首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The neural circuit in the hippocampus is important for higher brain functions. Dendrites of CA1 pyramidal neurons mainly receive input from the axons of CA3 pyramidal neurons in this neural circuit. A CA1 pyramidal neuron has a single apical dendrite and multiple basal dendrites. In wild‐type mice, most of CA1 pyramidal neurons extend a single trunk, or alternatively, the apical dendrite bifurcates into two daughter trunks at the stratum radiatum layer. We previously reported the proximal bifurcation phenotype in Sema3A?/?, p35?/?, and CRMP4?/? mice. Cdk5/p35 phosphorylates CRMP2 at Ser522, and inhibition of this phosphorylation suppressed Sema3A‐induced growth cone collapse. In this study, we analyzed the bifurcation points of the apical dendrites of hippocampal CA1 pyramidal neurons in CRMP2KI/KI mice in which the Cdk5/p35‐phosphorylation site Ser522 was mutated into an Ala residue. The proximal bifurcation phenotype was not observed in CRMP2KI/KI mice; however, severe proximal bifurcation of apical dendrites was found in CRMP2KI/KI;CRMP4?/? mice. Cultured hippocampal neurons from CRMP2KI/KI and CRMP2KI/KI;CRMP4?/? embryos showed an increased number of dendritic branching points compared to those from wild‐type embryos. Sema3A increased the number of branching points and the total length of dendrites in wild‐type hippocampal neurons, but these effects of Sema3A for dendrites were notobserved in CRMP2KI/KI and CRMP2KI/KI;CRMP4?/?hippocampal neurons. Binding of CRMP2 to tubulin increased in both CRMP2KI/KI and CRMP2KI/KI:CRMP4?/? brain lysates. These results suggest that CRMP2 and CRMP4 synergistically regulate dendritic development, and CRMP2 phosphorylation is critical for proper bifurcation of apical dendrite of CA1 pyramidal neurons. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

2.
3.
Serotoninergic modulation of GABAergic mIPSCs was investigated in immature (postnatal 12–16-days old) rat CA3 pyramidal neurons using a conventional whole-cell patch clamp technique. Serotonin or 5-hydroxytryptamine (5-HT) (10 μmol/L) transiently and explosively increased mIPSC frequency with a small increase in the current amplitude. However, 5-HT did not affect the GABA-induced postsynaptic currents, indicating that 5-HT acts presynaptically to facilitate the probability of spontaneous GABA release. The 5-HT action on GABAergic mIPSC frequency was completely blocked by 100 nmol/L MDL72222, a selective 5-HT3 receptor antagonist, and mimicked by mCPBG, a selective 5-HT3 receptor agonist. The 5-HT action on GABAergic mIPSC frequency was completely occluded either in the presence of 200 μmol/L Cd2+ or in the Na+-free external solution, suggesting that the 5-HT3 receptor-mediated facilitation of mIPSC frequency requires a Ca2+influx passing through voltage-dependent Ca2+channels from the extracellular space, and that presynaptic 5-HT3 receptors are less permeable to Ca2+. The 5-HT action on mIPSC frequency in the absence or presence of extracellular Na+ gradually increased with postnatal development. Such a developmental change in the 5-HT3 receptor-mediated facilitation of GABAergic transmission would play important roles in the regulation of excitability as well as development in CA3 pyramidal neurons.  相似文献   

4.
Zhao HG  Li WB  Li QJ  Chen XL  Liu HQ  Feng RF  Ai J 《生理学报》2004,56(3):407-412
探探讨肢体缺血预处理(limb ischemic preconditioning,LIP)对大鼠全脑缺血再灌注后海马CA1区锥体细胞凋亡的影响。46只大鼠椎动脉凝闭后分为假手术组、肢体缺血组、脑缺血组、LIP组。重复夹闭大鼠双侧股动脉3次(每次10min,间隔10min)作为LIP,之后立即夹闭双侧颈总动脉进行全脑缺血8min后再灌注。DNA凝胶电泳、TUNEL和吖啶橙/溴乙锭(AO/EB)双染技术从生化和形态学方面观察海马神经元凋亡的情况。凝胶电泳显示,脑缺血组出现了凋亡特征性DNA梯状条带,而LIP组无上述条带出现。与脑缺血组比较,LIP可明显减少海马CAI区TUNEL阳性神经元数(17.8±5.8vs 69.8±12,P<0.01)。AO/EB染色也显示LIP可明显减少脑缺血再灌注引起的神经元凋亡。以上结果提示,LIP可抑制脑缺血再灌注后海马神经元的凋亡,进而减轻脑缺血再灌注损伤,提供脑保护作用。  相似文献   

