首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The role of protein kinase C (PKC) in modulating platelet activation has been examined in platelets pre-incubated with either the PKC activator 12-O-tetradecanoylphorbol 13-acetate (TPA) or the non-specific protein kinase inhibitor, staurosporine. In order to determine where in the signal transduction pathway PKC is exerting its effect platelets were activated either with a receptor-operated stimulus platelet activating factor (PAF) or by direct elevation of [Ca2+]i (ionomycin) or with arachidonic acid which is converted into thromboxane B2 (TxB2). In PAF-stimulated platelets activation of PKC inhibited both [Ca2+]i elevation and TxB2 generation but had no effect on 5-hydroxytryptamine (5-HT) release whilst staurosporine increased the duration of [Ca2+]i elevation and potentiated TxB2 generation but inhibited 5-HT release. In ionomycin-stimulated platelets modulation of PKC had no effect on [Ca2+]i elevation but in contrast to PAF-stimulated platelets PKC activation caused potentiation of TxB2 generation and 5-HT release whilst inhibition of PKC caused inhibition of TxB2 generation and 5-HT release. Modulation of PKC did not affect arachidonic acid-induced TxB2 generation. These findings suggest that in receptor activated platelets endogenously activated PKC is exerting a negative feedback role, however, when [Ca2+]i elevation is not modified by PKC activation or inhibition (such as in ionomycin stimulated platelets) the relationship between the state of PKC activation and subsequent platelet functional responses corresponds more closely. The findings from this study suggest a different relationship between PKC and TxB2 generation than between PKC and dense granule release in PAF-stimulated platelets.  相似文献   

2.
In the present study, we first investigated which of the factors, protein kinase C (PKC) or Ca2+, plays an important role in activation of phospholipase D (PLD) of rabbit peritoneal neutrophils stimulated by the chemoattractant FMLP. PLD activity was assessed by measuring [3H]phosphatidylethanol ([3H]PEt), the unambiguous marker of PLD, generated by [3H]lyso platelet-activating factor-prelabeled neutrophils in the presence of ethanol. PKC inhibitors, staurosporine and 1-(5-isoquinolinesulfonyl-2-methylpiperazine dihydrochloride, augmented the plateau level of [3H]PEt produced in FMLP-stimulated cells, although they had no effect on the initial rate of the formation. Furthermore, it was found that the FMLP-stimulated [3H]PEt formation was inhibited by pretreatment of cells with PMA, a PKC activator, and exposure of cells to staurosporine before PMA pretreatment moderately blocked the PMA inhibition. Ca2+ ionophore ionomycin, as well as FMLP, stimulated [3H]PEt formation, accompanied by a decrease in [3H]phosphatidylcholine, in a time- and concentration-dependent manner. Both FMLP and ionomycin absolutely required extracellular Ca2+ to increase [3H]PEt formation. These results imply that elevated intercellular Ca2+ by FMLP stimulation is the major factor for PLD activation and that PKC rather negatively regulates the enzyme activity. Interestingly, a calmodulin inhibitor, N-(6-aminohexyl)-5-chloro-1- naphthalenesulfonamide, and a myosin L chain kinase inhibitor, 1-(5-iodonaphthalene-1-sulfonyl)-1H-h exahydro-1,4-diazepine hydrochloride, both inhibited the ionomycin- and FMLP-stimulated [3H]PEt formation in a concentration-dependent manner. Results obtained in this study suggest that, in FMLP-stimulated rabbit peritoneal neutrophils, increased intracellular Ca2+ activates PLD through calmodulin/myosin L chain kinase pathway and, thereafter, the enzyme activation is turned off by simultaneously activated PKC.  相似文献   

3.
The action of platelet activating factor (PAF) on subcellular distribution and activity of protein kinase C (PKC) isoforms in rabbit platelets was analyzed. The results showed an increase of PKC alpha in membrane fraction, concomitantly with a decrease in cytosolic fraction after 5 min PAF treatment, indicating that a translocation of PKC alpha occurred. In addition, PKC zeta was redistributed in a "reverse" form, from the membrane to cytosolic fraction after PAF treatment. PAF induced an increase of PKC alpha activity, whereas a decrease rather than increase in PKC zeta was observed by using immunoprecipitation assays. In addition, some results indicated that PI3 kinase activation was not involved in PAF-induced PKC zeta translocation as occur in several cells and with other agonists. These actions were time- and concentration-dependent, and were inhibited by the treatment with a PAF antagonist. No translocation was observed when the platelets were incubated with lysoPAF, a PAF related compound.The redistribution of PKC isoforms take place through the activation of high specificity PAF binding sites. The pretreatment of the rabbit platelets with staurosporine, a putative inhibitor of PKC, completely blocked the PAF-evoked aggregation without affecting to PAF-evoked shape change and serotonin release. All together, these data could suggest that the specific translocation of PKC isoforms play an important role in the activation of rabbit platelets.  相似文献   

