首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Cells dissociated from the neural retina of embryonic chick differentiate into lens and pigment cells, when cultured in vitro. Using 3.5-day-old and 8.5-day-old chick embryos, we examined whether neuronal specificities would be expressed in such transdifferentiating cultures of neural retinal cells. The synthesis of acetylcholine and γ-aminobutyric acid (GABA) and the activity of choline acetyl transferase (CAT) was searched for in these cultures. The synthesis of an appreciable amount of these two putative neurotransmitters was detected in cultures of 3.5-day-old embryonic retinas by about 15 days. The activity of CAT was maximum in 7-day cultures of the 3.5-day-old materials and in 2-day cultures of the 8.5-day-old materials, and then decreased. Concomitant with the decrease of CAT-activity, δ-crystallin became detectable and increased thereafter. CAT-activity changed in parallel with the increase in the number of small neuroblast-like cells in cultures. The results demonstrate that the neuronal specificity identified by the appearance of acetylcholine and GABA and of the enzyme for the synthesis of acetylcholine is expressed in the early period of transdifferentiating cultures, which would later differentiate into lens and pigment cells. The possible mechanisms of the transition from neuronal to non-neuroretinal specificities of the transdifferentiating cultures are discussed.  相似文献   

2.
Cultures of neuroretina (NR) cells from 7-day chick and quail embryos were infected with ts NY-68, a thermosensitive mutant of Rous sarcoma virus (RSV) which transformed NR cells at 36 degrees C. The following differentiation markers for neurones were studied: tetanus toxin-binding sites at the cell surfaces, presence of synapses, and the specific activity of the enzymes choline acetyltransferase (CAT) and glutamic acid decarboxylase (GAD). Appearance of synapses and expression of CAT were similar in control and transformed cultures. Tetanus toxin-binding cells were observed in transformed primary cultures and also in quail NR subcultures. GAD-specific activity was markedly stimulated in chick and quail primary cultures transformed by ts NY-68 and further increased in subcultures of ts NY-68-transformed quail NR cells. Stimulation of GAD activity is controlled by the transforming (src) gene of RSV since it was not observed in cultures infected with RAV-1, a leukosis virus which lacks the src gene. These data show that infection of chick and quail NR cultures with RSV results in the transformation of cells with neuronal markers.  相似文献   

3.
The effect of imipramine on the spontaneous motility and development of chick embryos was studied from the 4th to the 19th day of incubation. On acute administration (a single dose of 12.5 of 25 mg/kg egg weight), imipramine already induced significant depression of spontaneous motility in 11-day embryos--an effect which increased significantly after the 15th day of incubation. The similar effect of imipramine in spinal embryos testifies to its direct action on the spinal cord and draws attention to certain details of the role of supraspinal structures of the CNS in the acute effect of imipramine. The chronic administration of imipramine showed that it had an almost 100% lethal effect from 4th to the 7th day of incubation. Between the 8th and the 10th day it caused longlasting depression of spontaneous motility. When it was administered between the 11th and 16th day of incubation, no significant effect on the development of spontaneous motor activity was found in chick embryos.  相似文献   

4.
Isolated cultures of premigratory neural crest cells were used to study the initial stages of autonomic neuron development. Autonomic neurons are phenotypically characterized on the basis of their neurotransmitter synthetic enzymes, dopamine β-hydroxylase (DBH) and choline acetyltransferase (CAT). DBH converts dopamine to norepinephrine in noradrenergic neurons while CAT synthesizes acetylcholine from choline in cholinergic neurons. Activities of both enzymes were detected in isolated cultures of trunk neural crest and head neural crest. DBH was detected at all culture ages examined (from 1 to 20 days) whereas CAT activity was first detected only after 5 days in vitro. While specific enzyme activity of DBH peaks on Day 6 and specific enzyme activity of CAT peaks on Day 10, absolute activity for both enzymes increases throughout the 20-day culture period. DBH and CAT develop in vitro without any spinal presynaptic input, without typical target tissue interactions (such as blood vascular elements or heart tissue), and without addition of conditioned medium factors.  相似文献   

5.
B Pessac 《Cell differentiation》1987,20(2-3):197-202
The effects of oncogenic retroviruses on the expression of differentiation markers were studied in monolayer cultures of chick and quail embryo neuroretinas. Transformation by Rous sarcoma virus (RSV) did not affect the appearance of synapses, and the expression of glutamic acid decarboxylase was stimulated by pp60v-src, the product of the src gene. Quail embryo neuroretina cells transformed by Mill Hill 2 (which contains the two oncogenes v-mil and v-myc) were induced to proliferate into permanent cultures that synthesized crystallins and produced lentoid bodies. In contrast, transformation with a temperature-sensitive mutant of RSV reversibly blocked the production of crystallins and lentoid bodies. These data show that given cellular genes can respond differently to distinct oncogenes.  相似文献   