5.
The passive electrical cable properties of CA3 pyramidal neurons from guinea pig hippocampal slices were investigated by applying current steps and recording the voltage transients from 25 CA3 neurons, using a single intracellular microelectrode and a 3-kHz time-share system. Two independent methods were used for estimating the equivalent electrotonic length of the dendrites, L, and the dendritic to somatic conductance ratio, . The first method is similar to that used by Gorman and Mirolli (1972) and gave an average L of 0.96; the average was 2.44. The second method is derived here for the first time and assumes a finite-length cable with lumped soma. It is an exact solution for L and , using the slopes and intercepts of the first two peeled exponentials. The average L was 0.94; the average was 1.51. The results, using both methods, are in close agreement. The average membrane time constant for all 25 CA3 neurons was 23.6 ms, suggesting a large (23,600 cm2) average membrane resistivity. It is concluded that CA3 neurons are electronically short.This work was supported by Grants NS 11535 and NS 15772 from the National Institute of Neurological and Communicative Disorders and Stroke, National Institutes of Health, U.S. Public Health Service.  相似文献   

6.
Apical dendrites of pyramidal neurons in the neocortex have a stereotypic orientation that is important for neuronal function. Neural recognition molecule Close Homolog of L1 (CHL1) has been shown to regulate oriented growth of apical dendrites in the mouse caudal cortex. Here we show that CHL1 directly associates with NB-3, a member of the F3/contactin family of neural recognition molecules, and enhances its cell surface expression. Similar to CHL1, NB-3 exhibits high-caudal to low-rostral expression in the deep layer neurons of the neocortex. NB-3-deficient mice show abnormal apical dendrite projections of deep layer pyramidal neurons in the visual cortex. Both CHL1 and NB-3 interact with protein tyrosine phosphatase alpha (PTPalpha) and regulate its activity. Moreover, deep layer pyramidal neurons of PTPalpha-deficient mice develop misoriented, even inverted, apical dendrites. We propose a signaling complex in which PTPalpha mediates CHL1 and NB-3-regulated apical dendrite projection in the developing caudal cortex.  相似文献   

7.
Using electrophysiological techniques (a patch-clamp technique in the whole-cell configuration and intracellular perfusion of neurons), we studied the effect of cannabinoids on the characteristics of glycine-activated currents in freshly isolated pyramidal neurons of the rat hippocampus. We found that endocannabinoids (anandamide and 2-arachidonoyl glycerol), as well as a synthetic cannabinoid, WIN 55,212-2, when applied in physiological concentrations, decreased the amplitude of glycine-activated currents. The agents under study accelerated the kinetics of activation and desensitization of glycine-induced Cl currents. The characteristics of the currents recovered after washout from cannabinoids. Changes in the kinetics of desensitization of glycine-activated currents depended noticeably on the holding potential; at positive potentials the sensitivity to cannabinoids was higher. These effects of cannabinoids were also observed in the presence of antagonists of CB1/CB3 receptors and an inhibitor of G proteins, GDPβS. These data indicate that under our experimental conditions cannabinoids exerted direct effects on glycine receptors. Neirofiziologiya/Neurophysiology, Vol. 39, No. 1, pp. 15–21, January–February, 2007.  相似文献   

8.
9.
目的:在体视显微镜下分割Wistar大鼠海马CA1区、CA3区和齿状回(DG)区。方法:24只健康Wistar大鼠,分组如下:①6只大鼠取脑后硫堇染色,观察海马各区细胞形态;②6只大鼠分离出海马,体视显微镜下观察海马形态并分割CA1区、CA3区和DG区,各区分别切片后硫堇染色;③12只大鼠检测海马各区HSP 70的表达。结果:①大脑冠状切片硫堇染色清晰显示出海马CA1区、CA3区和DG区;②体视显微镜下,在海马腹侧面,沿着CA1区和DG区之间的海马沟可分割开CA1区和DG区,沿着CA3区和DG区之间的裂隙可分割开CA3区和DG区;分割后的海马各区细胞形态结构与整体大脑冠状切片上相对应区域的细胞形态结构一致;③Western blot结果显示:与对照组相比,脑缺血组HSP 70的表达在海马CA3+DG区明显上调、而在CA1无明显变化,这一结果与免疫组织化学结果一致。结论:上述方法可比较明确地分割Wistar大鼠海马CA1区、CA3区和DG区,分割得到的各区组织可用于蛋白质表达的检测。  相似文献   

