首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In the eggs ofWachtliella persicariae the cleavage nuclei move relative to the surrounding ooplasm. This active migration is caused by an organelle whose ultrastructure was studied throughout the mitotic cycle. It consists of a greatly enlarged polar cytaster derived from the mitotic apparatus, linked to the nucleus by 100 Å filaments. The microtubules of the cytaster were found only during periods of active nuclear migration, i.e., from the onset of anaphase to the early prophase of the next mitotic cycle. They are always solitary and follow the course of the astral rays, which are known to temporarily adhere to peripheral structures of the egg cell and to exert tractive forces. In contrast to the cytaster microtubules, the microtubules in the spindle are bundled and persist from early metaphase through late telophase.During ontogenesis the first migration cytaster is built up between 3 and 12 min after oviposition near the anterior egg pole, in the vicinity of the sperm nucleus. In non-inseminated eggs time lapse films show a migration cytaster to develop autonomously in a region free from nuclei, but it does not follow the normal path of the male pronucleus. In several cases the female pronucleus, which remains without a cytaster of its own, was observed to move to the cytaster generated in the absence of the male pronucleus. Whether or not it is adhering to a nucleus, the cytaster divides into two at the correct time, i.e, corresponding to the first cleavage division in fertilized eggs. In some non-inseminated eggs this type of pseudocleavage has been observed to occur repeatedly, giving rise to an increasing number of anucleate cytasters.  相似文献   

2.
Microtubules in the silkworm egg, Bombyx mori , were observed by electron microscopy, in order to investigate the relationship between cytoskeletal organelles and the migration of energids, the cleavage nuclei accompanied by the associated cytoplasm, near the egg surface or during blastoderm formation. Numerous microtubules were observed in the associated cytoplasm of an energid even in the interphase of mitosis.
At about 8.5 hr after oviposition, when many energids had already cleft and distributed near the peripheral yolk granule region, long microtubules distributed radially from the perinuclear region to the periphery in the associated cytoplasm. When an energid was protruding, the microtubules above the nucleus distributed at a more acute angle than those under the nucleus. When a blastoderm cell had just been formed, the microtubules were observed only under the nucleus.
Colchicine, an inhibitor of microtubules, stopped the migration of energids and inhibited the formation of blastoderm cells even after many energids had already distributed at the peripheral yolk granule region. The relationship between the microtubules and the migration of energids near the egg surface or during blastoderm formation was discussed.  相似文献   

3.
The nucleus of the budding yeast S. cerevisiae has to move to the bud neck during mitosis in order for proper DNA segregation to take place. This movement is mediated by spindle and astral microtubules, and it relies on forces generated by microtubule-associated motor proteins. When budding yeast cells express the non-cleavable cohesin subunit, Scc1-RRDD, sister chromatid separation is blocked, preventing the spindle from elongating. Thus, in the presence of Scc1-RRDD nuclear positioning is mediated solely by forces acting through astral microtubules. We have previously shown that under these conditions cells exit mitosis with the nucleus in the mother cells, and that the position of the nucleus is determined, at least in part, by the FEAR pathway, which regulates various aspects of mitotic exit. When the FEAR pathway is inactivated, cells expressing Scc1-RRDD exit mitosis with the nucleus in the daughter cells (referred to as a “daughterly phenotype”). In order to find additional proteins that participate in nuclear positioning, we screened a series of mutant strains for those that displayed a daughterly phenotype when Scc1-RRDD was expressed. The most prominent defects were seen in ase1Δ and cin8Δ mutant cells. Both Ase1p and Cin8p were previously shown to be nuclear and to be involved in spindle function. We show here that deletion of ASE1 or CIN8 causes a defect in SPB separation and leads to an abnormal number of astral microtubules and a change in their orientation within the cell. Taken together, these results suggest that in budding yeast Ase1p and Cin8p affect nuclear positioning through astral microtubule-dependent mechanisms.  相似文献   