6.
The timetable of cell generation, neuronal death and neuron numbers in the fused proximal glossopharyngeal (IX) and vagal (X) ganglion and distal IX and X ganglia were studied in normal and nerve growth factor (NGF) treated chick embryos. 3H-thymidine was injected between the 3rd and 7th days of incubation and embryos sacrificed on the 11th day. Neurons in the distal IX and X ganglia were generated between the 2nd and 5th days of incubation, the peak mitotic activity occurring on the 4th and 3rd days, respectively. Neurons of the proximal IX and X ganglion were generated between the 4th and 7th days, with maximum neuron generation on the 5th day of incubation. Counts of neurons in the 3 ganglia between the 5th and 18th days of incubation showed a maximum of 22,000 on the 8th day in the proximal IX and X ganglion and this decreased to 12,000 by the 13th day. In the distal IX ganglion, the neuron number decreased by 44% from 4,500 on the 6th day to 2,500 by the 11th day. A similar decrease of 43% was found in the distal X ganglion, the neuron number falling from 11,500 on the 7th day to 6,500 by the 11th day of incubation. Neuronal cell death in these ganglia extended from the 5th to the 12th day of incubation, maximum cell death occurring at or after the cessation of mitotic activity. NGF administration from the 5th to the 11th day of incubation did not have a measurable effect on the neurons of proximal IX and X and distal IX ganglia, but increased neuronal survival by 30% in the distal X ganglion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Explants of 4.5-day-old chick embryonic neuroretinas with mesenchyme were exposed to Methotrexate (MTX) in medium 199 with embryo extract. Proliferative responses of the cultured neuroretinas were followed radioautographically by administration of 3H-thymidine to the cultures. The DNA synthetic, mitotic and pyknotic responses of the ventricular cells of the neuroretina were followed over a 16-hour period. The responses observed suggested that MTX caused a synchronization of the ventricular cells in the pre-mitotic phases with no direct inhibition of mitosis. Furthermore, prolonged exposure to MTX resulted in the accumulation of labeled pyknotic cells, indicating a decline in the regenerative capacity of the proliferative ventricular cells.  相似文献   

8.
The consequences of systemic administration of aminergic transmitters (n-adrenaline 16 microgram/kg egg weight; serotonin 2.5 and 5 mg/kg e.w.; dopamine 2.5 and 5 mg/kg e.w.) for the spontaneous motility and heart rate of 11- to 19-day chick embryos were studied intack eggs. The following results were characteristic for all three transmitters: a) when administered to 11- and 13-day embryos their effect was non-significant; the first signs of activity did not appear until the 15th day of incubation. The effect on 17- and 19-day embryos was stronger. b) After the 15th day of incubation, all these transmitters had a predominantly inhibitory effect on spontaneous motility; in 17- and 19-day embryos this acquired a periodic character. c) The changes in spontaneous motility did not correlate significantly in any way with the relatively small heart rate changes. It is concluded from the results that aminergic mechanisms begin to participate in regulation of the spontaneous motility of chick embryos from the 15th day of incubation, and not before.  相似文献   

9.
The development of the sensitivity of spontaneous motor activity to the GABA agonists baclofen (10 mg/kg egg weight, systemic administration) and muscimol (0.8 mg/kg e.w., systemic administration) was tested in 11-day to 19-day-old chick embryos. 1) Baclofen already significantly depressed the frequency of spontaneous movements in 11-day embryos; its effect attained the maximum (85% depression of spontaneous motility) in 13-day embryos. After the 15th day of incubation, it reduced spontaneous motor activity by 50-60%. In spinal embryos, baclofen had the same, but a quantitatively more pronounced effect, demonstrated from its direct action on the spinal cord uninfluenced by supraspinal modulation, which began to be manifested after the 15th day of incubation. 2) Muscimol did not begin to inhibit spontaneous motility significantly until the 13th day of incubation. Subsequently, the latent period of its effect shortened, its duration lengthened and, lastly, its quantitative result also increased. 3) A comparison of the effect of GABA (Sedlácek 1978), muscimol and baclofen in 17-day chick embryos showed that the depressive effect increased in the sequence baclofen less than GABA less than muscimol, but that GABA took effect faster than the others. The results testify that the maturation of the individual elements of the GABA-ergic central inhibition system is a complex process.  相似文献   

