首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Legislation in the USA, Europe and Japan will require that chemicals are tested for their ability to disrupt the hormonal systems of mammals. Such chemicals are known as endocrine disruptors (EDs), and will require extensive testing as part of the new European Union Registration, Evaluation and Authorisation of Chemicals (REACH) system for the risk assessment of chemicals. Both in vivo and in vitro tests are proposed for this purpose, and there has been much discussion and action concerning the development and validation of such tests. However, to date, little interest has been shown in incorporating metabolism into in vitro tests for EDs, in sharp contrast to other areas of toxicity testing, such as genotoxicity, and, ironically, such in vitro tests are criticised for not modelling in vivo metabolism. This is despite the existence of much information showing that endogenous and exogenous steroids are extensively metabolised by Phase I and Phase II enzymes both in the liver and in hormonally active tissues. Such metabolism can lead to the activation or detoxification of steroids and EDs. The absence of metabolism from these tests could give rise to false-positive data (due to lack of detoxification) or false-negative data (lack of activation). This paper aims to explain why in vitro assays for EDs should incorporate mammalian metabolising systems. The background to ED testing, the test methods available, and the role of mammalian metabolism in the activation and detoxification of both endogenous and exogenous steroids, are described. The available types of metabolising systems are compared, and the potential problems in incorporating metabolising systems into in vitro tests for EDs, and how these might be overcome, are discussed. It is recommended that there should be: a) an assessment of the intrinsic metabolising capacity of cell systems used in tests for EDs; b) an investigation into the relevance of using the prostaglandin H synthase system for metabolising EDs; and c) a feasibility study into the generation of genetically engineered mammalian cell lines expressing specific metabolising enzymes, which could also be used to detect EDs.  相似文献   

2.
G R Mohn 《Mutation research》1981,87(2):191-210
During the past 30 years, bacterial test systems have been extensively refined in their ability to detect not only mutagenic agents but, in many cases, carcinogenic ones as well. Since many carcinogens are known to be activated within the mammalian body, major improvements in bacterial test systems were made when representative parts of mammalian metabolism were included as part of the test protocol. Presently, systems of great simplicity and convenience are available for the efficient detection of gene mutations, lysogenic induction of prophages, and differential DNA repair. These qualities render bacterial systems potentially useful in distinguishing between carcinogens and non-carcinogens, in characterizing induced mutation spectra, and possibly in quantifying mutagenic potency that may be used to predict tumor-initiating potency. Sensitive strains of Salmonella typhimurium. Escherichia coli and Bacillus subtilis with altered DNA-repair capacities have been constructed which accurately identify many carcinogens. Comparative studies have shown that techniques using these strains can be standardized to some extent and that the majority of carcinogens are active in all adequately sensitive genetic systems. Because of this redundancy, it may be sufficient to employ only one standardized set of tester strains and methodology. However, serveral classes of known carcinogens are undetected or underestimated when assayed in standard testing procedures. Some of these chemicals can be efficiently recognized as mutagens upon varying the methodology, the genetic endpoint, or the mammalian activation system. Thus, to modify and adjust the experimental protocol to the particular type of chemical under study and to calibrate the system with appropriate carcinogenic and non-carcinogenic reference compounds is advisable. It is noteworthy that chemical carcinogens which probably act by non-genotoxic mechanisms thus far remain undetected in bacterial tests. Newly developed systems which measure specific types of genetic events, such as transpositions of DNA segments and derepression of genes, presently are being tested for their ability to detect such carcinogens. A final matter of growing concern is the increasing number of environmental chemicals that are found to be mutagenic in bacteria but for which information about carcinogenic activity in vivo is insufficient. The possible use of bacteria for quantifying mutagenic potency and extrapolating this information to tumor-initiating potency can be envisaged in three ways: (i) direct extrapolation from standard in vitro tests, (ii) indirect extrapolation making use of an in vitro/in vivo comparison of induced effects (the parallelogram method) as devised by Sobels [138] on the basis of identical dose (to DNA), and (iii) host-mediated assays to assess mutagenic potency of carcinogens in selected organs of mammals...  相似文献   

