首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kh Grunts 《Ontogenez》1978,9(5):427-438
The results of the author's studies of cell competence at the early embryonic stages, are summarized. The experiments with the isolation of four animal blastomeres of the newt at the eight-cell stage of development have shown that the presumptive ectoderm is determined to the development into epidermis already at this very early stage. The electron microscopi study of epidermis developing from the explanted ectoderm has shown that by its ultrastructure it does not differ from the normal larval epidermis. The loss by the ectoderm of the competence to the development under the effect of various morphogenetic factors appears to be related to the synthesis of a protein inhibitor during gastrulation. The data on the role of cell surface, adhesion and cell affinity in the early development are considered. Differences in the structure of surface between the cells experienced and not experienced the inductive influence were revealed with the help of electron microscope. The results of studying the mechanism of reaggregation of the embryonic cells using concanavalin A are also provided.  相似文献   

2.
3.
The localization of transforming growth factor type beta 2 (TGF-beta 2) has been followed during preimplantation and early postimplantation murine development using an anti-peptide antibody that specifically recognizes TGF-beta 2. The staining pattern showed that TGF-beta 2 is expressed from the four-cell stage onward and is differentially regulated as cells diverge to various lineages. High levels of staining were found in the trophectoderm of the blastocyst but no staining was observed in the inner cell mass. During postimplantation development the primitive and embryonic ectoderm also lacked detectable staining while visceral endoderm stained well. Parietal endoderm cells also showed positive staining reaction although to a lesser extent than visceral endoderm cells. These findings were confirmed in model systems of the embryo, namely, embryonal carcinoma and embryonic stem cells differentiated to to cells with either visceral or parietal endoderm characteristics. The possible regulatory role of this factor in early embryogenesis is discussed.  相似文献   

4.
5.
Activins are known to be potentially important regulators of early developmental processes in amphibians, birds, and mammalians. In this study we report the expression of the inhibin subunits, including those that make up activin, the activin-binding protein follistatin, and activin receptor type II in several in vitro systems that model early murine embryonic development, namely embryonic stem (ES) cells, embryonal carcinoma (EC) cells, and their differentiated derivatives. In addition, we examine the expression pattern of these factors in different stages of the mouse embryo itself. Expression of inhibin alpha and beta A subunits is restricted to certain differentiated cell types, while beta B subunits are expressed in both differentiated and undifferentiated cells. Our results further indicate a change in the expression pattern of inhibin subunits during early development from beta B at the blastocyst stage largely to beta A in postgastrulation embryos. This is similar to the expression pattern at equivalent stages of Xenopus and chick development. Expression of the activin-binding protein follistatin is altered by the induction of differentiation of P19 EC and ES cells by several factors, including retinoic acid. In contrast to the inhibin subunits and follistatin, activin receptor levels are not influenced by differentiation in these cell types. The results of this study demonstrate that the inhibin subunits and follistatin, but not the activin receptor type II, are differentially expressed during early murine development and suggest that the different forms of activin/inhibin are involved in the regulation of different developmental processes.  相似文献   

6.
Embryonal carcinoma cells are pluripotent stem cells derived from teratocarcinomas and are considered to be the malignant counterparts of human embryonic stem cells. As there are few reliable experimental systems available to study the molecular mechanisms governing normal embryogenesis, well-characterized human embryonal carcinoma stem cell lines may provide a robust and simple model to study certain aspects of pluripotency and cellular differentiation. Here, we have analysed NTERA-2 cL.D1 cells at molecular and cellular levels during expansion and differentiation, via formation of cell aggregates similar to embryoid bodies in embryonic stem cells. Thus, human embryonal carcinoma cells may provide a valuable insight into cell fate determination, into the embryonic ectoderm, mesoderm and endoderm and their downstream derivatives.  相似文献   