4.
To investigate a possible regulatory role of protein kinase C (PKC) on collagen-induced phospholipase activity, human platelets were prelabelled with either [3H] arachidonic acid or [14C]stearic acid and stimulated with collagen (2 micrograms/ml) in the presence or absence of the protein kinase inhibitor, staurosporine (1 microM). The collagen-induced release of [3H]arachidonic acid and formation of [14C]stearoyl-labelled lysophospholipids was inhibited by prior incubation with staurosporine, as was the formation of 3H-labelled thromboxane B2, thereby suggesting inhibition of the collagen-induced phospholipase A2 activity. The degradation of phosphatidylinositol (PI) and elevation of phosphatidic acid (PA) in platelets prelabelled with either radiotracer were also completely blocked by staurosporine pretreatment, indicating a suppression of collagen-stimulated phospholipase C activity. Suppressed phospholipase C activity may have been due to diminished thromboxane A2 formation since treatment with the dual cyclo-oxygenase/lipoxygenase inhibitor, BW755C, also resulted in an inhibition of the collagen-stimulated loss of 14C-labelled PI and rise in PA by 75-80%. Our results suggest that protein kinase, possible PKC, may be involved in the regulation of these phospholipases in collagen-stimulated human platelets.  相似文献   

5.
We have investigated the coupling of muscarinic acetylcholine receptors (mAChR) to phospholipid hydrolysis in a human neuroblastoma cell line, LA-N-2, by measuring the formation of 3H-inositol phosphates (3H-IP) and of [3H]phosphatidylethanol ([3H]PEt) in cells prelabeled with [3H]inositol and [3H]oleic acid. The muscarinic agonist carbachol (CCh) stimulated the phospholipase C (PLC)-mediated formation of 3H-IP in a time- and dose-dependent manner (EC50 = 40-55 microM). In addition, in the presence of ethanol (170-300 mM), CCh elevated levels of [3H]PEt [which is regarded as a specific indicator of phospholipase D (PLD) activity] by three- to sixfold. The effect of CCh on PEt formation also was dose dependent (EC50 = 50 microM). Both effects of CCh were antagonized by atropine, indicating that they were mediated by mAChR. Incubation of LA-N-2 cells with the phorbol ester phorbol 12-myristate 13-acetate (PMA, 0.1 microM; 10 min) increased [3H]PEt levels by up to 10-fold. This effect was inhibited by the protein kinase C (PKC) inhibitor staurosporine (1 microM) or by pretreatment for 24 h with 0.1 microM PMA, by 74% and 65%, respectively. In contrast, the effect of CCh on PEt accumulation was attenuated by only 28% in the presence of staurosporine (1 microM). In summary, these results suggest that, in LA-N-2 neuroblastoma cells, mAChR are coupled both to phosphoinositide-specific PLC and to PLD. PKC is capable of stimulating PLD activity in these cells; however, it is not required for stimulation of the enzyme by mAChR activation.  相似文献   

