首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
In this study, we have investigated the use of plasmid DNA (pDNA) vaccination to elicit Th2 effector cell function in an Ag-specific manner and in turn prevent insulin-dependent diabetes mellitus (IDDM) in nonobese diabetic (NOD) mice. pDNA recombinants were engineered encoding a secreted fusion protein consisting of a fragment of glutamic acid decarboxylase 65 (GAD65) linked to IgGFc, and IL-4. Intramuscular injection of pDNA encoding GAD65-IgGFc and IL-4 effectively prevented diabetes in NOD mice treated at early or late preclinical stages of IDDM. This protection was GAD65-specific since NOD mice immunized with pDNA encoding hen egg lysozyme-IgGFc and IL-4 continued to develop diabetes. Furthermore, disease prevention correlated with suppression of insulitis and induction of GAD65-specific regulatory Th2 cells. Importantly, GAD65-specific immune deviation was dependent on pDNA-encoded IL-4. In fact, GAD65-specific Th1 cell reactivity was significantly enhanced in animals immunized with pDNA encoding only GAD65-IgGFc. Finally, NOD.IL4(null) mice treated with pDNA encoding GAD65-IgGFc and IL-4 continued to develop diabetes, indicating that endogenous IL-4 was also required for disease prevention. These results demonstrate that pDNA vaccination is an effective strategy to elicit beta cell-specific Th2 regulatory cell function for the purpose of preventing IDDM even at a late stage of disease development.  相似文献   

2.
We previously demonstrated that administration of plasmid DNAs (pDNAs) encoding IL-4 and a fragment of glutamic acid decarboxylase 65 (GAD65) fused to IgGFc induces GAD65-specific Th2 cells and prevents insulin-dependent diabetes mellitus (IDDM) in nonobese diabetic (NOD) mice. To assess the general applicability of pDNA vaccination to mediate Ag-specific immune deviation, we examined the immunotherapeutic efficacy of recombinants encoding murine insulin A and B chains fused to IgGFc. Insulin was chosen based on studies demonstrating that administration of insulin or insulin B chain by a variety of strategies prevents IDDM in NOD mice. Surprisingly, young NOD mice receiving i.m. injections of pDNA encoding insulin B chain-IgGFc with or without IL-4 exhibited an accelerated progression of insulitis and developed early diabetes. Exacerbation of IDDM correlated with an increased frequency of IFN-gamma-secreting CD4(+) and CD8(+) T cells in response to insulin B chain-specific peptides compared with untreated mice. In contrast, treatment with pDNAs encoding insulin A chain-IgGFc and IL-4 elicited a low frequency of IL-4-secreting Th cells and had no effect on the progression of IDDM. Vaccination with pDNAs encoding GAD65-IgGFc and IL-4, however, prevented IDDM. These results demonstrate that insulin- and GAD65-specific T cell reactivity induced by pDNA vaccination has distinct effects on the progression of IDDM.  相似文献   

3.
The GABA-synthesizing enzyme glutamic acid decarboxylase (GAD) is expressed in pancreatic beta-cells and GABA has been suggested to play a role in islet cell development and function. Mouse beta-cells predominantly express the larger isoform of the enzyme, GAD67, and very low levels of the second isoform, GAD65. Yet GAD65 has been shown to be a target of very early autoimmune T-cell responses associated with beta-cell destruction in the non-obese diabetic (NOD) mouse model of Type 1 diabetes. Mice deficient in GAD67, GAD65 or both were used to assess whether GABA is important for islet cell development, and whether GAD65 is required for initiation of insulitis and progression to Type 1 diabetes in the mouse. Lack of either GAD65 or GAD67 did not effect the development of islet cells and the general morphology of islets. When GAD65-/-(129/Sv) mice were backcrossed into the NOD strain for four generations, GAD65-deficient mice developed insulitis similar to GAD65+/+ mice. Furthermore, at the low penetrance of diabetes in this backcross, GAD65-deficient mice developed disease at the same rate and incidence as wildtype mice. The results suggest that GABA generated by either GAD65 or GAD67 is not critically involved in islet formation and that GAD65 expression is not an absolute requirement for development of autoimmune diabetes in the NOD mouse.  相似文献   