10.
The acetylcholinesterase (AChE) activity of cultures from 11-day-old chick embryo muscle cells was studied for up to 4 weeks in vitro. AChE activity was found in mononucleated cells and multinucleated myotubes. The activity increased greatly after fusion. Maximum AChE levels were reached after 7–10 days of incubation and tended to decline thereafter. Multiple forms of AChE found in embryo muscle in situ were present in cultures before and after fusion. Selective inhibitors and substrates were used to show that AChE was released by the cells into their medium. Within a 2-day period the AChE that accumulated in the medium averaged over 6 times that remaining in the cells. Release of AChE from the cells was inhibited by cycloheximide, and AChE levels in cells and medium were much reduced when differentiation was inhibited by bromodeoxyuridine. Little AChE was present in subcultures of fibroblasts from muscle cultures. Acetyl-β-methylcholine and, to a lesser degree, choline itself, prevented the decrease in AChE levels of 2- to 3-week-old muscle cultures.  相似文献   

11.
Intracellular concentrations of sodium and potassium as well as resting potentials and overshoots have been determined in heart tissue from chick embryos aged 2–18 days. Intracellular potassium declined from 167 mM at day 2 to 117–119 mM at days 14–18. Intracellular sodium remained nearly constant at 30–35 mM during the same period. The mean resting potential increased from -61.8 mV at day 3 to about -80 mV at days 14–18. The mean overshoot during the same period increased from 12 to 30 mV. PNa/PK calculated from the ion data and resting potentials declined from 0.08 at day 3 to 0.01 at days 14–18. Thus, the development of embryonic chick heart during days 2–14 is characterized by a declining intracellular potassium concentration and an increasing resting potential and overshoot. Heart cells from 7- to 8-day embryos, cultured either in monolayer or reassociated into aggregates, were compared with intact tissue of the same age. The intracellular concentrations of sodium and potassium were similar in the three preparations and cultured cells responded to incubation in low potassium medium or treatment with ouabain in a manner similar to that of intact tissue. Resting potentials and overshoots were also similar in the three preparations.  相似文献   

12.
The interaction of strychnine (1 mg/kg egg weight), glycine (100 mg/kg egg weight) and GABA (103 mg/kg egg weight) on spontaneous motor activity recorded by the method of Kovach (1970) in intact eggs was studied in chick embryos from the 11th to 21st day of incubation. In 11- and 13-day embryos, neither of the amino acids influenced strychnine activation of spontaneous motility. From the 15th incubation day, strychnine activation was distinctly affected by both amino acids, but the maximum effect was observed on the 19th day. Glycine had a stronger inhibitory effect, since it prevented strychnine convulsions from developing, whereas GABA only modified them. It can be concluded from the results that glycine-sensitive and GABA-sensitive mechanisms of embryonal spontaneous motility do not begin to take effect in chick embryos until the 15th day of incubation.  相似文献   