6.
In the present study, an activation mechanism for phospholipase D (PLD) in [3H]palmitic acid-labeled pheochromocytoma PC12 cells in response to carbachol (CCh) was investigated. PLD activity was assessed by measuring the formation of [3H]phosphatidylethanol ([3H]PEt), the specific marker of PLD activity, in the presence of 0.5% (vol/vol) ethanol. CCh caused a rapid accumulation of [3H]-PEt, which reached a plateau within 1 min, in a concentration-dependent manner. The [3H]PEt formation by CCh was completely antagonized by atropine, demonstrating that the CCh effect was mediated by the muscarinic acetylcholine receptor (mAChR). A tumor promoter, phorbol 12-myristate 13-acetate (PMA), also caused an increase in [3H]-PEt content, which reached a plateau at 30-60 min after exposure, but an inactive phorbol ester, 4 alpha-phorbol 12,13-didecanoate, did not. Although a protein kinase C (PKC) inhibitor, staurosporine (5 microM), blocked PMA-induced [3H]PEt formation by 77%, it had no effect on the CCh-induced formation. These results suggest that mAChR-induced PLD activation is independent of PKC, whereas PLD activation by PMA is mediated by PKC. NaF, a common GTP-binding protein (G protein) activator, and a stable analogue of GTP, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), also stimulated [3H]PEt formation in intact and digitonin-permeabilized cells, respectively. GTP, UTP, and CTP were without effect. Furthermore, guanosine 5'-O-(2-thiodiphosphate) significantly inhibited CCh- and GTP gamma S-induced [3H]PEt formation in permeabilized cells but did not inhibit the formation by PMA, and staurosporine (5 microM) had no effect on [3H]PEt formation by GTP gamma S.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
To investigate the relationship between inositol lipid hydrolysis and reactive oxygen-intermediate (ROI) production in macrophages we have examined the effect of platelet-activating factor (PAF) on normal bone marrow-derived macrophages. Addition of PAF to macrophages prelabelled with [3H]inositol caused a marked and rapid increase in [3H]inositol trisphosphate levels. Similarly when PAF was added to [3H]-glycerol prelabelled macrophages there was a rapid increase in 1,2-diacyl[3H]glycerol levels. These events preceded any increase in the rate of PAF-stimulated ROI production by a discernible period of several seconds. Increasing concentrations of PAF led to a markedly similar increase in both ROI production and [3H]inositol lipid hydrolysis suggesting that inositol lipid hydrolysis may lead to the generation of ROI in macrophages. Further evidence that this is the case came from experiments in which pretreatment of macrophages with phorbol esters was shown to inhibit both PAF-stimulated [3H]inositol phosphate production and ROI production to a markedly similar degree. Similarly pertussis toxin inhibited both PAF-stimulated ROI production and [3H]inositol phosphate production. Phorbol esters were shown to activate ROI production in normal bone marrow-derived macrophages whereas the Ca2+ ionophore, A23187, did not. These experiments suggest that PAF stimulates a pertussis toxin-sensitive activation of inositol lipid hydrolysis leading to the formation of inositol trisphosphate and diacylglycerol. The diacylglycerol formed can then activate protein kinase C leading to the stimulation of ROI production in normal bone marrow-derived macrophages.  相似文献   

8.
Exposure of a nontransformed, continuous line of epithelial cells derived from rat liver (WB cells) to epidermal growth factor, angiotensin II, [Arg8]vasopressin, and epinephrine resulted in rapid accumulation of the inositol phosphates (InsP) InsP1, InsP2, and InsP3. Although short-term (5-60 min) pretreatment of WB cells with the phorbol ester 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) markedly attenuated InsP accumulation in response to all agonists, the inhibitory effects on the InsP response were lost after 2 h incubation with PMA; and, with extended (6-24 h) preincubation, a time-dependent potentiation of the InsP response to angiotensin II, epidermal growth factor and [Arg8]vasopressin was observed. The InsP response during a 15-min challenge with angiotensin II in cells pretreated for 18 h with 600 nM and 10 microM PMA was increased by 2-3-fold and 4-6-fold, respectively. Long-term (18 h) treatment with 600 nM and 10 microM PMA caused a similar 90-100% loss of measurable Ca2+/phospholipid-dependent enzyme (protein kinase C) activity in cytosolic and soluble particulate fractions. The effects of long-term PMA pretreatment do not represent a general enhancement of hormone responsiveness since the InsP response to epinephrine was not affected. In control cells, the InsP response to angiotensin II and epinephrine desensitized very rapidly. Long-term pretreatment with PMA greatly reduced the contribution of agonist-induced desensitization to the angiotensin II response; in contrast, the extent of desensitization occurring during incubation of WB cells with epinephrine was unaltered by long-term treatment with PMA suggesting that an additional mechanism may be involved in alpha 1-adrenergic receptor desensitization. No PMA-induced change in resting levels of [3H]phosphoinositides or the metabolism of exogenous [3H]inositol 1,4,5-trisphosphate by WB homogenates occurred. Stimulation of InsP formation in intact cells by NaF and activation of phospholipase C by GTP gamma S in membranes both were unaltered by short-term or long-term PMA pretreatment. These data are consistent with the idea that following long-term treatment of WB cells with PMA, the occurrence of agonist-induced desensitization of receptors linked to the phosphoinositide/Ca2+ signaling system is reduced, apparently at least in part due to the loss of contribution of a negative feedback regulatory role of protein kinase C.  相似文献   