4.
Several studies have provided indirect evidence in support of a role for beta cell-specific Th2 cells in regulating insulin-dependent diabetes (IDDM). Whether a homogeneous population of Th2 cells having a defined beta cell Ag specificity can prevent or suppress autoimmune diabetes is still unclear. In fact, recent studies have demonstrated that beta cell-specific Th2 cell clones can induce IDDM. In this study we have established Th cell clones specific for glutamic acid decarboxylase 65 (GAD65), a known beta cell autoantigen, from young unimmunized nonobese diabetic (NOD) mice. Adoptive transfer of a GAD65-specific Th2 cell clone (characterized by the secretion of IL-4, IL-5, and IL-10, but not IFN-gamma or TGF-beta) into 2- or 12-wk-old NOD female recipients prevented the progression of insulitis and subsequent development of overt IDDM. This prevention was marked by the establishment of a Th2-like cytokine profile in response to a panel of beta cell autoantigens in cultures established from the spleen and pancreatic lymph nodes of recipient mice. The immunoregulatory function of a given Th cell clone was dependent on the relative levels of IFN-gamma vs IL-4 and IL-10 secreted. These results provide direct evidence that beta cell-specific Th2 cells can indeed prevent and suppress autoimmune diabetes in NOD mice.  相似文献   

5.
Peptide-based immunotherapy is one strategy by which to selectively suppress the T cell-mediated destruction of beta cells and treat insulin-dependent diabetes mellitus (IDDM). Here, we investigated whether a panel of T cell epitopes derived from the beta cell autoantigen glutamic acid decarboxylase 65 (GAD65) differ in their capacity to induce Th2 cell function in nonobese diabetic (NOD) mice and in turn prevent overt IDDM at different preclinical stages of disease development. The panel consists of GAD65-specific peptides spanning aa 217-236 (p217), 247-265 (p247), 290-309 (p290), and 524-543 (p524). Our studies revealed that all of the peptides effectively prevented insulitis and diabetes when administered to NOD mice before the onset of insulitis. In contrast, only a mixture of p217 and p290 prevented progression of insulitis and overt IDDM in NOD mice exhibiting extensive beta cell autoimmunity. Immunization with the GAD65-specific peptides did not block IDDM development in NOD mice deficient in IL-4 expression. These findings demonstrate that GAD65-specific peptide immunotherapy effectively suppresses progression to overt IDDM, requires the production of IL-4, and is dependent on the epitope targeted and the extent of preexisting beta cell autoimmunity in the recipient.  相似文献   

6.
When immunological tolerance breaks down, autoimmune destruction of insulin-producing beta cells in the pancreas can cause insulin-dependent diabetes mellitus. We previously showed that transgenic nonobese diabetic (NOD) mice expressing IL-4 in the pancreas (NOD-IL-4 mice) were protected from insulitis and diabetes. Here we have characterized the avoidance of pathological autoimmunity in these mice. The absence of disease did not result from a lack of T cell priming, because T cells responding to dominant islet Ags were present. These islet Ag-specific T cells displayed a Th2 phenotype, indicating that Th2 responses could account for the observed tolerance. Interestingly, islet Ag-specific Th1 T cells were present and found to be functional, because neutralization of the Th2 effector cytokines IL-4 and IL-10 resulted in diabetes. Histological examination revealed that NOD-IL-4 splenocytes inhibited diabetogenic T cells in cotransfer experiments by limiting insulitis and delaying diabetes. Neutralization of IL-4 in this system abrogated the ability of NOD-IL-4 splenocytes to delay the onset of diabetes. These results indicate that IL-4 expressed in the islets does not prevent the generation of pathogenic islet responses but induces islet Ag-specific Th2 T cells that block the action of diabetogenic T cells in the pancreas.  相似文献   

