylated Cul3 by preventing proteasomal degradation. Here, we propose that binding of Cand1 to unneddylated Cul3 causes a shift in the equilibrium away from the neddylation of Cul3 that is required for the degradation of substrate by CRLs, and protects unneddylated Cul3 from proteasomal degradation. Cand1 regulates Cul3-mediated E3 ligase activity not only by acting on the neddylation of Cul3, but also by controlling the stability of the adaptor protein and unneddylated Cul3.  相似文献   

11.
Cyclin A2 is an essential regulator of the cell division cycle through the activation of kinases that participate to the regulation of S phase as well as the mitotic entry. However,whereas its degradation by the proteasome in mid mitosis was thought to be essential for mitosis to proceed,recent observations show that a small fraction of cyclin A2 persists beyond metaphase and is degraded by autophagy. Its implication in the control of cytoskeletal dynamics and cell movement has unveiled its role in the modulation of Rho A activity. Since this GTPase is involved in both cell rounding early in mitosis and later,in the formation of the cleavage furrow,this suggests that cyclin A2 is a novel actor in cytokinesis. Taken together,these data point to this cyclin as a potential mediator of cell-niche interactions whose dysregulation could be taken as a hallmark of metastasis.  相似文献   

12.
Substrate-specific protein degradation mediated by the ubiquitin proteasome system (UPS) is crucial for the proper function of the cell. Proteins are specifically recognized and ubiquitinated by the ubiquitin ligases (E3s) and are then degraded by the proteasome. BTB proteins act as the substrate recognition subunit that recruits their cognate substrates to the Cullin 3-based multisubunit E3s. Recently, it was reported that missense mutations in KLHL7, a BTB-Kelch protein, are related to autosomal dominant retinitis pigmentosa (adRP). However, the involvement of KLHL7 in the UPS and the outcome of the adRP causative mutations were unknown. In this study, we show that KLHL7 forms a dimer, assembles with Cul3 through its BTB and BACK domains, and exerts E3 activity. Lys-48-linked but not Lys-63-linked polyubiquitin chain co-localized with KLHL7, which increased upon proteasome inhibition suggesting that KLHL7 mediates protein degradation via UPS. An adRP-causative missense mutation in the BACK domain of KLHL7 attenuated only the Cul3 interaction but not dimerization. Nevertheless, the incorporation of the mutant as a heterodimer in the Cul3-KLHL7 complex diminished the E3 ligase activity. Together, our results suggest that KLHL7 constitutes a Cul3-based E3 and that the disease-causing mutation inhibits ligase activity in a dominant negative manner, which may lead to the inappropriate accumulation of the substrates targeted for proteasomal degradation.  相似文献   

13.
To cell cycle, swing the APC/C   总被引:1,自引:0,他引:1  
For successful mitosis, Cyclin B1 and Securin must be degraded efficiently before anaphase. Destruction of these mitotic regulators by the 26S proteasome is the result of their poly-ubiquitination by a multi-subunit E3 ligase: the Anaphase-Promoting Complex or Cyclosome (APC/C). Clearly, the APC/C is not just important for mitosis. Destruction of APC/C substrates such as Cdc20, Plk1, Aurora A and Skp2 directs events in G1. Strikingly, the APC/C needs to stay active even in quiescent cells to keep them out of the cell cycle and forms an intriguing link with pRb. An inactive APC/C stabilizes Geminin, Cyclin A and Cyclin B1, thereby securing completion of DNA synthesis and progression through G2-phase. In prometaphase the APC/C becomes active again, but is controlled by the spindle assembly checkpoint. Here we discuss how the APC/C is either held in check or released. We argue that shedding more light on the APC/C is also important to understand cancer and could help the design of treatment.  相似文献   