7.
M J Rosenstraus  A J Levine 《Cell》1979,17(2):337-346
Pluripotent embryonal carcinoma cells can be triggered to differentiate in vitro by allowing them to form multicellular aggregates. Nullipotent embryonal carcinoma cells form aggregates, but further development is blocked. Pluripotent and nullipotent embryonal carcinoma cell lines were co-cultured to form mixed aggregates in order to determine whether a developmental signal produced by the pluripotent cell could induce the nullipotent cells to differentiate. Unlike pure pluripotent cell aggregates, aggregates from cultures initiated with a 1:1 mixture of pluripotent (PSA-1) and nullipotent (F9) cells formed endoderm but failed to differentiate further. The nullipotent cells did not produce a detectable soluble inhibitor of differentiation. A hypoxanthine phosphoribosyltransferase-deficient subclone of the nullipotent cell line was used so that the fate of both nullipotent and pluripotent cells could be followed in autoradiographs of histological sections of aggregates labeled with 3H-hypoxanthine. Seven day old aggregates of pure pluripotent cell cultures contained endoderm, ectoderm and embryonal carcinoma cells. On the other hand, in 7 day old mixed cell aggregates, almost all the pluripotent cells became endoderm located on the outer surface of the aggregate. The nullipotent cells in the mixed aggregates assumed an internal position and remained embryonal carcinoma cells. Following the efficiency of plating of pluripotential cells in pure and mixed aggregates as a function of time showed that viable pluripotent embryonal carcinoma cells were lost at a 10 fold greater rate in mixed cell aggregates than in pure pluripotent cell aggregates. We conclude that nullipotent embryonal carcinoma cells in mixed aggregates with pluripotent cells exert a limitation on the ability of these pluripotent cells to differentiate.  相似文献   

8.
Strongylocentrotus purpuratus embryos were fractionated into two cell populations of defined lineages at times corresponding to two critical developmental events: determination (16-cell stage) and early differentiation (mesenchyme blastula). The 16-cell stage blastomeres, labeled with [35S]methionine, exhibited identical protein synthesis patterns by fluorography, and this pattern was not significantly altered by cell separation. In comparing the proteins of the mesenchyme blastula to the 16-cell stage, differences (increases and decreases) were seen by fluorography of newly synthesized proteins. The synthesis of 2.9% of the mesenchyme blastula proteins is specific to or enriched in primary mesenchyme cells and 8.2% is specific to or enriched in endoderm/ectoderm cells. Additionally, in contrast to the earlier stage, the pattern of protein synthesis in the mesenchyme blastula embryos is substantially altered by cell separation. The ability to alter protein synthesis in response to environmental factors may be a further demonstration of the differentiation of these cells.  相似文献   

9.
Embryonal carcinoma cells derived from murine teratocarcinomas are able to differentiate into the same variety of tissue types as early embryonic cells. Because embryonal carcinoma cells resemble those of the embryo at a stage before X chromosome inactivation has occurred in females embyronal carcinoma cells containing two X chromosomes were examined to determine whether both are genetically active. The specific activities of X-linked enzymes were measured in embryonal carcinoma cells containing either one or two X chromosomes. The activities in both cell types were similar, suggesting that only one X chromosome was active in the female cells. Further support for this conclusion came from experiments in which azaguanine-resistant mutants were recovered with similar frequencies from embryonal carcinoma cell lines containing one and two X chromosomes. Late replication of an X chromosome DNA was detected in one embryonal carcinoma cell line with two X chromosomes but not in another. This suggests that cells of these two lines were arrested at different developmental stages, and that late DNA replication may not be a necessary adjunct of X inactivation. Evidence is presented which suggests that X chromosome reactivation does not occur during differentiation of the cells in vitro.  相似文献   

10.
The alpha-L-fucosidase isoenzyme pattern of mouse teratocarcinoma-derived cell lines was analyzed by isoelectric focusing and compared with the pattern of a mammary carcinoma as an example of a malignant somatic cell line. In addition, these isoenzyme patterns were compared with those of normal fetal and adult mouse tissues from an earlier study. In the normal early fetal and placental tissues as well as in embryonal carcinoma and yolk sac carcinoma cells the alpha-L-fucosidase activity is predominantly associated with basic forms of the enzyme. This embryonic pattern of alpha-L-fucosidase is characterized by one to three isoelectric forms of the enzyme with pI values ranging from 7 to 9.5 accounting for more than two-thirds of the total activity. In contrast, the mammary carcinoma pattern resembles adult somatic tissues and primarily expresses acidic enzymatic forms (which comprise approximately 80% of total activity). The somatic cell malignancies arising in retransplantable teratocarcinomas show varying isoenzyme patterns. Thus, a malignant fibrous histiocytoma expresses predominantly basic forms of the enzyme, whereas a leiomyosarcoma expresses approximately equal amounts of acidic and basic forms of the enzyme resembling in this respect late fetal or immature neonatal tissues. These findings show that the embryonal carcinoma and yolk sac carcinoma cells of the mouse express the embryonic isoenzyme pattern of alpha-L-fucosidase in contrast to malignant cells originating in somatic tissue, like mammary carcinoma, which express the adult pattern. Malignancies arising in somatic tissues of teratocarcinomas may retain the embryonic alpha-L-fucosidase phenotype or show a phenotype corresponding to late fetal or neonatal tissues in normal ontogeny.  相似文献   