4.
Summary The control of nuclear division and migration was studied in time-lapse films of the multinucleate egg cell of a gall midge by experimental alterations of the mitotic pattern. During each cleavage cycle, a wave of randomly oriented saltations of yolk particles (WROS) is seen to travel through the ooplasm. This wave proved to be an indispensable prerequisite for the accompanying anaphase wave and for the activation of the nuclear migration cytasters: WROS cycles can occur autonomously without cleavage nuclei being present, but there is no anaphase without a WROS passing the dividing nucleus. WROSs and mitotic waves can be inverted, and the WROS cycles and the cleavage cycles can be desynchronized by temperature grandients or by locally impaired gas exchange. If a nucleus is not ready for anaphase when met by a WROS, it will only divide in the course of the next WROS. WROSs thus indicate autonomous anaphase-triggering waves governing the cleavage divisions. Rhythmic ooplasmic movements continue even if the WROSs as well as the nuclear divisions are inhibited by colchinine. The characteristics of the WROSs support the hypothesis that each of them is the visible effect of a wave of calcium release (similar to that established in vertebrate eggs) which acts locally on the microtubular system and may continue even if the WROSs are suppressed. The correlations between a possible calcium release, WROS activity, microtubule disassembly and nuclear cycle are discussed.  相似文献   

5.
Microinjected Polystyrene Beads Move Along Astral Rays in Sand Dollar Eggs   总被引:2,自引:2,他引:0  
Movements of polystyrene beads along astral rays of the sperm aster and the mitotic aster were investigated in eggs of the sand dollars, Clypeaster japonicus and Scaphechinus mirabilis . Polystyrene beads injected into the unfertilized egg were at a standstill in the protoplasm. After fertilization, these beads exhibited movements toward the center of the sperm aster along the rays, and finally gathered around the astral center. They were distributed in blastomeres together with the mitotic centers during successive cleavages. When injected into eggs during mitosis, beads moved to the centers of the mitotic asters along astral rays. The injected beads did not move when the aster was disorganized by treatment with Colcemid, and moved when it formed after UV-irradiation. These results indicate that microtubules of astral rays are essential to the movement of polystyrene beads. The movement of small polystyrene beads (0.2–0.3 μm in diameter) resembled the saltatory movement of endogenous cytoplasmic granules, and the movement of large beads (ca. 1 μm in diameter) resembled the female pronuclear migration. All of these movements observed in fertilized eggs were demonstrated to be microtubule-dependent, perhaps sharing the same basic mechanisms.  相似文献   

6.
Successful culture of the obligatorily anaerobic symbionts residing in the hindgut of the wood-eating cockroach Cryptocercus punctulatus now permits continuous observation of mitosis in individual Barbulanympha cells. In Part I of this two-part paper, we report methods for culture of the protozoa, preparation of microscope slide cultures in which Barbulanympha survived and divided for up to 3 days, and an optical arrangement which permits observation and through-focus photographic recording of dividing cells, sequentially in differential interference contrast and rectified polarized light microscopy. We describe the following prophase events and structures: development of the astral rays and large extranuclear central spindle from the tips of the elongate-centrioles; the fine structure of spindle fibers and astral rays which were deduced in vivo from polarized light microscopy and seen as a particular array of microtubules in thin-section electron micrographs; formation of chromosomal spindle fibers by dynamic engagement of astral rays to the kinetochores embedded in the persistent nuclear envelope; and repetitive shortening of chromosomal spindle fibers which appear to hoist the nucleus to the spindle surface, cyclically jostle the kinetochores within the nuclear envelope, and churn the prophase chromosomes. The observations described here and in Part II have implications both for the evolution of mitosis and for understanding the mitotic process generally.  相似文献   

7.
In the budding yeast Saccharomyces cerevisiae, movement of the mitotic spindle to a predetermined cleavage plane at the bud neck is essential for partitioning chromosomes into the mother and daughter cells. Astral microtubule dynamics are critical to the mechanism that ensures nuclear migration to the bud neck. The nucleus moves in the opposite direction of astral microtubule growth in the mother cell, apparently being "pushed" by microtubule contacts at the cortex. In contrast, microtubules growing toward the neck and within the bud promote nuclear movement in the same direction of microtubule growth, thus "pulling" the nucleus toward the bud neck. Failure of "pulling" is evident in cells lacking Bud6p, Bni1p, Kar9p, or the kinesin homolog, Kip3p. As a consequence, there is a loss of asymmetry in spindle pole body segregation into the bud. The cytoplasmic motor protein, dynein, is not required for nuclear movement to the neck; rather, it has been postulated to contribute to spindle elongation through the neck. In the absence of KAR9, dynein-dependent spindle oscillations are evident before anaphase onset, as are postanaphase dynein-dependent pulling forces that exceed the velocity of wild-type spindle elongation threefold. In addition, dynein-mediated forces on astral microtubules are sufficient to segregate a 2N chromosome set through the neck in the absence of spindle elongation, but cytoplasmic kinesins are not. These observations support a model in which spindle polarity determinants (BUD6, BNI1, KAR9) and cytoplasmic kinesin (KIP3) provide directional cues for spindle orientation to the bud while restraining the spindle to the neck. Cytoplasmic dynein is attenuated by these spindle polarity determinants and kinesin until anaphase onset, when dynein directs spindle elongation to distal points in the mother and bud.  相似文献   