7.
The mechanism by which β-cells die during autoimmune diabetes has remained a subject of intense investigation. The loss of β-cells in the disease is T cell mediated and thought to result from a number of different insults including apoptosis induction through the death receptor CD95. However, the role of CD95 in autoimmune diabetes, studied primarily in the non-obese diabetic (NOD) mouse model, has been controversial. We have used an alternative model of autoimmune diabetes triggered by repeated low doses of streptozotocin. In this model, islet grafts from C3H mice that carry the lpr mutation, and therefore lack the ability to undergo apoptosis through CD95-CD95L interaction, were completely protected when grafted in autoimmune diabetic mice despite periinsulitis (infiltration of T cells) which however did not progress to islet destruction. In contrast wild-type grafts were rapidly eliminated in autoimmune recipients. Our data provide strong support for a major role of CD95 in the destruction of islets in autoimmune mice.  相似文献   

8.
Expression of IL-10 transgene (tg) in pancreatic beta cells failed to induce autoimmune insulitis and diabetes in (BALB/c x NOD)F1 mice. However, IL-10-expressing tg littermates from backcrosses (N2 and N3) with NOD mice became diabetic at 5 to 10 weeks of age in an MHC-dependent manner. In this study, we tested the possibility that enhancement in frequency of islet antigen (Ag)-specific T cells overrides the protective effects of a diabetes-resistant genetic background and promotes diabetes in IL-10 tg (BALB/c x NOD)F1 mice. For this test, we introduced the IL-10 transgene into tg BDC2.5 mice expressing the islet Ag-specific Vbeta4 T cell repertoire by breeding Ins-IL-10+/BALB/c mice with BDC2.5 mice. The progeny (Ins-IL-10+/BALB/c x BDC2.5+)F1 mice doubly tg for IL-10 and Vbeta4 (BDC2.5) T cell repertoire, developed diabetes at 10 to 18 weeks of age with a much more aggressive T cell infiltrate in the pancreatic islets than in single tg mice. Surprisingly, these diabetic mice were free from acute pancreatitis but had apoptotic beta cells in the islet infiltrate. Conversely, mice tg for Vbeta4 (BDC2.5) T cell repertoire but not IL-10 had no diabetes and no apoptotic beta cells in the islet infiltrate. Therefore, an increase in the frequency of islet-specific T cells apparently overcomes the protection from diabetes by a resistant genetic background. Interestingly, N2 backcross mice doubly tg for Vbeta4 (BDC2.5) T cell repertoire and IL-10, compared to N2 backcross mice tg for IL-10 only, eventually became diabetic but with a delayed onset and reduced incidence of disease. These findings demonstrate that, along with IL-10, an increase in frequency of islet antigen-specific T cells (a) overrides the protective effect of genetic resistance to autoimmune diabetes in F1 mice and (b) delays the onset of an otherwise accelerated diabetes in (Ins-IL-10+/NOD)N2 backcross mice.  相似文献   