3.
In the past few years there has been considerable progress in the development of mammalian cell systems for use in genetic toxicology by the stable transfer of genes/cDNAs coding for drug metabolizing enzymes directly into the target cell. Alternative approaches have also been developed in which mammalian cells are transiently transfected with cDNAs coding for drug-metabolizing enzymes and S9 preparations expressing a single metabolizing enzyme isolated and used for metabolic activation. Progress in these areas is reviewed here and the relative merits of the different approaches are discussed. Work to date has focused primarily on the cytochrome P450 family of enzymes, although other enzyme systems involved in xenobiotic metabolism have been used. The central theme of this review is the transfer of genetic information to improve the metabolic capability of cell systems used in genetic toxicology. However, a basic philosophy of the review is that genetic manipulation of cultured mammalian cells has the potential for developing systems to be used to better understand chemically induced toxicological effects.  相似文献   

4.
The accumulation of environmental compounds which exhibit genotoxic properties in short-term assays and the increasing lag of time for obtaining confirmation or not in long-term animal mutagenicity and carcinogenicity tests, makes it necessary to develop alternative, rapid methodologies for estimating genotoxic activity in vivo. In the experimental approach used here, it was assumed that the genotoxic activity of foreign compounds in animals, and ultimately humans, is determined among others by exposure level, organ distribution of (DNA) dose, and genotoxic potency per unit of dose, and that knowledge about these 3 parameters may allow to rapidly determine the expected degree of genotoxicity in various organs of exposed animals. In view of the high degree of qualitative correlation between mutagenic activity of chemicals in bacteria and in cultured mammalian cells, and their mutagenic and carcinogenic properties in animals, and in order to be able to distinguish whether mutagenic potency differences were due to differences in (DNA) dose rather than other physiological factors, the results of mutagenicity tests obtained in the present experiments using bacteria and mammalian cells were compared on the basis of DNA dose rather than exposure concentrations, with the following questions in mind: Is there an absolute or a relative correlation between the mutagenic potencies of various ethylating agents in bacteria (E. coli K12) and in mammalian cells (V79 Chinese hamster) after treatment in standardized experiments, and can specific DNA adducts be made responsible for mutagenicity? Is the order of mutagenic potency of various ethylating agents observed in bacteria in vitro representative of the ranking of mutagenic potency found in vivo? Since the answer to this last question was negative, a further question addressed to was whether short-term in vivo assays could be developed for a rapid determination of the presence (and persistence) of genotoxic factors in various organs of mice treated with chemicals. In quantitative comparative mutagenesis experiments using E. coli K12 and Chinese hamster cells treated under standardized conditions in vitro with 5 ethylating agents, there was no indication of an absolute correlation between the number of induced mutants per unit of dose in the bacteria and the mammalian cells. The ranking of mutagenic potency was, however, identical in bacteria and mammalian cells, namely, ENNG greater than ENU greater than or equal to DES greater than DEN congruent to EMS, the mutagenic activity of DEN being dependent on the presence of mammalian liver preparations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The liver''s role in vinyl chloride toxicity and carcinogenicity is providing a better understanding of the chemical carcinogenesis mechanism. A variety of both malignant and benign hepatic tumors has been demonstrated with prolonged exposure to vinyl chloride. The multi-system involvment of this carcinogen and toxin has provided a model for the study of chemical carcinogenesis common to both man and animal. Clinical studies have shown the usefulness of biochemical, radioisotopic, and radiological studies in the detection of toxic and carcinogenic lesions. Animal studies have demonstrated the biochemical metabolism by the liver of vinyl chloride-produced intermediates which are mutagenic in bacterial systems and may be the ultimate carcinogens. Hepatic subcellular enzyme studies prove preliminary evidence of cellular adaptation and increased detoxification. Disruption of this oxidization and detoxification balance may be the key to the malignant transformation of cells. A working hypothesis is presented which may explain the metabolism of vinyl chloride into mutagenic intermediates by the liver cell and the development of malignant transformation by extra hepatic sinusoidal lining cells, lung cells, and brain tissue.  相似文献   