8.
The effects of microtubule and microfilament inhibitors on ooplasmic segregation and microtubule organization were examined during fertilization, parthenogenetic activation, and early development in the ascidian Molgula occidentalis. At fertilization the egg cortex contracts as the first phase movement and shortly after mitochondria migrate as the myoplasmic crescent develops in the second phase. The microtubule inhibitors colcemid and nocodazole inhibit the second phase, but not the first phase, of ooplasmic segregation. The microfilament inhibitor cytochalasin E has the reciprocal effect of inhibiting the first, but not the second, phase. It appears that sperm may initially bind at any site on the egg surface and that the contractile activities at the first phase and during polar body formation occur independent of the microtubule system. Since the second phase migration occurs as the sperm astral microtubules assemble and since microtubule, but not microfilament, inhibitors arrest this aspect of ooplasmic segregation, microtubules appear necessary for mitochondrial migration. These results demonstrate that the two phases of ascidian ooplasmic segregation are mediated by different systems, the first by microfilaments and the second by microtubules. The microtubule and microfilament systems appear to operate independent of one another and their combined actions result in the completion of ooplasmic segregation. A model is proposed in which the cortical contraction following fertilization is important not only as the motive force for the first phase movement but also as a method to unite the myoplasm with the entering sperm which can initially bind anywhere on the egg surface. The association between myoplasmic components and the growing sperm aster would ensure that the migration and the spatial distribution of myoplasm in the second phase results in the formation of the myoplasmic crescent.  相似文献   

9.
Saccharomyces cerevisiae cnm67Delta cells lack the spindle pole body (SPB) outer plaque, the main attachment site for astral (cytoplasmic) microtubules, leading to frequent nuclear segregation failure. We monitored dynamics of green fluorescent protein-labeled nuclei and microtubules over several cell cycles. Early nuclear migration steps such as nuclear positioning and spindle orientation were slightly affected, but late phases such as rapid oscillations and insertion of the anaphase nucleus into the bud neck were mostly absent. Analyzes of microtubule dynamics revealed normal behavior of the nuclear spindle but frequent detachment of astral microtubules after SPB separation. Concomitantly, Spc72 protein, the cytoplasmic anchor for the gamma-tubulin complex, was partially lost from the SPB region with dynamics similar to those observed for microtubules. We postulate that in cnm67Delta cells Spc72-gamma-tubulin complex-capped astral microtubules are released from the half-bridge upon SPB separation but fail to be anchored to the cytoplasmic side of the SPB because of the absence of an outer plaque. However, successful nuclear segregation in cnm67Delta cells can still be achieved by elongation forces of spindles that were correctly oriented before astral microtubule detachment by action of Kip3/Kar3 motors. Interestingly, the first nuclear segregation in newborn diploid cells never fails, even though astral microtubule detachment occurs.  相似文献   

10.
Current models for cleavage plane determination propose that metaphase spindles are positioned and oriented by interactions of their astral microtubules with the cellular cortex, followed by cleavage in the plane of the metaphase plate [1, 2]. We show that in early frog and fish embryos, where cells are unusually large, astral microtubules in metaphase are too short to position and orient the spindle. Rather, the preceding interphase aster centers and orients a pair of centrosomes prior to nuclear envelope breakdown, and the spindle assembles between these prepositioned centrosomes. Interphase asters center and orient centrosomes with dynein-mediated pulling forces. These forces act before astral microtubules contact the cortex; thus, dynein must pull from sites in the cytoplasm, not the cell cortex as is usually proposed for smaller cells. Aster shape is determined by interactions of the expanding periphery with the cell cortex or with an interaction zone that forms between sister-asters in telophase. We propose a model to explain cleavage plane geometry in which the length of astral microtubules is limited by interaction with these boundaries, causing length asymmetries. Dynein anchored in the cytoplasm then generates length-dependent pulling forces, which move and orient centrosomes.  相似文献   