9.
The 524--543 region of glutamic acid decarboxylase (GAD65), GAD65(524--543), is one of the first fragments of this islet Ag to induce proliferative T cell responses in the nonobese diabetic (NOD) mouse model of spontaneous autoimmune diabetes. Furthermore, NOD mice given tolerogenic doses of GAD65(524--543) are protected from spontaneous and cyclophosphamide-induced diabetes. In this study, we report that there are at least two I-A(g7)-restricted determinants present in the GAD65(524--543) sequence, each capable of recruiting unique T cell repertoires characterized by distinct TCR V beta gene use. CD4(+) T cells arise spontaneously in young NOD mice to an apparently dominant determinant found within the GAD65 peptide 530--543 (p530); however, T cells to the overlapping determinant 524-538 (p524) dominate the response only after immunization with GAD65(524--543). All p530-responsive T cells used the V beta 4 gene, whereas the V beta 12 gene is preferentially used to encode the TCR of p524-responsive T cell populations. T cell clones and hybridomas from both of these T cell groups were responsive to APC pulsed with GAD65(524--543) or whole rGAD65. p524-reactive cells appeared to be regulatory upon adoptive transfer into young NOD mice and could inhibit insulin-dependent diabetes mellitus development, although they were unable to produce IL-4, IL-10, or TGF beta upon antigenic challenge. Furthermore, we found that i.p. injection with p524/IFA was very effective in providing protection from cyclophosphamide-induced insulin-dependent diabetes mellitus. These data demonstrate that the regulatory T cells elicited by immunizing with GAD65(524--543) are unique and distinct from those that arise from spontaneous endogenous priming, and that T cells to this limited region of GAD65 may be either regulatory or pathogenic.  相似文献   

10.
Non-obese diabetic (NOD) mice develop spontaneous T-cell responses against pancreatic beta-cells, leading to islet cell destruction and diabetes. Despite high genetic similarity, non-obese resistant (NOR) mice do not develop diabetes. We show here that spleen cells of both NOD and NOR mice respond to the islet cell antigen glutamic acid decarboxylase-65 in IFN-gamma-ELISPOT assays. Moreover, NOR-T cells induce periinsulitis in NOD SCID recipient mice. Thus, a potentially pathogenic islet cell-specific T-cell response arises in NOR and NOD mice alike; the mechanism that prevents the autoimmune progression of self-reactive T cells in NOR mice presumably acts at the level of effector function. Consistent with this hypothesis, CD4+CD25+ cell-depleted spleen cells from NOR mice mediated islet cell destruction and overt diabetes in NOD SCID mice. Therefore, islet cell-specific effector cells in NOR mice appear to be under the control of CD4+CD25+ regulatory T cells, confirming the importance of regulatory cells in the control of autoimmune diabetes.  相似文献   

11.
Saldeen J  Sandler S  Bendtzen K  Welsh N 《Cytokine》2000,12(4):405-408
IL-1beta is cytotoxic to pancreatic beta-cells in vitro but its role in the vicinity of beta-cells in vivo is unknown. We explored whether liposome-mediated transfer of the interleukin 1 receptor antagonist (IL-1ra) gene to islet cells might prevent recurrence of disease in syngeneically transplanted non-obese diabetic (NOD) mice. NOD mouse islet cells were transfected using liposome-mediated gene transfer with a human IL-1ra cDNA construct and transplanted two days later to prediabetic NOD mice. Graft infiltration and destruction were monitored three, five and eight days posttransplantation by histology and determination of insulin and cytokine content. IL-1ra gene transfer resulted in transient expression of IL-1ra protein in islet cells in vitro as assessed by ELISA and of IL-1ra mRNA in transplanted islets as revealed by RT-PCR. However, both control and IL-1ra transfected NOD grafts exhibited massive infiltration and loss of insulin-positive cells, paralleled by a decreased insulin content. Increased IL-1ra expression did not clearly affect other cytokine profiles (IL-1beta, IFN-gamma, IL-2), except for an increase of IL-10 on day eight. In conclusion, liposome-mediated IL-1ra gene transfer to mouse islet cells results in transient expression of IL-1ra which is, however, insufficient to confer resistance to destruction of grafted insulin-producing cells in the NOD mouse.  相似文献   