9.
Activation of M3 muscarinic receptors in HT-29 cells by carbachol rapidly increases polyphosphoinositide breakdown. Pretreatment of these cells with carbachol (0.1 mM) for 5 h completely inhibits the subsequent ability of carbachol to increase [3H]inositol monophosphate ([3H]InsP) accumulation, paralleled by a total loss of muscarinic binding sites. In contrast, protein kinase C (PK-C)-mediated desensitization by incubation with phorbol esters [PMA (phorbol 12-myristate 13-acetate)], leading to a time- and dose-dependent inhibition of cholinergically stimulated InsP release (95% inhibition after 4 h with 0.1 microM-PMA), is accompanied by only a 40% decrease in muscarinic receptor binding, which suggests an additional mechanism of negative-feedback control. Neither carbachol nor PMA pretreatment had any effect on receptor affinity. Incubation with carbachol for 15 min caused a small increase of membrane-associated PK-C activity (15% increase, P less than 0.05) as compared with the potency of phorbol esters (PMA) (3-4-fold increase, P less than 0.01). Long-term incubation (4-24 h) with PMA resulted in a complete down-regulation of cytosolic and particulate PK-C activity. Stimulation of InsP release by NaF (20 mM) was not affected after a pretreatment with phorbol esters or carbachol, demonstrating an intact function of G-protein and phospholipase-C (PL-C) at the effector side. Determination of PL-C activity in a liposomal system with [3H]PtdInsP2 as substrate, showed no change in PL-C activity after carbachol (13 h) and short-term PMA (2.5 h) pretreatment, whereas long-term preincubation with phorbol esters (13 h) caused a small but significant decrease in PL-C activity (19%, P less than 0.05). Our results indicate that agonist-induced desensitization of phosphoinositide turnover occurs predominantly at the receptor level, with a rapid loss of muscarinic receptors. Exogenous activation of PK-C by phorbol esters seems to dissociate the interaction between receptor and G-protein/PL-C, without major effects on total cellular PL-C activity.  相似文献   

10.
The subcellular distribution and activation state of protein kinase C (PKC) was studied after short-term exposure of rabbit platelets to platelet-activating factor (PAF). Cytosolic and nonidet P-40-solubilized particulate extracts prepared from treated platelets were subjected to analytical column chromatography on MonoQ, hydroxylapatite and Superose 6/12. PKC activity was assayed by the ability of the enzyme to phosphorylate the following substrates: (i) histone H1 in the presence of the activators calcium, diacylglycerol and phosphatidylserine; (ii) histone H1 following proteolytic activation of PKC with 0.5 micrograms trypsin/ml; and (iii) protamine in the absence of calcium and lipid. PAF treatment for 1-20 min elicited a rapid 2-4-fold activation of both cytosolic and particulate-derived PKC as assessed by all three methods. On the other hand, there were no significant PAF-induced changes in the level of [3H]phorbol-12,13-dibutyrate binding by soluble and particulate-associated PKC. Hydroxyapatite column chromatography revealed that in non-treated rabbit platelets the type II (beta) form of PKC predominated, but PAF appeared to induce a shift in the elution profile from this resin. The stability of the PAF activation of PKC to column chromatography and the altered binding affinity to hydroxylapatite indicated that the stimulation might be a consequence of covalent modification, albeit minor, since PKC still eluted as an 80 kDa protein from Superose 6/12. As the PAF-induced increases in the kinase activity of PKC were preserved even after proteolytic activation with trypsin, but were without effect on the phorbol ester binding activity, such a putative modification may have occurred within or near the catalytic domain of PKC. These findings imply that PAF may directly modulate the activity of preexisting membrane-associated PKC by a novel mechanism, rather than by eliciting its recruitment from the cytoplasm.  相似文献   