11.
12.
E E Moore 《In vitro》1984,20(6):463-472
Cell lines corresponding to various cell lineages of the mouse embryo have been isolated from murine teratocarcinomas. Embryonal carcinoma cell lines are developmentally equivalent to the embryonic ectoderm or inner cell mass. Most of these cell lines have a modal chromosome number equal or close to 40, the normal mouse complement. However, cell lines corresponding to more advanced cell lineages (e.g., endoderm) are tetraploid or hypotetraploid and display multiple chromosomal rearrangements. This paper describes the isolation of a near-diploid differentiated cell line (LT-D) from an LT teratocarcinoma. The modal chromosome number of LT-D is 40, and this number is stable during at least 12 mo of continuous culture. LT-D cells are morphologically distinct from embryonal carcinoma cells and no longer express the SSEA-1 cell surface antigen or high alkaline phosphatase activity characteristic of embryonal carcinoma cells. LT-D cells can be induced to fuse into structures resembling myotubes. The formation of these structures is accompanied by expression of the muscle-specific isozyme of creatine phosphokinase and desmin, a muscle-specific component of intermediate filaments. Lastly, LT-D cells do not form tumors in syngenetic mice.  相似文献   

13.
Syndecan is an integral membrane proteoglycan that binds cells to several interstitial extracellular matrix components and binds to basic fibroblast-growth factor (bFGF) thus promoting bFGF association with its high-affinity receptor. We find that syndecan expression undergoes striking spatial and temporal changes during the period from the early cleavage through the late gastrula stages in the mouse embryo. Syndecan is detected initially at the 4-cell stage. Between the 4-cell and late morula stages, syndecan is present intracellularly and on the external surfaces of the blastomeres but is absent from regions of cell-cell contact. At the blastocyst stage, syndecan is first detected at cell-cell boundaries throughout the embryo and then, at the time of endoderm segregation, becomes restricted to the first site of matrix accumulation within the embryo, the interface between the primitive ectoderm and primitive endoderm. During gastrulation, syndecan is distributed uniformly on the basolateral cell surfaces of the embryonic ectoderm and definitive embryonic endoderm, but is expressed with an anteroposterior asymmetry on the surface of embryonic mesoderm cells, suggesting that it contributes to the process of mesoderm specification. In the extraembryonic region, syndecan is not detectable on most cells of the central core of the ectoplacental cone, but is strongly expressed by cells undergoing trophoblast giant cell differentiation and remains prominent on differentiated giant cells, suggesting a role in placental development. Immunoprecipitation studies indicate that the size of the syndecan core protein, although larger than that found in adult tissues (75 versus 69 x 10(3) Mr), does not change during peri-implantation development. The size distribution of the intact proteoglycan does change, however, indicating developmental alterations in its glycosaminoglycan composition. These results indicate potential roles for syndecan in epithelial organization of the embryonic ectoderm, in differential axial patterning of the embryonic mesoderm and in trophoblast giant cell function.  相似文献   