12.
Islet transplantation therapy would be applicable to a wider range of diabetic patients if donor islet acceptance and protection were possible without systemic immunosuppression of the recipient. To this aim, gene transfer to isolated donor islets ex vivo is one method that has shown promise. This study examines the combined effect of selected immunomodulatory and anti-inflammatory genes known to extend the functional viability of pancreatic islet grafts in an autoimmune system. These genes, indoleamine 2,3-dioxygenase (IDO), manganese superoxide dismutase (MnSOD), and interleukin (IL)-1 receptor antagonist protein (IRAP), were transferred to isolated NOD donor islets ex vivo then transplanted to NODscid recipients and evaluated in vivo after diabetogenic T-cell challenge. The length of time the recipient remained euglycemic was used to measure the ability of the transgenes to protect the graft from autoimmune destruction. Although the results of these cotransfections gave little evidence of a synergistic relationship, they were useful to show that gene combinations can be used to more efficiently protect islet grafts from diabetogenic T cells.  相似文献   

13.
The onset of autoimmune diabetes is related to defective immune regulation. Recent studies have shown that NK T cells are deficient in number and function in both diabetic patients and nonobese diabetic (NOD) mice. NK T cells, which are CD1d restricted, express a TCR with an invariant V alpha 14-J alpha 281 chain and rapidly produce large amounts of cytokines. V alpha 14-J alpha 281 transgenic NOD mice have increased numbers of NK T cells and are protected against diabetes onset. In this study we analyzed where and how NK T cells interfere with the development of the anti-islet autoimmune response. NK T cells, which are usually rare in lymph nodes, are abundant in pancreatic lymph nodes and are also present in islets. IL-4 mRNA levels are increased and IFN-gamma mRNA levels decreased in islets from diabetes-free V alpha 14-J alpha 281 transgenic NOD mice; the IgG1/IgG2c ratio of autoantibodies against glutamic acid decarboxylase is also increased in these mice. Treatment with IL-12 (a pro-Th1 cytokine) or anti-IL-4 Ab abolishes the diabetes protection in V alpha 14-J alpha 281 NOD mice. The protection from diabetes conferred by NK T cells is thus associated with a Th2 shift within islets directed against autoantigen such as glutamic acid decarboxylase. Our findings also demonstrate the key role of IL-4.  相似文献   

14.
 Insulin-dependent diabetes mellitus (IDDM) develops in nonobese diabetic (NOD) mice through the destruction of the B cells in pancreatic Langerhans islets by islet autoantigen-specific T cells. The islet autoantigen glutamic acid decarboxylase 65 (GAD65) is thought to be a major target autoantigen in IDDM. In the present report, we established GAD65-specific T-cell clones using overlapping peptides that cover the amino acid sequences of mouse GAD65. T-cell epitopes of GAD65 were characterized by proliferation and binding assays using various analogue peptides and wild-type or mutant I-Ag7 transfectants. The efficacy of the peptide vaccine in IDDM was determined by administering T-cell epitope peptides to NOD mice and evaluating the histopathology of their insulitis. We obtained two types of T-cell clone, one specific for peptide p316–335 and another specific for p531–545 of GAD65. The p531–545 site has already been identified, but we report the p316–335 site for the first time. T-cell clones recognized those peptides in the wild-type I-Ag7 but not in the mutant I-Ag7 in which the serine at position 57 of the β-chain was replaced by an aspartic acid. Both the p316–335 and p531–545 peptides bound weakly to I-Ag7. Some peptides with amino acid substitutions had antagonistic activity, and administration of a large amount of wild-type peptide reduced the severity of insulitis in NOD mice. Our results suggest that peptide vaccine therapy may be useful in autoimmune diseases, including IDDM. Received: 19 July 1999 / Revised: 4 January 2000  相似文献   