6.
Processing of targeted psoralen cross-links in Xenopus oocytes.   总被引:1,自引:0,他引:1       下载免费PDF全文
Psoralen cross-links have been shown to be both mutagenic and recombinagenic in bacterial, yeast, and mammalian cells. Double-strand breaks (DSBs) have been implicated as intermediates in the removal of psoralen cross-links. Recent work has suggested that site-specific mutagenesis and recombination might be achieved through the use of targeted psoralen adducts. The fate of plasmids containing psoralen adducts was evaluated in Xenopus oocytes, an experimental system that has well-characterized recombination capabilities and advantages in the analysis of intermediates in DNA metabolism. Psoralen adducts were delivered to a specific site by a triplex-forming oligonucleotide. These lesions are clearly recognized and processed in oocytes, since mutagenesis was observed at the target site. The spectrum of induced mutations was compared with that found in similar studies in mammalian cells. Plasmids carrying multiple random adducts were preferentially degraded, perhaps due to the introduction of DSBs. However, when DNAs carrying site-specific adducts were examined, no plasmid loss was observed and removal of cross-links was found to be very slow. Sensitive assays for DSB-dependent homologous recombination were performed with substrates with one or two cross-link sites. No adduct-stimulated recombination was observed with a single lesion, and only very low levels were observed with paired lesions, even when a large proportion of the cross-links was removed by the oocytes. We conclude that DSBs or other recombinagenic structures are not efficiently formed at psoralen adducts in Xenopus oocytes. While psoralen is not a promising reagent for stimulating site-specific recombination, it is effective in inducing targeted mutations.  相似文献   

7.
Amphotropic retrovirus vector system for human cell gene transfer.   总被引:37,自引:7,他引:30       下载免费PDF全文
Retroviral vectors have been constructed for gene transfer in mammalian and avian cells, however most retroviral vector systems are complicated by the spread of a replication-competent helper virus. This problem has been circumvented by segregating the viral genome into cis- and trans-acting components. By establishing helper cell lines that produce the trans-acting viral gene products, one can propagate the cis-acting component in them and harvest defective viral particles that contain only the cis-acting component. The cis-acting component can provide a useful vehicle for the highly efficient transfer of genes into target cells. The defective vector systems described to date, however, are restricted in host range to murine, avian, rat, and dog cells. We describe a helper-free vector system based entirely on an amphotropic murine virus with a wide mammalian host range, including the ability to carry out efficient gene transfer into human cells. We also describe a double mutation constructed in the trans-acting genome which reduces the frequency of replication-competent recombinant viruses to undetectable levels.  相似文献   

8.
Higher plants provide valuable genetic assay systems for screening and monitoring environmental pollutants. They are now recognized as excellent indicators of cytogenetic and mutagenic effects of environmental chemicals and are applicable for the detection of environmental mutagens both indoor and outdoor. Comparisons between plant and nonplant genetic assay systems indicate that higher plant genetic assays have a high sensitivity (i.e. few false negatives). Two assays which are considered ideal for in situ monitoring and testing of airborne and aqueous mutagenic agents are the Tradescantia stamen hair assay for mutations and the Tradescantia micronucleus assay for chromosome aberrations. Both assays can be used for in vivo and in vitro testing. Other higher plant gentoxicity assys which have a large number of genetic markers and/or data base and are also highly suitable for testing for genotoxic agents include Arabidopsis thaliana, Allium cepa, Hordeum vulgare, Vicia faba, and Zea mays. Since higher plant systems are now recognized as excellent indicators of the cytotoxic, cytogenetic, and mutagenic effects of environmental chemicals and have unique advantages for in situ monitoring and screening it is recommended that higher plant systems be accepted by regulatory authorities as an alternative first-tier assay system for the detection of possible genetic damage resulting from pollution or the use of environmental chemicals. The results from higher platn genetic assays could meke a significant contribution in protecting the public from agents that can cause mutation and cancer. The advantages possessed by higher plant genetic assays, which are inexpensive and easy to handle, make them ideal for use by scientists in developing countries.  相似文献   