11.
We have shown that platelet-activating factor (PAF), a weak primary stimulus for neutrophil superoxide generation, synergistically enhances neutrophil oxidative responses to the tumor promoter phorbol myristate acetate (PMA). Since PMA is known to cause cytosol-to-membrane shift of calcium-activated, phospholipid-dependent protein kinase (protein kinase c, PKC) in human neutrophils, we investigated the role of PAF in modifying PMA-induced PKC activation/translocation. Protein kinase activity was measured as the incorporation of 32P from gamma-32P-ATP into histone H1 induced by enzyme in cytosolic and particulate fractions from sonicated human neutrophils. PAF did not alter the sharp decrease in cytosolic PKC activity induced by PMA. However, in the presence of PAF and PMA, total particulate protein kinase activity increased markedly over that detected in the presence of PMA alone (144 +/- 9 pmoles 32P/10(7)PMN/minute in cells treated with 20 ng/ml PMA compared to 267 +/- 24 pmoles 32P in cells exposed to PMA and 10(-6)M PAF). The increase in total particulate protein kinase activity was synergistic for the two stimuli, required the presence of cytochalasin B during stimulation, and occurred at PAF concentrations of 10(-7) M and above. Both PKC and calcium-, phospholipid-independent protein kinase activities in whole particulate fractions were augmented by PAF as were both activities in detergent-extractable particulate subfractions. PAF did not directly activate PKC obtained from control or PMA-treated neutrophils. However, the PKC-enhancing effect of PAF was inhibited in the absence of calcium during cellular stimulation. PAF also increased particulate protein kinase activity in cells simultaneously exposed to FMLP but the effect was additive for these stimuli. These results suggest that PAF enhances PMA-induced particulate PKC activity by a calcium-dependent mechanism. The enhancing effect of PAF may be directly involved in the mechanism whereby the phospholipid "primes" neutrophils for augmented oxidative responses to PMA.  相似文献   

12.
Rabbit platelets were labelled with [3H]glycerol and incubated with or without phorbol 12-myristate 13-acetate (PMA). Membranes were then isolated and assayed for phospholipase D (PLD) activity by monitoring [3H]phosphatidylethanol formation in the presence of 300 mM-ethanol. At a [Ca2+free] of 1 microM, PLD activity was detected in control membranes, but was 5.4 +/- 0.8-fold (mean +/- S.E.M.) greater in membranes from PMA-treated platelets. Under the same conditions, 10 microM-guanosine 5'-[gamma-thio]triphosphate (GTP[S]) stimulated PLD by 18 +/- 3-fold in control membranes, whereas PMA treatment and GTP[S] interacted synergistically to increase PLD activity by 62 +/- 12-fold. GTP[S]-stimulated PLD activity was observed in the absence of Ca2+, but was increased by 1 microM-Ca2+ (3.5 +/- 0.2-fold and 1.8 +/- 0.1-fold in membranes from control and PMA-treated platelets respectively). GTP exerted effects almost as great as those of GTP[S], but 20-30-fold higher concentrations were required. Guanosine 5'-[beta-thio]diphosphate inhibited the effects of GTP[S] or GTP, suggesting a role for a GTP-binding protein in activation of PLD. Thrombin (2 units/ml) stimulated the PLD activity of platelet membranes only very weakly and in a GTP-independent manner. The actions of PMA and analogues on PLD activity correlated with their ability to stimulate protein kinase C in intact platelets. Staurosporine, a potent protein kinase inhibitor, had both inhibitory and, at higher concentrations, stimulatory effects on the activation of PLD by PMA. The results suggest that PMA not only stimulates PLD via activation of protein kinase C but can also activate the enzyme by a phosphorylation-independent mechanism in the presence of staurosporine. However, under physiological conditions, full activation of platelet PLD may require the interplay of protein kinase C, increased Ca2+ and a GTP-binding protein, and may occur as a secondary effect of the activation of phospholipase C.  相似文献   

13.
The activation of phospholipase D by platelet-activating factor (PAF) in the human promonocytic cell line U937 has been investigated. In cells prelabeled with [3H]palmitic acid, addition of PAF or phorbol 12-myristate 13-acetate (PMA) induced the synthesis of [3H]phosphatidylethanol, indicating phospholipase D activation. When U937 cells were preincubated for 5 min with PMA, and then stimulated with PAF, formation of phosphatidylethanol was greatly enhanced. In contrast, under the same experimental conditions PMA treatment blocked completely the PAF-induced inositol phosphates formation in cells prelabeled with [3H]inositol. Thus, PMA treatment demonstrates that phospholipase D activation can occur independently from phosphoinositide-specific phospholipase C activation during PAF stimulation in U937 cells. On the other hand, the data herein presented suggest that influx of external calcium is required for phospholipase D activation by PAF, as assessed by complete inhibition of the enzyme activity by chelation of extracellular calcium or by treatment with the calcium channel blocker verapamil. Based on these findings, a hypothetical model for phospholipase D activation is discussed.  相似文献   