11.
Localization of dynein–green fluorescent protein (GFP) to cytoplasmic microtubules allowed us to obtain one of the first views of the dynamic properties of astral microtubules in live budding yeast. Several novel aspects of microtubule function were revealed by time-lapse, three-dimensional fluorescence microscopy. Astral microtubules, about four to six in number for each pole, exhibited asynchronous dynamic instability throughout the cell cycle, growing at 0.3–1.5 μm/min toward the cell surface then switching to shortening at similar velocities back to the spindle pole body (SPB). During interphase, a conical array of microtubules trailed the SPB as the nucleus traversed the cytoplasm. Microtubule disassembly by nocodozole inhibited these movements, indicating that the nucleus was pushed around the interior of the cell via dynamic astral microtubules. These forays were evident in unbudded G1 cells, as well as in late telophase cells after spindle disassembly. Nuclear movement and orientation to the bud neck in S/G2 or G2/M was dependent on dynamic astral microtubules growing into the bud. The SPB and nucleus were then pulled toward the bud neck, and further microtubule growth from that SPB was mainly oriented toward the bud. After SPB separation and central spindle formation, a temporal delay in the acquisition of cytoplasmic dynein at one of the spindle poles was evident. Stable microtubule interactions with the cell cortex were rarely observed during anaphase, and did not appear to contribute significantly to spindle alignment or elongation into the bud. Alterations of microtubule dynamics, as observed in cells overexpressing dynein-GFP, resulted in eventual spindle misalignment. These studies provide the first mechanistic basis for understanding how spindle orientation and nuclear positioning are established and are indicative of a microtubule-based searching mechanism that requires dynamic microtubules for nuclear migration into the bud.  相似文献   

12.
The cytoskeletal forces involved in translocating the nucleus in a migrating tissue cell remain unresolved. Previous studies have variously implicated actomyosin-generated pushing or pulling forces on the nucleus, as well as pulling by nucleus-bound microtubule motors. We found that the nucleus in an isolated migrating cell can move forward without any trailing-edge detachment. When a new lamellipodium was triggered with photoactivation of Rac1, the nucleus moved toward the new lamellipodium. This forward motion required both nuclear-cytoskeletal linkages and myosin activity. Apical or basal actomyosin bundles were found not to translate with the nucleus. Although microtubules dampen fluctuations in nuclear position, they are not required for forward translocation of the nucleus during cell migration. Trailing-edge detachment and pulling with a microneedle produced motion and deformation of the nucleus suggestive of a mechanical coupling between the nucleus and the trailing edge. Significantly, decoupling the nucleus from the cytoskeleton with KASH overexpression greatly decreased the frequency of trailing-edge detachment. Collectively, these results explain how the nucleus is moved in a crawling fibroblast and raise the possibility that forces could be transmitted from the front to the back of the cell through the nucleus.  相似文献   

13.
The cytoskeletal forces involved in translocating the nucleus in a migrating tissue cell remain unresolved. Previous studies have variously implicated actomyosin-generated pushing or pulling forces on the nucleus, as well as pulling by nucleus-bound microtubule motors. We found that the nucleus in an isolated migrating cell can move forward without any trailing-edge detachment. When a new lamellipodium was triggered with photoactivation of Rac1, the nucleus moved toward the new lamellipodium. This forward motion required both nuclear-cytoskeletal linkages and myosin activity. Apical or basal actomyosin bundles were found not to translate with the nucleus. Although microtubules dampen fluctuations in nuclear position, they are not required for forward translocation of the nucleus during cell migration. Trailing-edge detachment and pulling with a microneedle produced motion and deformation of the nucleus suggestive of a mechanical coupling between the nucleus and the trailing edge. Significantly, decoupling the nucleus from the cytoskeleton with KASH overexpression greatly decreased the frequency of trailing-edge detachment. Collectively, these results explain how the nucleus is moved in a crawling fibroblast and raise the possibility that forces could be transmitted from the front to the back of the cell through the nucleus.  相似文献   