9.
T cell activation leads to engagement of cellular metabolic pathways necessary to support cell proliferation and function. However, our understanding of the signal transduction pathways that regulate metabolism and their impact on T cell function remains limited. The liver kinase B1 (LKB1) is a serine/threonine kinase that links cellular metabolism with cell growth and proliferation. In this study, we demonstrate that LKB1 is a critical regulator of T cell development, viability, activation, and metabolism. T cell-specific ablation of the gene that encodes LKB1 resulted in blocked thymocyte development and a reduction in peripheral T cells. LKB1-deficient T cells exhibited defects in cell proliferation and viability and altered glycolytic and lipid metabolism. Interestingly, loss of LKB1 promoted increased T cell activation and inflammatory cytokine production by both CD4(+) and CD8(+) T cells. Activation of the AMP-activated protein kinase (AMPK) was decreased in LKB1-deficient T cells. AMPK was found to mediate a subset of LKB1 functions in T lymphocytes, as mice lacking the α1 subunit of AMPK displayed similar defects in T cell activation, metabolism, and inflammatory cytokine production, but normal T cell development and peripheral T cell homeostasis. LKB1- and AMPKα1-deficient T cells each displayed elevated mammalian target of rapamycin complex 1 signaling and IFN-γ production that could be reversed by rapamycin treatment. Our data highlight a central role for LKB1 in T cell activation, viability, and metabolism and suggest that LKB1-AMPK signaling negatively regulates T cell effector function through regulation of mammalian target of rapamycin activity.  相似文献   

10.
The human genome is under continuous attack by a plethora of harmful agents. Without the development of several dedicated DNA repair pathways, the genome would have been destroyed and cell death, inevitable. However, while DNA repair enzymes generally maintain the integrity of the whole genome by properly repairing mutagenic and cytotoxic intermediates, there are cases in which the DNA repair machinery is implicated in causing disease rather than protecting against it. One case is the instability of gene-specific trinucleotides, the causative mutations of numerous disorders including Huntington’s disease. The DNA repair proteins induce mutations that are different from the genome-wide mutations that arise in the absence of repair enzymes; they occur at definite loci, they occur in specific tissues during development, and they are age-dependent. These latter characteristics make pluripotent stem cells a suitable model system for triplet repeat expansion disorders. Pluripotent stem cells can be kept in culture for a prolonged period of time and can easily be differentiated into any tissue, e.g., cells along the neural lineage. Here, we review the role of DNA repair proteins in the process of triplet repeat instability in Huntington’s disease and also the potential use of pluripotent stem cells to investigate neurodegenerative disorders.  相似文献   

11.
12.
Prostaglandin H synthase (PHS) is widely distributed in mammalian tissues and has the ability to oxidize a variety of mutagens and carcinogens. It may therefore play a key role in the metabolic activation of xenobiotics. The present study documents that highly purified PHS can be used in conjunction with 5-phenyl-4-pentenyl-1-hydroperoxide (PPHP), a relatively stable and non-mutagenic hydroperoxide substrate, for the metabolic activation of aromatic amines to mutagenic derivatives that can be detected in short-term Salmonella typhimurium mutagenesis assays. The PHS-based activation system alone was not mutagenic for these tester strains, nor were the test compounds significantly toxic for the bacteria over the concentration range tested. When used in conjunction with Salmonella strains TA98 and TA100 in a modified Ames assay, this system should prove useful for screening of a wide range of compounds for metabolic activation by this mammalian peroxidase. The potential broad utility of this purified PHS-dependent metabolic activation system was investigated by evaluating the activation of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), which are representative of a group of mutagenic and carcinogenic heterocyclic arylamines to which humans are exposed via their diet. Both IQ and MeIQ were activated by PHS to potent mutagens and confirm the utility of the PPHP/PHS system for the activation of premutagens. Whereas the extent of activation of aromatic amines by S9-based systems is significantly greater than for the PHS activation system described herein, PHS may play a significant role in target tissues in which it is present at significantly greater levels than P450 isoenzymes. Moreover, it is likely that the substrate specificity of PHS differs sufficiently from that of P450 isoenzymes so that PHS may activate some compounds that are not efficiently activated by mixed-function oxidase based systems.  相似文献   

13.
The activation of nitrofurans to mutagenic intermediates by testicular tissue was investigated. AF-2 and nitrofurazone were tested in a microsomal suspension assay with strain E. coli K-12 343/113 as indicator and subcellular fractions from rabbit testes. Different mutation patterns were observed in the presence or absence of testicular homogenate, indicating the presence of different mutagenic intermediates. The frequency of arg+ reversion increased proportionally to the homogenate concentration suggesting that the nitrofurans were activated by testicular components to intermediates that induced base-pair substitutions. Other experiments showed that a component of low molecular weight, present in the soluble fraction of homogenates of testes from rabbits, rats and monkeys, was responsible for the increased mutation frequency. It is concluded that this "co-mutagen-like" factor either alters the metabolism of nitrofurans in E. coli and/or promotes the formation of base-pair substitution-type mutations. This direct interaction between a nonenzymic component of mammalian testes and the mutation induction/expression process in E. coli suggests the role of co-mutagen-like factors in the sensitivity of testes to nitrofurans.  相似文献   