13.
Induction of Cholinergic Expression in Developing Spinal Cord Cultures   总被引:2,自引:2,他引:0  
The induction of choline acetyltransferase (ChAT) by cAMP derivatives was studied in dissociated spinal cord cultures. Dibutyryl cAMP (dbcAMP) and 8-bromo cAMP (1 mM) produced a 2-3-fold stimulation of ChAT activity in developing cultures whereas 8-bromo cGMP had no effect. A phosphodiesterase inhibitor, 3-isobutyl-l-methylxanthine, also increased (2-fold) ChAT activity in immature cultures. Significant elevations in ChAT were detected after 2 h incubation with dbcAMP. Maximum enzyme induction was observed 24 h after dbcAMP supplementation to the culture medium. Developmental studies revealed that ChAT could be induced on days 2-16 in culture. The largest induction of ChAT activity was observed on day 7 in culture. After day 19, when control enzyme activity attained levels of mature cultures, cAMP-mediated ChAT induction was no longer observed. Cycloheximide and actinomycin D blocked ChAT induction whereas basal enzyme activity remained unaffected. Culture protein content was not changed after 1-day exposure to dbcAMP. 125I-Tetanus toxin fixation after dbcAMP treatment revealed a 20% decrease from control in neuronal surface during days 7-9 in culture. These data indicated that cAMP derivatives produced a rapid increase in cholinergic expression during a specific period of development in spinal cord cultures. There appears to be specificity to this effect, as total neuronal surface does not respond in the same manner as ChAT activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Francescangeli  E.  Lang  D.  Dreyfus  H.  Boila  A.  Freysz  L.  Goracci  G. 《Neurochemical research》1997,22(10):1299-1307
Platelet-Activating Factor (PAF) is a potent lipid mediator involved in physiological and pathological events in the nervous tissue where it can be synthesized by two distinct pathways. The last reaction of the de novo pathway utilizes CDPcholine and alkylacetylglycerol and is catalyzed by a specific phosphocholinetransferase (PAF-PCT) whereas the remodelling pathway ends with the reaction catalyzed by lyso-PAF acetyltransferase (lyso-PAF AcT) utilizing lyso-PAF, a product of phospholipase A2 activity, and acetyl-CoA. The levels of PAF in the nervous tissue are also regulated by PAF acetylhydrolase that inactivates this mediator. We have studied the activities of these enzymes during cell proliferation and differentiation in two experimental models: 1) neuronal and glial primary cell cultures from chick embryo and 2) LA-N-1 neuroblastoma cells induced to differentiate by retinoic acid (RA). In undifferentiated neuronal cells from 8-days chick embryos the activity of PAF-PCT was much higher than that of lyso-PAF AcT but it decreased during the period of cellular proliferation up to the arrest of mitosis (day 1–3). During this period no significant changes of lyso-PAF AcT activity was observed. Both enzyme activities increased during the period of neuronal maturation and the formation of cellular contacts and synaptic-like junctions. The activity of PAF acetylhydrolase was unchanged during the development of the neuronal cultures. PAF-PCT activity did not change during the development of chick embryo glial cultures but lyso-PAF AcT activity increased up to the 12th day. RA treatment of LA-N-1 cell culture in proliferation decreased PAF-PCT activity and had no significant effect on lyso-PAF AcT and PAF acetylhydrolase indicating that the synthesis of PAF by the enzyme catalyzing the last step of the de novo pathway is inhibited when the LA-N-1 cells are induced to differentiate. These data suggest that: 1) in chick embryo primary cultures, both pathways are potentially able to contribute to PAF synthesis during development of neuronal cells particularly when they form synaptic-like junctions whereas, during development of glial cells, only the remodelling pathway might be particularly active on synthesizing PAF; 2) in LA-N-1 neuroblastoma cells PAF-synthesizing enzymes coexist and, when cells start to differentiate the contribution of the de novo pathway to PAF biosynthesis might be reduced.  相似文献   

15.
The activating effect of bicuculline on spontaneous central motor output activity was studied in chick embryos from the 11th to the 19th day of incubation by means of spontaneous motility. When applied onto the embryonic membranes, bicuculline [1 mg X kg-1 egg weight] significantly activated embryonic motility from the 15th day of incubation. In 15-day embryos it increased spontaneous motility 2.5-fold and in 17- and 19-day embryos 3.5-fold. The role of supraspinal factors in the activating effect of bicuculline increased with development. In 15-day embryos it accounted for 56.7% and in 17-day embryos for already 84.6% of the total effect of bicuculline. Antagonism was manifested between bicuculline and the inhibitory amino acids glycine and GABA; in the case of GABA it was quantitatively more pronounced. The results of this study of development of the activating effect of bicuculline and its antagonism with gamma-aminobutyric acid are evaluated from the aspect of the connecting-up and development of central GABA-ergic components in the regulation of embryonic motility.  相似文献   

16.
Markers of neuronal cell differentiation (GABA accumulation, choline acetyltransferase activity) are shown to increase initially and then decline sharply in monolayer cultures of 9 day embryo neuroretinal (NR) cells. A glial marker (glutamine synthetase, GSase) is precociously inducible by hydrocortisone (HC) in dense'monolayer' NR cultures (containing aggregates of neuronal cells overlying the glial sheet) as well as in chick embryo retinal explants. The induced level of GSase activity is not maintained in the continued presence of HC, but rather declines by 20 days in vitro. Choline acetyltransferase (CAT) activity is higher in HC-treated cultures than in controls only during the period when induced GSase activity is detectable. Furthermore, the subsequent transdifferentiation of lens cells (monitored as δ crystallin content) in these cultures is delayed by 10 days and much reduced in extent when HC is present throughout the culture period.
We suggest a simple model to account for these results, on the basis of recent evidence that lens cells are derived mainly from the retinal epithelial cells (immature Müller glia) of 9-day embryonic NR, and that transdifferentiation results from a change in cell determination during the early stages of'monolayer' culture. In outline, our model proposes that early dedetermination of the retinal glia is associated with a decline of neuronal cell markers (dedifferentiation) followed eventually by loss of the neuronal cells. Hydrocortisone, by inducing transient glial cell differentiation (GSase activity), both prolongs the expression of a neuronal marker (CAT) and also reduces later transdifferentiation into lens.  相似文献   