14.
Due to multiple molecular species of platelet-activating factor (PAF) and the existence of high affinity binding sites in a variety of cells and tissues, possible existence of PAF receptor subtypes has been suggested. This report shows differences between specific PAF receptors in human leukocytes and platelets. Human polymorphonuclear leukocyte membranes showed high affinity binding sites for PAF with an equilibrium dissociation constant (KD) of 4.4 (+/- 0.3) x 10(-10) M. We compared the relative potencies of several PAF agonists and receptor antagonists between human platelet and human leukocyte membranes. One receptor antagonist (Ono-6240) was found to be 6-10 times less potent in inhibiting the specific [3H]PAF receptor binding, PAF-induced GTPase activity, as well as the PAF-induced aggregation in human leukocytes than in human platelets. Mg2+, Ca2+, and K+ ions potentiated the specific [3H]PAF binding in both systems. Na+ and Li+ ions inhibited the specific [3H]PAF binding to human platelets but showed no effects in human leukocytes. K+ ions decreased the Mg2+-potentiated [3H]PAF binding in human leukocytes but showed no effects in human platelets. PAF stimulates the hydrolysis of [gamma-32P] GTP with an ED50 of about 1 nM, whereas the biological inactive enantiomer shows no activity even at 10 microM in both human platelets and human leukocytes. The PAF-stimulated GTPase in human leukocytes can be abolished by the pretreatment of membranes with pertussis toxin and cholera toxin. However, the PAF-stimulated activity of GTPase in human platelets is insensitive to pertussis toxin and cholera toxin. These results suggest that there exists a second type of PAF receptor in human polymorphonuclear leukocytes, which is structurally different from the one characterized in human platelets, and that the guanine nucleotide-binding protein coupled to PAF receptors in human leukocytes is also different from the one in human platelets.  相似文献   

15.
PMA and thrombin were examined for their ability to activate Na+/H+ exchange in growth-arrested WS-1 human fibroblasts. PMA or thrombin caused a cytoplasmic alkalinization that required extracellular sodium and was sensitive to 1 mM amiloride, suggesting that the rise in pH was mediated by the Na+/H+ exchanger. However, PMA and thrombin activated Na+/H+ exchange by distinctly different mechanisms. The rate of cytoplasmic alkalinization caused by 30 nM PMA was slower than 10 nM thrombin. The PMA-induced pH change was sensitive to the protein kinase inhibitors staurosporine (50 nM) and H-7 (100 microM). No increase in intracellular calcium was observed after PMA treatment and the cytoplasmic alkalinization caused by PMA was not sensitive to the drug TMB8 (200 microM) or the intracellular calcium-chelator BAPTA. In contrast, the thrombin-induced rise in cytoplasmic pH was insensitive to 50 nM staurosporine and only partially reduced with 100 microM H-7. The thrombin-induced activation of Na+/H+ exchange was inhibited by 200 microM TMB8 or pretreatment with BAPTA. PMA caused translocation of PKC activity from a cytoplasmic to membrane fraction whereas thrombin did not. Pretreatment with 50 nM staurosporine significantly reduced measurable PKC activity with or without PMA treatment. PMA and thrombin were also examined for their ability to induce DNA synthesis in growth-arrested WS-1 human fibroblasts. Unlike thrombin, PMA did not stimulate [3H]-thymidine incorporation in cells serum-deprived for 48 hours. In addition, PMA inhibited thrombin-induced DNA synthesis when added at the same time or as late as 10 hours after thrombin addition. Therefore, thrombin and PMA activate Na+/H+ exchange by distinct pathways, but only the thrombin-induced pathway correlates with a mitogenic response.  相似文献   