10.
Evoked fast postsynaptic currents (fPSCs) during the postnatal development of rats (postnatal day 6-70, P6-P70) were systematically examined in hippocampal CA1 pyramidal neurons using whole-cell recordings with biocytin-filled electrodes. Focal stimulation of the stratum radiatum in the CA1 region elicited fPSCs in 80% of the neurons P6-7, 90% of P9-10, and 100% of > or =P11. In neurons P6-7, the fPSCs were exclusively inward and had multiple (on average 5.6) peaks. The fPSCs increased in amplitude with the growth of dendritic arborization, but decreased in the number of peaks. A distinct outward fPSC following the inward fPSC emerged in neurons > or =P11 and was abolished by bicuculline (50 microM). Bicuculline increased the amplitude and duration of the initial inward fPSC (fEPSC) in all age groups and characteristically recruited the polysynaptic second component of fEPSCs in neurons P11-P21. No spontaneous periodic inward current was detected in any age group after blocking GABAA receptors. The coapplication of DL-2-amino-5-phosphonopentanoic acid (AP5, 100 microM) with bicuculline did not eliminate the polysynaptic second component, but the second component was only elicited in slices in which the CA3 region was kept intact. Moreover, the bicuculline- and AP5-resistant second component was due to the burst activity of CA3 pyramidal neurons, which were excited through excitatory recurrents of the Schaffer collaterals. Plausible physiological functions of the generation of the second component in vivo were discussed.  相似文献   

11.
成年大鼠海马CA1区锥体细胞K_(ATP)通道的特性   总被引:1,自引:0,他引:1  
为了解成年大鼠海马CA1区锥体细胞KATP 通道的特性 ,实验采用膜片钳技术的内面向外式记录法 ,在急性分离的CA1区锥体神经元上 ,研究了可被胞浆侧ATP所抑制的钾离子单通道的特性。当细胞膜内外两侧的K 浓度均为 14 0mmol/L时 ,通道的电导为 63pS ,翻转电位为 1 71mV ,通道呈弱内向整流性。在负钳制电位时 ,通道开放时常被短时程的关闭所打断 ,而在正钳制电位时 ,这种短时程的关闭状态明显少于负钳制电位时。但通道开放概率未见明显的电压依赖性。ATP对通道活动的抑制作用呈浓度依赖性 ,抑制通道活动 5 0 %的ATP浓度为 0 1mmol/L。KATP 通道的特异性阻断剂tolbutamide (甲糖宁 ,1mmol/L)可完全阻断通道的活动 ,而KATP 通道开放剂diazoxide (二氮嗪 ,1mmol/L)则不增强通道的活动。  相似文献   

12.
The ultrastructure of symmetric (putatively inhibitory) axo-dendritic synapses on the membrane of hippocampal CA1 pyramidal neurons was investigated in young (20-day-old) and adult (1-year-old) mice. It was shown that synapses of adult animals contain, on average, fewer synaptic vesicles (SVs), and resting SVs of the reserve pool are mostly responsible for this difference. At the same time, in the synapses of adult mice SVs are localized closer to active zones, and the readily releasable pool of SVs is larger in these animals than in young mice. The observed changes in the spatial structure of SV pools presumably demonstrate the age-associated adaptation of inhibitory synapses providing the maintenance of adequate functional properties of hippocampal neuronal networks. Neirofiziologiya/Neurophysiology, Vol. 38, Nos. 5/6, pp. 407–411, September–December, 2006.  相似文献   

13.
Microtubule-associated protein 2 (MAP2) is a neuron-specific cytoskeletal protein enriched in dendrites and cell bodies. MAP2 regulates microtubule stability in a phosphorylation-dependent manner, which has been implicated in dendrite outgrowth and branching. We have previously reported that cholesterol deficiency causes tau phosphorylation and microtubule depolymerization in axons (Fan et al. 2001). To investigate whether cholesterol also modulates microtubule stability in dendrites by modulating MAP2 phosphorylation, we examined the effect of compactin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, and TU-2078 (TU), a squalene epoxidase inhibitor, on these parameters using cultured neurons. We have found that cholesterol deficiency induced by compactin and TU, inhibited dendrite outgrowth, but not of axons, and attenuated axonal branching. Dephosphorylation of MAP2 and microtubule depolymerization accompanied these alterations. The amount of protein phosphatase 2 A (PP2A) and its activity in association with microtubules were decreased, while those unbound to microtubules were increased. The synthesized ceramide levels and the total ceramide content were increased in these cholesterol-deficient neurons. These alterations caused by compactin were prevented by concurrent treatment of cultured neurons with beta-migrating very-low-density lipoproteins (beta-VLDL) or cholesterol. Taken together, we propose that cholesterol-deficiency causes a selective inhibition of dendrite outgrowth due to the decreased stability of microtubules as a result of inhibition of MAP2 phosphorylation.  相似文献   

14.
Endogenous nature of spontaneous bursting in hippocampal pyramidal neurons   总被引:6,自引:0,他引:6  
The normal spontaneous bursting behavior of hippocampal pyramidal neurons was investigated. Bursting frequency was found to be membrane potential dependent, the frequency increasing with maintained depolarization and decreasing upon hyperpolarization. Short depolarizing-current pulses would trigger bursts which outlasted the stimulus, and bursting continued when synaptic transmission had been blocked. The spontaneous bursts of these neurons, in contrast to bursts induced by convulsive agents, appear to exhibit the classical behavior of endogenous bursts as observed in invertebrate neurons. The endogenous bursts in hippocampal neurons may result, also, from an interplay of intrinsic membrane currents.  相似文献   