14.
It has been previously shown that localized elevations of free cytosolic calcium are associated with a morphological contraction in the forming blastodisc and animal hemisphere cortex during ooplasmic segregation in zebrafish zygotes. It was subsequently proposed, in a hypothetical model, that these calcium transients might be linked to the contraction of a cortically located actin microfilament network as a potential driving force for segregation. Here, by labeling single-cell embryos during the major phase of segregation with rhodamine-phalloidin, direct evidence is presented to indicate that the surface contraction was generated by an actin-based cortical network. Furthermore, while zygotes incubated with colchicine underwent normal ooplasmic segregation, those incubated with cytochalasin B did not generate a constriction band or segregate to form a blastodisc. During segregation at the single-cell stage, ooplasm simultaneously moved in two directions: toward the blastodisc within the so-called axial streamers, and toward the vegetal pole in the peripheral ooplasm. The velocities of both axial and peripheral streaming movements are reported. By injection of a fluorescein isothiocyanate (FITC)-labeled 2000 kDa dextran into the peripheral ooplasm it was demonstrated that a portion of it feeds into the bases of the extending streamers, which helps to explain the lack of accumulation of ooplasm at the vegetal pole. These new data were incorporated into the original model to link the bipolar ooplasmic movements with the calcium-modulated, actin-mediated contraction of the animal hemisphere cortex as a means of establishing and driving ooplasmic segregation in zebrafish.  相似文献   