16.
The effect of the beta-adrenergic receptor agonist isoproterenol on guanine nucleotide-dependent phospholipase C (PLC) activity was examined in turkey erythrocyte membranes prepared from [3H]inositol-labeled turkey erythrocytes. In the presence of guanosine 5'-(gamma-thiotriphosphate) (GTP[S]) isoproterenol caused a dose-dependent stimulation of [3H]inositol phosphate ([3H]InsP) formation. The activation of PLC by GTP[S] occurred after an initial lag period of 1-2 min and was followed by a sustained rate of [3H]InsP formation which remained linear for 4-5 min. Isoproterenol decreased the lag period for GTP[S]-induced [3H]InsP formation and increased PLC activity at all time points following this lag. Consequently, isoproterenol shifted the dose-response curve for GTP[S] to the left (10-fold) and increased the maximal response. The EC50 value for isoproterenol-induced activation of PLC was 104 +/- 17 nM. Isoproterenol also potentiated GTP-dependent PLC activity but was ineffective in stimulating the enzyme in the presence of AIF4-. The PLC activation by isoproterenol was completely inhibited by propanolol and atenolol but was unaffected by prazosin or yohimbine. Although GTP[S] and isoproterenol could increase cAMP formation in this membrane preparation, the isoproterenol-induced stimulation of PLC occurred in the absence of ATP and was independent of cAMP formation. Furthermore, addition of cAMP, 8-bromo-cAMP, forskolin, or either the regulatory or catalytic subunits of cAMP-dependent protein kinase failed to stimulate [3H]InsP formation and had no effect on the responses elicited by GTP[S] and isoproterenol. Isoproterenol also stimulated [3H]InsP2 and [3H]InsP3 production in intact erythrocytes. Cholera toxin had no effect on [3H]InsP formation in the intact cells under conditions where it stimulated cAMP accumulation. In addition, the activation of PLC by GTP[S] and isoproterenol was unaffected in membranes prepared from cholera toxin-treated erythrocytes. These data demonstrate that stimulation of turkey erythrocyte beta-adrenergic receptors by isoproterenol results in a direct activation of guanine nucleotide-dependent PLC.  相似文献   

17.
The relationship between polyphosphoinositide hydrolysis and protein kinase C (PKC) activation was explored in rabbit platelets treated with the agonists platelet-activating factor (PAF), thrombin and 12-O-tetradecanoylphorbol 13-acetate (TPA), and with the anti-aggregant prostacyclin (PGI2). Measurement of the hydrolysis of radiolabelled inositol-containing phospholipids relied upon the separation of the products [3H]inositol mono-, bis- and tris-phosphates by Dowex-1 chromatography. PKC activity, measured in platelet cytosolic and Nonidet-P40-solubilized particulate extracts that were fractionated by MonoQ chromatography, was based upon the ability of the enzyme to phosphorylate either histone H1 in the presence of the activators Ca2+, diacylglycerol and phosphatidylserine, or protamine in the absence of Ca2+ and lipid. Treatment of platelets for 1 min with PAF (2 nM) or thrombin (2 units/ml) led to the rapid hydrolysis of inositol-containing phospholipids, a 2-3-fold stimulation of both cytosolic and particulate-derived PKC activity, and platelet aggregation. Exposure to TPA (200 nM) for 5 min did not stimulate formation of phosphoinositides, but translocated more than 95% of cytosolic PKC into the particulate fraction, and induced a slower rate of aggregation. PGI2 (1 microgram/ml) did not enhance phosphoinositide production, and at higher concentrations (50 micrograms/ml) it antagonized the ability of PAF, but not that of thrombin, to induce inositol phospholipid turnover, even though platelet aggregation in response to both agonists was blocked by PGI2. On the other hand, PGI2 alone also appeared to activate (by 3-5-fold) cytosolic and particulate PKC by a translocation-independent mechanism. The activation of PKC by PGI2 was probably mediated via cyclic AMP (cAMP), as this effect was mimicked by the cAMP analogue 8-chlorophenylthio-cAMP. It is concluded that this novel mechanism of PKC regulation by platelet agonists may operate independently of polyphosphoinositide turnover, and that activation of cAMP-dependent protein kinase represents another route leading to PKC activation.  相似文献   

18.
Platelet-activating factor receptor (PAFR) has been identified in B cell lines and primary human B cells, but the regulation of PAFR during B cell activation has not been completely elucidated. In the present study, we have investigated the effects of B cell activation on PAFR binding parameters, PAFR mRNA and PAF-triggered intracellular calcium mobilization. The human B lymphoid cell line LA350 was shown to exhibit high levels of PAFR (48,550 +/- 4,310 sites/cell) as determined by radio-ligand binding assay with PAFR antagonist [3H]WEB2086. Treatment with phorbol 12,13-dibutyrate caused a biphasic reduction of PAFR binding. The early phase was inhibited by the protein kinase C inhibitor bisindolylmaleimide I (BIM), whereas the late phase was not blocked by BIM, protein tyrosine kinase inhibitor genistein, or the mitogen-activated protein kinase/extracellular signal-related kinase inhibitor PD98059. However, staurosporine, a broad-spectrum protein kinase inhibitor, completely inhibited the late phase down-regulation. Ionomycin also decreased [3H]WEB2086 binding sites, whereas the combination of PDB and ionomycin induced a greater reduction than either agent alone. Cross-linking of B cell receptor by anti-IgM Ab also induced down-regulation of PAFR, which was abolished by genistein or PD98059, but not by BIM or staurosporine. The decrease in surface PAFR number was closely paralleled by the reduction in PAFR mRNA both in LA350 cells and human tonsillar B cells, and was associated with decreased response to PAF indicated by decreased intracellular calcium mobilization. These data show that multiple signaling pathways are involved in down-regulating PAFR expression during B cell activation and development.  相似文献   