15.
Nonobese diabetic (NOD) mice spontaneously develop diabetes as a consequence of an autoimmune process that can be inhibited by immunotherapy with the 60-kDa heat shock protein (hsp60), with its mycobacterial counterpart 65-kDa (hsp65), or with other Ags such as insulin and glutamic acid decarboxylase (GAD). Microbial infection and innate signaling via LPS or CpG motifs can also inhibit the spontaneous diabetogenic process. In addition to the spontaneous disease, however, NOD mice can develop a more robust cyclophosphamide-accelerated diabetes (CAD). In this work, we studied the effect on CAD of DNA vaccination with constructs encoding the Ags human hsp60 (phsp60) or mycobacterial hsp65 (phsp65). Vaccination with phsp60 protected NOD mice from CAD. In contrast, vaccination with phsp65, with an empty vector, or with a CpG-positive oligonucleotide was not effective, suggesting that the efficacy of the phsp60 construct might be based on regulatory hsp60 epitopes not shared with its mycobacterial counterpart, hsp65. Vaccination with phsp60 modulated the T cell responses to hsp60 and also to the GAD and insulin autoantigens; T cell proliferative responses were significantly reduced, and the pattern of cytokine secretion to hsp60, GAD, and insulin showed an increase in IL-10 and IL-5 secretion and a decrease in IFN-gamma secretion, compatible with a shift from a Th1-like toward a Th2-like autoimmune response. Our results extend the role of specific hsp60 immunomodulation in the control of beta cell autoimmunity and demonstrate that immunoregulatory networks activated by specific phsp60 vaccination can spread to other Ags targeted during the progression of diabetes, like insulin and GAD.  相似文献   

16.
IL-10 exterts profound immunostimulatory and immunoinhibitory effects. To explore the role of IL-10 in autoimmune diabetes of nonobese diabetic (NOD) mice, we generated IL-10-deficient NOD mice. In contrast to our previous results with neutralizing antibodies to IL-10, IL-10-deficient NOD mice developed insulitis and their splenocytes readily responded to islet antigen glutamic acid decarboxylase 65. IL-10-deficient NOD mice did not develop accelerated spontaneous diabetes. On the other hand, IL-10-deficient NOD mice developed accelerated disease following cyclophosphamide (CYP) injection. These findings demonstrate that IL-10 is dispensable for autoimmune diabetes. IL-10's absence fails to accelerate endogenous diabetes but potentiates CYP-induced diabetes.  相似文献   

17.
Nonobese diabetic (NOD) mice expressing the BDC2.5 TCR transgene are useful for studying type 1 diabetes. Several peptides have been identified that are highly active in stimulating BDC2.5 T cells. Herein, we describe the use of I-Ag7 tetramers containing two such peptides, p79 and p17, to detect and characterize peptide-specific T cells. The tetramers could stain CD4(+) T cells in the islets and spleens of BDC2.5 transgenic mice. The percentage of CD4(+), tetramer(+) T cells increased in older mice, and it was generally higher in the islets than in the spleens. Our results also showed that tetAg7/p79 could stain a small population of CD4(+) T cells in both islets and spleens of NOD mice. The percentage of CD4(+), tetramer(+) T cells increased in cells that underwent further cell division after being activated by peptides. The avidity of TCRs on purified tetAg7/p79(+) T cells for tetAg7/p79 was slightly lower than that of BDC2.5 T cells. Although tetAg7/p79(+) T cells, like BDC2.5 T cells, secreted a large quantity of IFN-gamma, they were biased toward being IL-10-producing cells. Additionally, <3% of these cells expressed TCR Vbeta4. In vivo adoptive transfer experiments showed that NOD/scid recipient mice cotransferred with tetAg7/p79(+) T cells and NOD spleen cells, like mice transferred with NOD spleen cells only, developed diabetes. Therefore, we have generated Ag-specific tetramers that could detect a heterogeneous population of T cells, and a very small number of NOD mouse T cells may represent BDC2.5-like cells.  相似文献   