14.
Recurrent infections with high-risk human papillomaviruses (HPVs) are associated with human cervical cancers. All HPV-associated cancer tissues express the viral oncoproteins E6 and E7, which stimulate cell growth. The expression of E7 is crucial for both the initiation and the maintenance of HPV-associated cancer. Recent studies showed that the level of E7 in cancer cells is regulated by ubiquitin-dependent proteolysis through the 26S proteasome. In this study, we characterized the enzymes involved in the ubiquitin-dependent proteolysis of E7. We show that UbcH7, an E2 ubiquitin-conjugating enzyme, is specifically involved in the ubiquitination of E7. Furthermore, we show that E7 interacts with the SCF (Skp-Cullin-F box) ubiquitin ligase complex containing Cullin 1 (Cul1) and Skp2 and can be ubiquitinated by the Cul1-containing ubiquitin ligase in vitro. Coimmunoprecipitation analyses revealed that E7 interacts with Skp2 and Cul1 in vivo. Finally, the half-life of E7 was found to be significantly longer in Skp2(-/-) mouse embryo fibroblasts (MEFs) than in wild-type MEFs. Taken together, these results suggest that the Cul1- and Skp2-containing ubiquitin ligase plays a role in the ubiquitination and proteolysis of E7. In HPV type 16-containing cervical carcinoma cell line Caski, E7 localizes to both the cytoplasm and the nucleus. Brief treatment of Caski cells with MG132 (a proteasome inhibitor) causes the accumulation of E7 in discrete nuclear bodies. These nuclear bodies are detergent insoluble and contain polyubiquitinated E7. We suggest that E7 relocates to specific nuclear bodies for proteolysis in HPV-containing epithelial cells.  相似文献   

15.
The SCF (Skp1-Cul1-F-box) complex is one of the several E3 ligase enzymes and it catalyzes protein ubiquitination and degradation by the 26S proteasome. Rbx1 is a member of the SCF complex in humans and HRT1 is its yeast orthologue. A cDNA encoding a Schistosoma mansoni Rbx1 homolog was cloned and functionally characterized. Heterologous functional complementation in yeast showed that the worm SmRbx gene was able to complement the HRT1yeast null mutation. Gene deletion constructs for N- and C-termini truncated proteins were used to transform hrt1(-) yeast mutant strains, allowing us to observe that regions reported to be involved in the interaction with cullin1 (Cul1) were essential for SmRbx function. Yeast two-hybrid assays using SmRbx and yeast Cul1 confirmed that SmRbx, but not the mutant SmRbxDelta24N, lacking the N-terminus of the protein, was capable of interacting with Cul1. These results suggest that SmRbx protein is involved in the SCF complex formation.  相似文献   

16.
The precise control of cell division during development is pivotal for morphogenesis and the correct formation of tissues and organs. One important gene family involved in such control is the p21/p27/p57 class of negative cell cycle regulators. Loss of function of the C. elegans p27 homolog, cki-1, causes extra cell divisions in numerous tissues including the hypodermis, the vulva, and the intestine. We have sought to better understand how cell divisions are controlled upstream or in parallel to cki-1 in specific organs during C. elegans development. By taking advantage of the invariant cell lineage of C. elegans, we used an intestinal-specific GFP reporter in a screen to identify mutants that undergo cell division abnormalities in the intestinal lineage. We have isolated a mutant with twice the wild-type complement of intestinal cells, all of which arise during mid-embryogenesis. This mutant, called rr31, is a fully dominant, maternal-effect, gain-of-function mutation in the cdc-25.1 cell cycle phosphatase that sensitizes the intestinal lineage to an extra cell division. We showed that cdc-25.1 acts at the G1/S transition, as ectopic expression of CDC-25.1 caused entry into S phase in intestinal cells. In addition, we showed that the cdc-25.1(gf) requires cyclin E. The extra cell division defect was shown to be restricted to the E lineage and the E fate is necessary and sufficient to sensitize cells to this mutation.  相似文献   