19.
Zinc ions in the micromolar range exhibited a strong inhibitory activity toward platelet activating factor (PAF)-induced human washed platelet activation, if added prior to this lipid chemical mediator. The concentration of Zn2+ required for 50% inhibition of aggregation (IC50) was inversely proportional to the concentration of PAF present. The IC50 values (in microM) for Zn2+ were 8.8 +/- 3.9, 27 +/- 5.8, and 34 +/- 1.7 against 2, 5, and 10 nM PAF, respectively (n = 3-6). Zn2+ exhibited comparable inhibitory effects on [3H]serotonin secretion and the IC50 values (in microM) were 10 +/- 1.2, 18 +/- 3.5, and 35 +/- 0.0 against 2, 5, and 10 nM PAF, respectively (n = 3). Under the same experimental conditions, aggregation and serotonin secretion induced by ADP (5 microM), arachidonic acid (3.3 microM), or thrombin (0.05 U/ml) were not inhibited. Introduction of Zn2+ within 0-2 min after PAF addition not only blocked further platelet aggregation and [3H]serotonin secretion but also caused reversal of aggregation. Analysis of [3H]PAF binding to platelets showed that Zn2+ as well as unlabeled PAF prevented the specific binding of [3H]PAF. The inhibition of [3H]PAF specific binding was proportional to the concentration of Zn2+ and the IC50 value was 18 +/- 2 microM against 1 nM [3H]PAF (n = 3). Other cations, such as Cd2+, Cu2+, and La3+, were ineffective as inhibitors of PAF at concentrations where Zn2+ showed its maximal effects. However, Cd2+ and Cu2+ at high concentrations exhibited a significant inhibition of the aggregation induced by 10 nM PAF with IC50 values being five- and sevenfold higher, respectively, than the IC50 for Zn2+, and with the IC50 values for inhibition of binding of 1 nM [3H]PAF being 5 and 19 times higher, respectively, than the IC50 for Zn2+. The specific inhibition of PAF-induced platelet activation and PAF binding to platelets suggested strongly that Zn2+ interacted with the functional receptor site of PAF or at a contiguous site.  相似文献   

20.
We investigated the role of protein kinase C (PKC) in alpha(1)-adrenergic regulation of intracellular Na(+) activity (a(Na)(i)) in single guinea pig ventricular myocytes. a(Na)(i) and membrane potentials were measured with the Na(+)-sensitive indicator sodium-binding benzofuran isophthalate and conventional microelectrodes, respectively, at room temperature (24-26 degrees C) while myocytes were stimulated at a rate of 0.25-0.3 Hz. The PKC activator 4beta-phorbol 12-myristate 13-acetate (PMA) decreased a(Na)(i) in a concentration-dependent manner. PMA (100 nM) produced a maximal decrease in a(Na)(i) of 1.5 mM from 6.5 +/- 0.4 to 5.0 +/- 0.4 mM (means +/- SE, n = 12, P < 0.01). The PMA concentration required for a half-maximal decrease in a(Na)(i) was 0.46 +/- 0.13 nM (n = 3, P < 0.01). An inactive phorbol, 4alpha-phorbol 12-myristate 13-acetate, did not decrease a(Na)(i). The decrease caused by PMA could be blocked by the PKC inhibitors staurosporine and bisindolylmaleimide I (GF-109203X). Stimulation of the alpha(1)-adrenoceptor with 50 microM phenylephrine decreased a(Na)(i) from 6.1 +/- 0.3 to 4.6 +/- 0.3 mM (n = 11, P < 0.01). The decrease in a(Na)(i) produced by phenylephrine was blocked by pretreatment with staurosporine, GF-109203X, or PMA. The decrease in a(Na)(i) produced by PMA was not prevented by pretreatment with tetrodotoxin but was blocked by pretreatment with strophanthidin or high extracellular K(+) concentration. The results suggest that alpha(1)-adrenergic receptor activation results in a decrease in a(Na)(i) via PKC-induced stimulation of the Na(+)-K(+) pump in cardiac myocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号