14.
15.
Animal cloning--the route to new genomics in agriculture and medicine.   总被引:1,自引:0,他引:1  
This paper reviews the origin and development of animal cloning in metazoans starting with primitive experiments performed during the late 1880's and early 1900's, followed by nuclear transplantation in amphibians in 1952, then extended to fish and insects in the 1960's, and finally to mammals in the 1980's. Emphasis is placed on the applications of mammalian cloning to agriculture, medicine, and the conservation of endangered species. In addition, the introduction of genes via random insertion or gene targeting into the genome of donor cells to be used for cloning has opened up another route for new genomics in agriculture and medicine. The production of transgenic clones starting in 1997 has indeed contributed a milestone to scientific research. Although cloning efficiency is still low, certain kinds of experiments are quite feasible, and we anticipate improvements in the future.  相似文献   

16.
17.
Coffee and caffeine are mutagenic to bacteria and fungi, and in high concentrations they are also mutagenic to mammalian cells in culture. However, the mutagenic effects of coffee disappear when bacteria or mammalian cells are cultured in the presence of liver extracts which contain detoxifying enzymes. In vivo, coffee and caffeine are devoid of mutagenic effects. Coffee and caffeine are able to interact with many other mutagens and their effects are synergistic with X-rays, ultraviolet light and some chemical agents. Caffeine seems to potentiate rather than to induce chromosomal aberrations and also to transform sublethal damage of mutagenic agents into lethal damage. Conversely, coffee and caffeine are also able to inhibit the mutagenic effects of numerous chemicals. These antimutagenic effects depend on the time of administration of coffee as compared to the acting time of the mutagenic agent. In that case, caffeine seems to be able to restore the normal cycle of mitosis and phosphorylation in irradiated cells. Finally, the potential genotoxic and mutagenic effects of the most important constituents of coffee are reviewed. Mutagenicity of caffeine is mainly attributed to chemically reactive components such as aliphatic dicarbonyls. The latter compounds, formed during the roasting process, are mutagenic to bacteria but less to mammalian cells. Hydrogen peroxide is not very active but seems to considerably enhance mutagenic properties of methylglyoxal. Phenolic compounds are not mutagenic but rather anticarcinogenic. Benzopyrene and mutagens formed during pyrolysis are not mutagenic whereas roasting of coffee beans at high temperature generates mutagenic heterocyclic amines. In conclusion, the mutagenic potential of coffee and caffeine has been demonstrated in lower organisms, but usually at doses several orders of magnitude greater than the estimated lethal dose for caffeine in humans. Therefore, the chances of coffee and caffeine consumption in moderate to normal amounts to induce mutagenic effects in humans are almost nonexistent.  相似文献   

18.
Base excision repair intermediates are mutagenic in mammalian cells   总被引:2,自引:1,他引:1  
Base excision repair (BER) is the main pathway for repair of DNA damage in mammalian cells. This pathway leads to the formation of DNA repair intermediates which, if still unsolved, cause cell lethality and mutagenesis. To characterize mutations induced by BER intermediates in mammalian cells, an SV-40 derived shuttle vector was constructed carrying a site-specific lesion within the recognition sequence of a restriction endonuclease. The mutation spectra of abasic (AP) sites, 5′-deoxyribose-5-phosphate (5′dRp) and 3′-[2,3-didehydro-2,3-dideoxy-ribose] (3′ddR5p) single-strand breaks (ssb) in mammalian cells was analysed by RFLP/PCR and mutation frequency was estimated by quantitative PCR. Point mutations were the predominant events occurring at all BER intermediates. The AP site-induced mutation spectrum supports evidence for the ‘A-rule’ and is also consistent with the use of the 5′ neighbouring base to instruct nucleotide incorporation (5′-rule). Preferential adenine insertion was also observed after in vivo replication of 5′dRp or 3′ddR5p ssb. We provide original evidence that not only the abasic site but also its derivatives ‘faceless’ BER intermediates are mutagenic, with a similar mutation frequency, in mammalian cells. Our findings support the hypothesis that unattended BER intermediates could be a constant threat for genome integrity as well as a spontaneous source of mutations.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号