18.
Tian J  Dang H  Kaufman DL 《PloS one》2011,6(9):e25337
Antigen-based therapies (ABTs) very effectively prevent the development of type 1 diabetes (T1D) when given to young nonobese diabetic (NOD) mice, however, they have little or no ability to reverse hyperglycemia in newly diabetic NOD mice. More importantly, ABTs have not yet demonstrated an ability to effectively preserve residual ?-cells in individuals newly diagnosed with type 1 diabetes (T1D). Accordingly, there is great interest in identifying new treatments that can be combined with ABTs to safely protect ?-cells in diabetic animals. The activation of γ-aminobutyric acid (GABA) receptors (GABA-Rs) on immune cells has been shown to prevent T1D, experimental autoimmune encephalomyelitis (EAE) and rheumatoid arthritis in mouse models. Based on GABA's ability to inhibit different autoimmune diseases and its safety profile, we tested whether the combination of ABT with GABA treatment could prolong the survival of transplanted ?-cells in newly diabetic NOD mice. Newly diabetic NOD mice were untreated, or given GAD/alum (20 or 100 μg) and placed on plain drinking water, or water containing GABA (2 or 6 mg/ml). Twenty-eight days later, they received syngenic pancreas grafts and were monitored for the recurrence of hyperglycemia. Hyperglycemia reoccurred in the recipients given plain water, GAD monotherapy, GABA monotherapy, GAD (20 μg)+GABA (2 mg/ml), GAD (20 μg)+GABA (6 mg/ml) and GAD (100 μg)+GABA (6 mg/ml) about 1, 2-3, 3, 2-3, 3-8 and 10-11 weeks post-transplantation, respectively. Thus, combined GABA and ABT treatment had a synergistic effect in a dose-dependent fashion. These findings suggest that co-treatment with GABA (or other GABA-R agonists) may provide a new strategy to safely enhance the efficacy of other therapeutics designed to prevent or reverse T1D, as well as other T cell-mediated autoimmune diseases.  相似文献   

19.
Immunization of NOD mice with autoantigens such as glutamic acid decarboxylase (GAD) 221-235 peptide (p221) can induce Ag-specific CD4(+) T regulatory (Tr) cells. However, it is unclear whether these Tr cells acquire their regulatory capacity due to immunization or whether they are constitutively harbored in unimmunized naive mice. To address this question, we used an I-Ag7 tetramer to isolate p221-specific T cells from naive NOD mice (N221(+) cells) after peptide-specific in vitro expansion. The N221(+) T cells produced IFN-gamma and IL-10, but very little IL-4, in response to p221 stimulation. These T cells could function as regulatory cells and inhibit in vitro proliferation of diabetogenic BDC2.5 cells. This suppressive activity was cell contact-independent and was abrogated by Abs to IL-10 or IL-10R. Interestingly, IL-2 produced by other T cells present in the cell culture induced unactivated N221(+) T cells to exhibit regulatory activities involving production of IL-10. In vivo, N221(+) cells inhibited diabetes development when cotransferred with NOD splenocytes into NOD/scid recipients. Together, these results demonstrate that p221-specific IL-10-dependent Tr cells, including Tr type 1 cells, are present in naive NOD mice. The use of spontaneously arising populations of GAD peptide-specific Tr cells may represent a promising immunotherapeutic approach for preventing type 1 diabetes.  相似文献   

20.
旨在以非肥胖糖尿病(Non-obese diabetic,NOD)小鼠为动物模型,研究高剂量昆虫细胞表达的重组热休克蛋白gp96(Recombinant gp96,rgp96)对1型糖尿病(Type 1 diabetes,T1D)的预防作用。以高剂量rgp96免疫NOD小鼠,用血糖仪监测小鼠血糖值,用流式细胞术检测小鼠脾脏CD4~+CD25~+Foxp3~+调节性T细胞(Regulatory T cells,Tregs)亚群频率,然后用一系列体外实验探究高剂量rgp96对Tregs的影响。结果显示高剂量rgp96免疫有效地预防或延缓小鼠T1D发病,免疫诱导Tregs数量明显增加。体外实验发现rgp96蛋白促进Tregs增殖,诱导Foxp3表达上调和IL-10分泌增加。研究结果为开发基于rgp96的新型T1D预防和治疗性疫苗提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号