17.
The response of ornithine decarboxylase activity to hormones in the embryonic left ovary was measured throughout the stages of development. During the early stage of ovarian development (9th day of incubation), the ornithine decarboxylase activity (in terms of pmol CO2/30min per mg of protein) was high (766); it decreased from the 10th to the 12th day (575–239), increased slightly from the 13th to the 15th day (306) and finally fell to a low value (192–20) from the 18th day of development to birth. Administration of an optimal dose of oestrogen to the 9–10-day embryo stimulated the ovarian ornithine decarboxylase activity by 48–53%. If the same dose of oestrogen was administered to the 15–18-day embryo, the ovarian enzyme activity was suppressed by 32–43%. This biphasic response to oestrogen for enzyme induction is characteristic of the developing ovary and is not observed in other genital organs of the chick. In the early developmental stage (9–10th day) testosterone has no effect on ovarian ornithine decarboxylase activity, but in the late stage testosterone inhibits the activity by 41%. Organ culture techniques have been used to test the ovarian response to lutropin (luteinizing hormone). Lutropin stimulated ornithine decarboxylase activity by approx. 99–155% in the ovary of the early embryonic stage (10–13th day), and by 175–200% in the ovary of the late embryonic stage (15–18th day). The alteration in enzyme activity in the ovary as assayed in vitro during development is not due to the effect of the size of the endogenous ornithine pool. The relationship of ornithine decarboxylase activity to the morphological and biochemical changes in the developing ovary is discussed.  相似文献   

18.
Markers of neuronal cell differentiation (GABA accumulation, choline acetyltransferase activity) are shown to increase initially and then decline sharply in monolayer cultures of 9 day embryo neuroretinal (NR) cells. A glial marker (glutamine synthetase, GSase) is precociously inducible by hydrocortisone (HC) in dens "monolayer' NR cultures (containing aggregates of neuronal cells overlying the glian sheet) as well as in chick embryo retinal explants. The induced level of GSase activity is not maintained in the continued presence of HC, but rather declines by 20 days in vitro. Choline acetyltransferase (CAT) activity is higher in HC-treated cultures than in controls only during the period when induced GSase activity is detectable. Furthermore, the subsequent transdifferentiation of lens cells (monitored as delta crystalline content) in these cultures is delayed by 10 days and much reduced in extent when HC is present throughout the culture period. We suggest a simple model to account for these results, on the basis of recent evidence that lens cells are derived mainly from the retinal epithelial cells (immature Müller glia) of 9-day embryonic NR, and that transdifferentiation results from a change in cell determination during the early stages of "monolayers' culture. In outline, our model proposes that early determination of the retinal glia is associated with a decline of neuronal cell markers (dedifferentiation) followed eventually by loss of the neuronal cells. Hydrocortisone, by inducing transient glial cell differentiation (GSase activity), both prolongs the expression of a neuronal marker (CAT) and also reduces later transdifferentiation into lens.  相似文献   

19.
The effect of tetanus toxin on spontaneous motor activity was studied in chick embryos between the 11th and 19th day of incubation. The toxin--dose 20 mg/kg egg weight ( = 2.86 X 10(3) mouse MLD) in 25 microliters isotonic NaCl solution--was injected into the tibial or the wing muscles. Tetanus toxin induced demonstrable activation of embryonic motility from the 15th day of incubation onwards. Activation attained 155-200% of resting activity. The activating effect was manifested for the first time by motor paroxysms in 17-day and particularly 19-day embryos. Tetanus toxin activation was effectively depressed by glycine (100 mg/kg e.w.) and GABA (100 mg/kg e.w.), the former having a stronger effect than the latter. The effect of tetanus toxin on spinal embryos was relatively more pronounced, while the depressant effect of the inhibitory amino acids (especially glycine) was weaker. The results are evaluated as further evidence that central inhibitory mechanisms are connected up in regulation of the spontaneous motor output activity of chick embryos on about the 15th day of incubation.  相似文献   

20.
Taken in physiological concentrations, glucagon increases the activity of adenylate cyclase from the heart of 11-day chick embryos, i.e. at the earliest investigated stage. High glucagon concentrations inhibit the enzyme from cardiac membranes at all ontogenetic stages except mature chicks in which glucagon produces stimulating effect. Guanine nucleotides potentiate this effect up to the 16th day of incubation, this effect being absent at later periods. Reconstruction of adenylate cyclase system from the heart of 16-day embryos with N-proteins from mature liver tissue of chicks results in the recovery of potentiating effect. However, at later developmental stages, potentiation was absent even in the presence of N-proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号