14.
15.
16.
Human embryonal carcinoma cells sometimes display the developmental potential of early embryonic stem cells. While available data do not clearly identify a counterpart of these tumor cells in normal development, previous comparisons of human embryonal carcinoma and yolk sac carcinomas indicated that these cell types are closely related, and suggested that embryonal carcinoma cells might resemble the progenitors of extraembryonic endoderm. To analyse further cell-differentiation lineage in these tumors, we produced monoclonal antibodies to cytostructurally associated antigens of human embryonal carcinoma cells. Spleen cells from mice immunized with a detergent-insoluble extract of cultured human embryonal carcinoma cells were fused to NS-1 myeloma cells, and hybridoma supernatants were screened by indirect immunofluorescence on the immunizing cell line, then on a panel of cell lines derived from human embryonal carcinomas, yolk sac carcinomas, and a range of neoplastic and normal tissues. Monoclonal antibody GCTM-1 stained the nuclei of all human cells tested and served as a positive control; this antibody immunoprecipitated proteins of 85 and 66 k Da from human embryonal carcinoma cells. GCTM-2 recognized an epitope on a 200-k Da extracellular protein present on the surface of embryonal carcinoma cells, and stained the surface of visceral yolk sac-type carcinoma and colorectal carcinoma cells as well. Enzymatic analysis of carbohydrate residues on the GCTM-2 antigen revealed that it was a keratan sulphate proteoglycan, and suggested that the epitope recognized by the antibody lies on the core protein. In immunoblots, antibody GCTM-3 bound to a 57-k Da cytoskeletal protein expressed in human embryonal carcinoma. This antibody decorated filamentous arrays in cell lines from human embryonal carcinoma, visceral yolk sac carcinoma, parietal yolk sac carcinoma (endodermal sinus tumour), and adenocarcinoma and large cell carcinoma of the lung. Antibody GCTM-4 recognized a determinant present on a 69-k Da polypeptide, associated with a component of the lysosomal compartment, which was expressed in embryonal carcinoma cells, but no other cell type tested. The results with this antibody panel thus allow distinction between human embryonal carcinoma and yolk sac carcinoma, but provide further evidence of a close relationship between these cell types.  相似文献   

17.
A novel cell surface marker of fetal development was identified in both in vivo and in vitro systems of the mouse using monoclonal antibodies against a glycoprotein of an apparent size of 133,000 Da. Two independent clones of hybridomas were isolated by fusing murine myeloma cells, NS-1, with spleen cells of a rat which was immunized with murine 3T3 fibroblast. The analysis of molecular size and tryptic peptides of the immunoprecipitate indicated that fibroblast and putative parietal endoderm cells, which were derived by induced differentiation of F9 embryonal carcinoma cells with retinoic acid and cyclic AMP, expressed apparently the same protein. Undifferentiated F9 cells and F9 cells which were treated with retinoic acid or cyclic AMP alone had little or no immunoprecipitable proteins. Analogously, parietal endoderm of in vivo embryos tested positive for this protein but visceral endoderm and embryonic ectoderm did not. The amount of this surface protein was increased in fibroblast and differentiated F9 cells by elevation of intracellular cyclic AMP concentrations. These results are consonant with a hypothesis that this surface protein plays a role in fetal development via a quantitative modulation by cyclic AMP.  相似文献   

18.
Surface proteins in the first embryonic stages (8–32 cells, morula, blastula, early and late gastrula) of Pleurodeles waltlii were selectively labelled by 125I using lactoperoxidase and glucose/glucose oxidase. Iodination was effected either on non-dissociated embryos or after their dissociation with EDTA. On the outer surface of non-dissociated embryos the two-dimensional electrophoresis revealed only three groups of 125I-labelled proteins which did not change during all studied stages. Quite different results were obtained with the cells of dissociated embryos. In addition to the iodinated proteins of the embryonic outer surface seven major iodinated proteins were identified. These proteins originate from the regions of cell-cell contacts in intact embryo. Their two-dimensional pattern in dissociated cells changes between stages 8–32 cells and morula. The next important difference was observed during gastrulation, which corresponds in Pleurodeles waltlii to the first morphogenetic movements. Therefore the outside and inside cell surfaces of embryo are different already at stage 8–32 cells (and probably earlier), before the first step of morphogenesis. The changes of cell surface proteins at early embryonal development take place inside the embryo, in the regions of cell-cell interactions.  相似文献   

19.
20.
Rearrangement of cell-cell adhesion is a critical event in embryonic development and tissue formation. We investigated the regulatory function of E-cadherin, a key adhesion protein, in the developmental process by using E-cadherin/IgG Fc fusion protein as an adhesion matrix in cell culture. F9 embryonal carcinoma cells usually form colonies when cultured on gelatin or fibronectin matrices. However, F9 cells cultured on the E-cadherin/IgG Fc fusion protein matrix formed a scattered distribution, with a different cytoskeletal organization and E-cadherin-rich protrusions that were regulated by Rac1 activity. The same scattering activity was observed in P19 embryonal carcinoma cells. In contrast, three types of differentiated cells, NMuMG mammary gland cells, MDCK kidney epithelial cells, and mouse primary isolated hepatocytes, did not show the scattering activity observed in F9 and P19 cells. These results suggest that migratory behavior on an E-cadherin-immobilized surface is only observed in embryonic cells, and that the regulatory mechanisms underlying E-cadherin-mediated cell adhesion vary with the state of differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号