15.
Zusammenfassung Im Ei vonWachtliella legen die Furchungskerne in der Zeit zwischen den Mitoseschritten große Strecken im Ooplasma zurück, was zu einer raschen Besiedlung des Eiraumes führt. Dabei findet neben der passiven Verlagerung infolge pulsierender Plasmaströmungen einaktiver Migrationsprozeß statt. Er wird von feinen Dotterpartikeln-Schwingungen begleitet, die auch in den Eiern anderer Insekten gefunden worden sind. Um diese Zitterbewegung besser analysieren zu können, sind dieEier total bzw. partiell gequetscht worden; hierdurch wird die Schichtdicke des Ooplasmas auf 30 m bzw. auf 12—4 m reduziert. Die experimentelle Verkleinerung des Krümmungsradius' der Eioberflächefördert die Neigung zur Zellwandbildung, was schon im 2-Kern-Stadium zu einerfast totalen Furchung führt. Außerdem kann derInitialbereich der Furchung (= Initialbereich der Zitterbewegung)in kernfreien Regionen liegen und darüberhinaus in einen vorderen und einen hinteren Initialbereichaufgespalten werden; Kernteilung und -wanderung werden jedoch nicht unterbunden. Die Entwicklung unbehandelter wie auch gequetschter Eier ist mit Hilfe von Zeitrafferfilmen analysiert worden, die mit dem Phasenkontrast oder dem differentiellen Interferenzkontrast-Verfahren — unter Verwendung höchstauflösender Planapochromate am umgekehrten Mikroskop — aufgenommen worden sind.Vom Initialbereich der Furchung gehen, im Rhythmus der Furchungsschritte,Wellen ungeordneter Zitterbewegung aus und durchziehen das ganze Ei. Sie bestehen aus ungeordneten Schwingungen von Dotterpartikeln, die vermutlich auf die Aktivität räumlich ungeordneter, dynamischer Elemente im Ooplasma zurückzuführen sind. Einenordnenden Einfluß aber übt die Anwesenheit vonFurchungskernen aus: Kurz bevor eine solche Welle von Zitterbewegungen bei Furchungskernen des Metaphasestadiums eintrifft, treten nämlich in deren Umgebung geordnete Schwingungen und Verlagerungen von Dotterpartikeln auf. Sie sind radial auf die Spindelpole ausgerichtet und beginnen bei demjenigen, den die Welle zuerst erfaßt. Diese radiale Zitterbewegung wird durch eingroßes Astersystem hervorgerufen, das jeweils von den Spindelpolen ausgeht und distal weit in das Ooplasma zieht. Mit dem Beginn der Verkürzungsprozesse innerhalb der Asterstrahlen tritt der Furchungskern in die Ana- und Telophase ein, und die Spindelpole werden auseinandergezogen. Auch in der darauffolgenden Migrationsphase der Tochterkerne bleibt der Spindelpol als Asterzentrum der ehemaligen Spindel erhalten und bildet den Mittelpunkt eines Migrationsasters. Seine längsten Asterstrahlen messen mindestens 80 m und inserieren distal sowohl an frei beweglichen als auch an elastisch aufgehängten oder an starren Eikomponenten.Durch wiederkehrende, kurzzeitige Insertionen und unkoordinierte, vorübergehende Verkürzung der Asterstrahlenwird der Kern, der eine starke Affinität zu seinem Asterzentrum besitzt, im Ooplasmavorwärtsgezogen, und zwar stets in Richtung auf die jeweils noch größten kernfreien Gebiete, in denen auch die räumliche Ausdehnung des Migrationsasters am größten ist. So läßt sich u.a. auch die gegenseitige Abstoßung der Energiden erklären, die zu einer gleichmäßigen Verteilung im Eiraum führt.Bei manchen Eiern ist es möglich gewesen,Furchungskerne experimentell von ihren Astersystemen zu trennen. Währendisoliert liegende Migrationsaster sich autonom, d.h. in Abwesenheit von Kernen,aktiv im Eiraum ausbreiten und vielleicht sogar teilungsfähig sind,können asterlose Furchungskerne zunächst nicht mehr wandern; sie scheinen aber in der Lage zu sein, die Bildung neuer Spindelpole und Astersysteme zu induzieren und dann Furchungsteilungen durchzuführen.Die Migrationsaster aller Furchungsenergiden gehen durch Teilung aus demjenigen Astersystem hervor, dessen Aufbau der Spermakern nach seinem Eindringen in das Ei induziert hat. Derweibliche Vorkern dagegen besitztkeinen Migrationsaster; er wird wahrscheinlichdurch permanente Insertion von Asterstrahlen des männlichen Kerns zu diesem hingezogen, und die Befruchtung ist eine Folge der Affinität zwischen (weiblichem Vor-) Kern und Migrationsaster (des männlichen Kerns).Da sich die Asterstrahlen aus den Polstrahlen des Spindelapparates ableiten lassen, ist eineBeteiligung von Mikrotubuli an ihrem Aufbau sehr wahrscheinlich; sie muß aber noch elektronenmikroskopisch geprüft werden. Mögliche funktionelle Strukturen des Migrationsasters und ihre Beziehungen zum mitotischen Apparat werden diskutiert. Migrationsaster sind wahrscheinlich nicht nur in Anpassung an die speziellen Bedingungen der Furchung in großräumigen Eisystemen entstanden, sondern sind vermutlich auch bei der Teilung zahlreicher anderer tierischer Zellen für Spindelstreckung und Auseinanderwandern der Tochterkerne von Bedeutung.
Causal mechanisms of nuclear movement and division during early cleavage stages in the egg of a gall midge,Wachtliella persicariae L.
Summary Between each mitotic cycle, the cleavage nuclei ofWachtliella move over long distances, thus populating the ooplasm within a short time. Besides being shifted passively by flowing pulses of the ooplasm, thenuclei are also migrating actively. The active movements are accompanied by such oscillations of yolk particles as are known from the eggs of other insects, too. For a closer analysis of these quivering movements the inseminated eggs werepressed, either totally or partially, reducing their smaller diameters to ooplasmic layers of 30 m or between 12 and 4 m, respectively. Along with the experimental reduction of the radius of the curvature at the egg surface, there is anincreased tendency of cell membrane formation, resulting in anearly total cleavage already at the 2-nuclei-stage. Furthermore, theinitial region of cleavage (= initial region of quivering movements)may be shifted to a site free from nuclei; the initial region even may becomesplit up into two, one near each of the egg's poles. Yet, in flattened eggs, division and migration activities of the nuclei are not prevented. Untreated as well as flattened eggs have been analysed by means of time-lapse motion pictures taken either by the phase contrast or by the differential interference contrast method, using apochromatic objectives of maximum resolution, combined with an inverted microscope.According to the rhythm of the cleavage divisions,waves of irregular quivering movements spread from the initial region(s) of cleavage throughout the whole egg space. They are composed of irregular oscillations of yolk particles, probably caused by the effect of actively shortening, dynamic elements irregularly spread within the ooplasm. The presence ofcleavage nuclei obviously exerts a kind ofregulative effect: Shortly before such a wave of quivering movements reaches a metaphasic cleavage energide, regular oscillations and approximations of yolk particles are visible in the surroundings of the nucleus. The movements in question are radially adjusted towards the spindle poles, starting at the one which is reached first by the wave of quivering movements. These radial quivering movements are caused by abig cytaster, each originating from its spindle pole and distally reaching far into the ooplasm. Synchronous with the beginning of the shortening process of the astral rays, the cleavage nucleus passes through anaphase and telophase, and the spindle poles arepulled apart. During the then following migration of each daughter nucleus, its spindle pole—the kinetocentre of the previous spindle—is preserved and becomes the centre of a migration cytaster. Its longest rays measure up to at least 80 m. Their distal ends temporarily insert either in motile, or in elastically suspended, or in rigid egg components.By the recurrent short-time insertions and irregular shortening processes of the astral rays,the nucleus, displaying a strong affinity to its own kinetocentre,is pulled foreward. This movement always occurs in the direction of the biggest ooplasmic region still free from nuclei and therefore permitting the greatest spacial extension of the migration cytasters. This could explain the so-called mutual repulsion of the energides, leading to their even dispersion all over the egg space.In some of the eggs it has been possible toseparate the cleavage nuclei from their cytaster systems experimentally. Deprived of their nuclei such migration cytasters behave autonomously, i. e. they are actively moving within the ooplasm, possibly even retaining their division power. On the other hand, thenuclei without their cytasters have lost their mobility and therefore at first remain in their sites. But they seem to be capable ofinducing new spindle poles and migration cytasters of their own and to carry out further cleavage divisions.The migration cytasters of all cleavage energides develop by division from the very cytaster whose formation had been induced by the sperm nucleus after entering the egg. On the other hand thefemale pronucleus, remainingwithout a migration cytaster and therefore lacking migration activity, ismoved towards the male nucleus, pulled by the probably permanently inserted astral rays of the latter. Thus the final act of fertilization, i.e. nuclear fusion, comes about by the affinity between the (female pro-)nucleus and the (alien) migration cytaster (of the male nucleus).Judged by their derivation from the polar rays of the spindle apparatus, the astral rays with high probability are built up oftubuli, the evidence being left to electron microscopical investigations. Functional structures related to the causal mechanism of the migration cytaster are suggested and their supposed derivation from the mitotic apparatus is discussed. The existence of migration cytasters might not only represent an adaptation to the specific conditions of cleavage within spacious eggs, but also could be essential for the stretching of the spindle and the separation of the daughter nuclei during the division process of many other animal cells.