17.
The Drosophila melanogaster embryo ordinarily undergoes thirteen cycles of rapid syncytial division followed by three rounds of cellular division for most cells. Strict regulation of the number of divisions is believed to be essential for normal patterning and development. To determine how the embryo responds to hyperplastic growth, we have examined epidermal development in embryos that experience additional rounds of mitosis as the result of ectopic Cyclin E expression. We observed that the cell density in the epidermis nearly doubled within 1 hour of Cyclin E induction. The spacing and width of the ENGRAILED and wingless stripes was unchanged, but the cell density within the stripes was increased. By 4 hours after Cyclin E induction, the cell density had returned to almost normal values. The embryos developed, albeit more slowly, to produce viable larvae and adults. The excess cells were removed by apoptosis in a reaper-dependent fashion as evidenced by increased reaper expression. Embryos lacking cell death in the abdomen exhibited changes in ENGRAILED expression. In addition, germband retraction and dorsal closure were slower than normal. Ectopic Cyclin E expression in cell-death-deficient embryos exacerbated the germband retraction and ENGRAILED-expression defects.  相似文献   

18.
Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family   总被引:2,自引:0,他引:2  
Cullin-based E3 ligases target substrates for ubiquitin-dependent degradation by the 26S proteasome. The SCF (Skp1-Cul1-F-box) and ECS (ElonginC-Cul2-SOCS box) complexes are so far the best-characterized cullin-based ligases. Their atomic structure has been solved recently, and several substrates have been described in different organisms. In addition to Cul1 and Cul2, higher eucaryotic genomes encode for three other cullins: Cul3, Cul4, and Cul5. Recent results have shed light on the molecular composition and function of Cul3-based E3 ligases. In these complexes, BTB-domain-containing proteins may bridge the cullin to the substrate in a single polypeptide, while Skp1/F-box or ElonginC/SOCS heterodimers fulfill this function in the SCF and ECS complexes. BTB-containing proteins are evolutionary conserved and involved in diverse biological processes, but their function has not previously been linked to ubiquitin-dependent degradation. In this review, we present these new findings and compare the composition of Cul3-based ligases to the well-defined SCF and ECS ligases.  相似文献   

19.
Faithful cell-cycle progression is tightly controlled by the ubiquitin-proteasome system. Here we identify a human Cullin 3-based E3 ligase (Cul3) which is essential for mitotic division. In a complex with the substrate-specific adaptors KLHL9 and KLHL13, Cul3 is required for correct chromosome alignment in metaphase, proper midzone and midbody formation, and completion of cytokinesis. This Cul3-based E3 ligase removes components of the chromosomal passenger complex from mitotic chromosomes and allows their accumulation on the central spindle during anaphase. Aurora B directly binds to the substrate-recognition domain of KLHL9 and KLHL13 in vitro, and coimmunoprecipitates with the Cul3 complex during mitosis. Moreover, Aurora B is ubiquitylated in a Cul3-dependent manner in vivo, and by reconstituted Cul3/KLHL9/KLHL13 ligase in vitro. We thus propose that the Cul3/KLHL9/KLHL13 E3 ligase controls the dynamic behavior of Aurora B on mitotic chromosomes, and thereby coordinates faithful mitotic progression and completion of cytokinesis.  相似文献   

20.
The largest E3 ubiquitin-ligase complex, known as anaphase-promoting complex/cyclosome (APC/C), regulates the proteolysis of cell cycle regulators such as CYCLIN B and SECURIN that are essential for sister-chromatid separation and exit from mitosis. Despite its importance, the role of APC/C in plant cells and the regulation of its activity during cell division remain poorly understood. Here, the Arabidopsis thaliana APC/C subunit APC10 was characterized and shown to functionally complement an apc10 yeast mutant. The APC10 protein was located in specific nuclear bodies, most probably resulting from its association with the proteasome complex. An apc10 Arabidopsis knockout mutant strongly impaired female gametogenesis. Surprisingly, constitutive overexpression of APC10 enhanced leaf size. Through kinematic analysis, the increased leaf size was found to be due to enhanced rates of cell division during the early stages of leaf development and, at the molecular level, by increased APC/C activity as measured by an amplification of the proteolysis rate of the mitotic cyclin, CYCB1;1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号