15.
16.
Modulation of hippocampal synaptic plasticity by estrogen has been attracting much attention. Thorns of thorny excrescences of CA3 hippocampal neurons are post-synaptic regions whose presynaptic partners are mossy fiber terminals. Here we demonstrated the rapid effect of estradiol on the density of thorns of thorny excrescences, by imaging Lucifer Yellow-injected CA3 neurons in adult male rat hippocampal slices. The application of 1nM estradiol induced rapid decrease in the density of thorns on pyramidal neurons within 2h. The estradiol-mediated decrease in the density of thorns was blocked by CNQX (AMPA receptor antagonist) and PD98059 (MAP kinase inhibitor), but not by MK-801 (NMDA receptor antagonist). ERalpha agonist PPT induced the same suppressive effect as that induced by estradiol on the density of thorns, but ERbeta agonist DPN did not affect the density of thorns. Note that a 1nM estradiol treatment did not affect the density of spines in the stratum radiatum and stratum oriens. A search for synaptic ERalpha was performed using purified RC-19 antibody. The localization of ERalpha (67kDa) in the CA3 mossy fiber terminals and thorns was demonstrated using immunogold electron microscopy. These results imply that estradiol drives the signaling pathway including ERalpha and MAP kinase.  相似文献   

17.
Multi-photon fluorescence microscopy has enabled the analysis of morphological and physiological parameters of brain cells in the intact tissue with high spatial and temporal resolution. Combined with electrophysiology, it is widely used to study activity-related calcium signals in small subcellular compartments such as dendrites and dendritic spines. In addition to calcium transients, synaptic activity also induces postsynaptic sodium signals, the properties of which are only marginally understood. Here, we describe a method for combined whole-cell patch-clamp and multi-photon sodium imaging in cellular micro domains of central neurons. Furthermore, we introduce a modified procedure for ultra-violet (UV)-light-induced uncaging of glutamate, which allows reliable and focal activation of glutamate receptors in the tissue. To this end, whole-cell recordings were performed on Cornu Ammonis subdivision 1 (CA1) pyramidal neurons in acute tissue slices of the mouse hippocampus. Neurons were filled with the sodium-sensitive fluorescent dye SBFI through the patch-pipette, and multi-photon excitation of SBFI enabled the visualization of dendrites and adjacent spines. To establish UV-induced focal uncaging, several parameters including light intensity, volume affected by the UV uncaging beam, positioning of the beam as well as concentration of the caged compound were tested and optimized. Our results show that local perfusion with caged glutamate (MNI-Glutamate) and its focal UV-uncaging result in inward currents and sodium transients in dendrites and spines. Time course and amplitude of both inward currents and sodium signals correlate with the duration of the uncaging pulse. Furthermore, our results show that intracellular sodium signals are blocked in the presence of blockers for ionotropic glutamate receptors, demonstrating that they are mediated by sodium influx though this pathway. In summary, our method provides a reliable tool for the investigation of intracellular sodium signals induced by focal receptor activation in intact brain tissue.  相似文献   

18.
19.
Aversive experiences, including maternal separation (MS), have been known as a risk for abnormal hippocampus development. Given that impairment of GABA inhibitory system is known as one of the common features of the abnormal hippocampal development induced by MS, we examined whether the MS on 4‐day‐old (P4) mice for 24 hr abolishes the interneuron development. We observed that the MS reduced the volume of dorsal hippocampus on P14 as long‐term effects. In addition, the MS decreased the number of parvalbumin (PV)‐positive interneuron on P14 and P28 in the dorsal hippocampus. We further examined the immediate effects of MS by measuring the percentage of glutamic acid decarboxylase (GAD) 67‐positive interneurons among the immature interneurons derived from medial ganglionic eminence (MGE) progenitors marked in nkx2.1cre;β‐geo EGFP mice. During normal development from P4 to P5, the percentage of GAD67‐positive interneurons among the MGE‐derived interneurons in the dorsal hippocampus was significantly increased from 42.29% to 70.73% in the stratum pyramidale of the CA1 and increased from 46.4% to 56.99% in the stratum pyramidale of the CA2/3 region. However, the increase was not observed on P5 among the mice treated with the MS. These results suggest that the maturation of interneurons was suppressed by the MS. The suppressed maturation of interneurons may be one of the causes of the reduced volume of the hippocampus and PV+ interneurons observed in the hippocampus on P14 and P28 as a consequence of the MS during neonatal stage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号