Herrn Prof. Dr. G. Krause danke ich sehr für wertvolle Anregungen bei der kritischen Durchsicht dieser Veröffentlichung. Mein besonderer Dank gilt meiner Frau für ihre Hilfe bei der Ausarbeitung des Manuskripts. Die Untersuchung wurde durch Sachbeihilfen der Deutschen Forschungsgemeinschaft unterstützt.  相似文献   

16.
K. Katoh  H. Ishikawa 《Protoplasma》1989,150(2-3):83-95
Summary The distribution and arrangement of cytoskeletal components in the early embryo ofDrosophila melanogaster were examined by thin-section electron microscopy to elucidate their involvement in the formation of the cellular blastoderm, a process called cellularization. During the final nuclear division in the cortex of the syncytial blastoderm bundles of astral microtubules were closely associated with the surface plasma membrane along the midline where a new gutter was initiated. Thus the new gutter together with the pre-formed ones compartmentalized the embryo surface to reflect underlying individual daughter nuclei. Subsequently such gutters became deeper by further invagination of the plasma membrane between adjacent nuclei to form so-called cleavage furrows. Nuclei simultaneously elongated in the direction perpendicular to the embryo surface and numerous microtubules from the centrosomes ran longitudinally between the nucleus and the cleavage furrow. Microtubules often appeared to be in close association with the nuclear envelope and the cleavage furrow membrane. The plasma membrane at the advancing tip of the furrow was always undercoated with an electron-dense layer, which could be shown to be mainly composed of 5–6 nm microfilaments. These microfilaments were decorated with H-meromyosin to be identified as actin filaments. As cleavage proceeded, each nucleus with its perikaryon became demarcated by the furrow membrane, which then extended laterally to constrict the cytoplasmic connection between each newly forming cell and the central yolk region. The cytoplasmic strand thus formed possessed a prominent circular bundle of microfilaments which were also decorated with H-meromyosin and bidirectionally arranged, similar in structure to the contractile ring in cytokinesis. These observations strongly suggest that both microtubules and actin filaments play a crucial role in cellularization ofDrosophila embryos.  相似文献   

17.
During meiotic prophase in fission yeast, the nucleus migrates back and forth between the two ends of the cell, led by the spindle pole body (SPB). This nuclear oscillation is dependent on astral microtubules radiating from the SPB and a microtubule motor, cytoplasmic dynein. Here we have examined the dynamic behavior of astral microtubules labeled with the green fluorescent protein during meiotic prophase with the use of optical sectioning microscopy. During nuclear migrations, the SPB mostly follows the microtubules that extend toward the cell cortex. SPB migrations start when these microtubules interact with the cortex and stop when they disappear, suggesting that these microtubules drive nuclear migrations. The microtubules that are followed by the SPB often slide along the cortex and are shortened by disassembly at their ends proximal to the cortex. In dynein-mutant cells, where nuclear oscillations are absent, the SPB never migrates by following microtubules, and microtubule assembly/disassembly dynamics is significantly altered. Based on these observations, together with the frequent accumulation of dynein at a cortical site where the directing microtubules interact, we propose a model in which dynein drives nuclear oscillation by mediating cortical microtubule interactions and regulating the dynamics of microtubule disassembly at the cortex.  相似文献   

18.
The steady-state potential of the oocyte, resistance between the ooplasm and the medium, and electronic coupling between oocytes in adjacent follicles were examined in vitellogenic ovarioles of Hyalophora cecropia. The steady-state potential had a constant value of ?40 mV throughout the 100-fold volume increase accompanying yolk deposition, while membrane resistance decreased gradually with increasing size. Resistance rose steeply with the onset of chorion deposition, but did not detectably change with either nurse cell collapse or termination of vitellogenesis. Nonrectified electrical coupling was found between oocytes in adjacent follicles, and fluorescein ions injected into the ooplasm moved readily from follicle to follicle. Large surface area and low membrane resistance made coupling difficult to detect electrically between more mature oocytes, but interfollicular fluorescein migration was found to persist until the end of vitellogenesis. Migration of fluorescein from the oocyte to the follicular epithelium could also be visualized and fingers of ooplasm that cross the vitelline envelope and terminate in dome-shaped attachments to the epithelial cells were implicated in this transfer. The termination of interfollicular coupling coincided with the termination of epithelial-oocyte coupling, and is proposed to result from thickening of the vitelline envelope and withdrawal of the ooplasmic processes.  相似文献   

19.
Kinesin-5 is an essential mitotic motor. However, how its spatial-temporal distribution is regulated in mitosis remains poorly understood. We expressed localization and affinity purification-tagged Eg5 from a mouse bacterial artificial chromosome (this construct was called mEg5) and found its distribution to be tightly regulated throughout mitosis. Fluorescence recovery after photobleaching analysis showed rapid Eg5 turnover throughout mitosis, which cannot be accounted for by microtubule turnover. Total internal reflection fluorescence microscopy and high-resolution, single-particle tracking revealed that mEg5 punctae on both astral and midzone microtubules rapidly bind and unbind. mEg5 punctae on midzone microtubules moved transiently both toward and away from spindle poles. In contrast, mEg5 punctae on astral microtubules moved transiently toward microtubule minus ends during early mitosis but switched to plus end-directed motion during anaphase. These observations explain the poleward accumulation of Eg5 in early mitosis and its redistribution in anaphase. Inhibition of dynein blocked mEg5 movement on astral microtubules, whereas depletion of the Eg5-binding protein TPX2 resulted in plus end-directed mEg5 movement. However, motion of Eg5 on midzone microtubules was not altered. Our results reveal differential and precise spatial and temporal regulation of Eg5 in the spindle mediated by dynein and TPX2.  相似文献   

20.
Nuclear migration and positioning in Saccharomyces cerevisiae depend on long astral microtubules emanating from the spindle pole bodies (SPBs). Herein, we show by in vivo fluorescence microscopy that cells lacking Spc72, the SPB receptor of the cytoplasmic gamma-tubulin complex, can only generate very short (<1 microm) and unstable astral microtubules. Consequently, nuclear migration to the bud neck and orientation of the anaphase spindle along the mother-bud axis are absent in these cells. However, SPC72 deletion is not lethal because elongated but misaligned spindles can frequently reorient in mother cells, permitting delayed but otherwise correct nuclear segregation. High-resolution time-lapse sequences revealed that this spindle reorientation was most likely accomplished by cortex interactions of the very short astral microtubules. In addition, a set of double mutants suggested that reorientation was dependent on the SPB outer plaque and the astral microtubule motor function of Kar3 but not Kip2/Kip3/Dhc1, or the cortex components Kar9/Num1. Our observations suggest that Spc72 is required for astral microtubule formation at the SPB half-bridge and for stabilization of astral microtubules at the SPB outer plaque. In addition, our data exclude involvement of Spc72 in spindle formation and elongation functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号