首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
1. The fatty acid (FA) composition of Daphnia galeata and their algal food was analysed and showed many similarities, however, some significant differences were also found in the relative abundance of the FA C16 : 4ω3 and docosahexaenoic acid (DHA). Their relative abundances were much lower in daphnids than in their algal diet.
2. When daphnids were fed three distinct emulsion particles with DHA : eicosapentaenoic acid (EPA) ratios of c. 0.7, 2 and 4, the final DHA : EPA ratio in the daphnids always favoured EPA. The increase of the food DHA : EPA ratio resulted in a minor increase of DHA (to c. 2%). Feeding the animals on emulsion particles with increasing ratios of DHA : EPA, caused a minor ( c. 2%) increase of DHA level but EPA levels remained high ( c. 10%).
3. When labelled with [14C]linoleic acid and [14C]linolenic acid daphnids showed low conversion of both essential FA into C20 polyunsaturated fatty acids (PUFAs). This low conversion activity might explain the importance of C20 PUFAs as dietary compounds in the food of Daphnia.
4. The results indicate the insignificance of DHA and C16 : 4ω3 for daphnids. As EPA can be derived from C18 : 3ω3 it is not strictly essential, although it might be a significant factor in food quality for Daphnia.  相似文献   

3.
Various strategies have been developed to increase the cellular level of (n-3) polyunsaturated fatty acids in animals and humans. In the present study, we investigated the effect of dietary myristic acid, which represents 9% to 12% of fatty acids in milk fat, on the storage of α-linolenic acid and its conversion to highly unsaturated (n-3) fatty acid derivatives. Five isocaloric diets were designed, containing equal amounts of α-linolenic acid (1.3% of dietary fatty acids, i.e. 0.3% of dietary energy) and linoleic acid (7.0% of fatty acids, i.e. 1.5% of energy). Myristic acid was supplied from traces to high levels (0%, 5%, 10%, 20% and 30% of fatty acids, i.e. 0% to 6.6% of energy). To keep the intake of total fat and other saturated fatty acids constant, substitution was made with decreasing levels of oleic acid (76.1% to 35.5% of fatty acids, i.e. 16.7% to 7.8% of energy) that is considered to be neutral in lipid metabolism. After 8 weeks, results on physiological parameters showed that total cholesterol and low-density lipoprotein-cholesterol did not differ in the diets containing 0%, 5% and 10% myristic acid, but were significantly higher in the diet containing 30% myristic acid. In all the tissues, a significant increasing effect of the substitution of oleic acid for myristic acid was shown on the level of both α-linolenic and linoleic acids. Compared with the rats fed the diet containing no myristic acid, docosahexaenoic acid significantly increased in the brain and red blood cells of the rats fed the diet with 30% myristic acid and in the plasma of the rats fed the diet with 20% myristic acid. Arachidonic acid also increased in the brain of the rats fed the diet with 30% myristic acid. By measuring Δ6-desaturase activity, we found a significant increase in the liver of the rats fed the diet containing 10% of myristic acid but no effect at higher levels of myristic acid. These results suggest that an increase in dietary myristic acid may contribute in increasing significantly the tissue storage of α-linolenic acid and the overall bioavailability of (n-3) polyunsaturated fatty acids in the brain, red blood cells and plasma, and that mechanisms other than the single Δ6-desaturase activity are involved in this effect.  相似文献   

4.
Hu J  Fei J  Reutter W  Fan H 《Glycobiology》2011,21(3):329-339
The γ-aminobutyric acid (GABA) transporters (GATs) have long been recognized for their key role in the uptake of neurotransmitters. The GAT1 belongs to the family of Na(+)- and Cl(-)-coupled transport proteins, which possess 12 putative transmembrane (TM) domains and three N-glycosylation sites on the extracellular loop between TM domains 3 and 4. Previously, we demonstrated that terminal trimming of N-glycans is important for the GABA uptake activity of GAT1. In this work, we examined the effect of deficiency, removal or oxidation of surface sialic acid residues on GABA uptake activity to investigate their role in the GABA uptake of GAT1. We found that the reduced concentration of sialic acid on N-glycans was paralleled by a decreased GABA uptake activity of GAT1 in Chinese hamster ovary (CHO) Lec3 cells (mutant defective in sialic acid biosynthesis) in comparison to CHO cells. Likewise, either enzymatic removal or chemical oxidation of terminal sialic acids using sialidase or sodium periodate, respectively, resulted in a strong reduction in GAT1 activity. Kinetic analysis revealed that deficiency, removal or oxidation of terminal sialic acids did not affect the K(m) GABA values. However, deficiency and removal of terminal sialic acids of GAT1 reduced the V(max) GABA values with a reduced apparent affinity for extracellular Na(+). Oxidation of cell surface sialic acids also strongly reduced V(max) without affecting both affinities of GAT1 for GABA and Na(+), respectively. These results demonstrated for the first time that the terminal sialic acid of N-linked oligosaccharides of GAT1 plays a crucial role in the GABA transport process.  相似文献   

5.
Biotin synthesis requires the C7 α,ω-dicarboxylic acid, pimelic acid. Although pimelic acid was known to be primarily synthesized by a head to tail incorporation of acetate units, the synthetic mechanism was unknown. It has recently been demonstrated that in most bacteria the biotin pimelate moiety is synthesized by a modified fatty acid synthetic pathway in which the biotin synthetic intermediates are O-methyl esters disguised to resemble the canonical intermediates of the fatty acid synthetic pathway. Upon completion of the pimelate moiety, the methyl ester is cleaved. A very restricted set of bacteria have a different pathway in which the pimelate moiety is formed by cleavage of fatty acid synthetic intermediates by BioI, a member of the cytochrome P450 family.  相似文献   

6.
7.
Superoxide reductase (SOR) is a non-heme iron metalloenzyme that detoxifies superoxide radical in microorganisms. Its active site consists of an unusual non-heme Fe2+ center in a [His4Cys1] square pyramidal pentacoordination, with the axial cysteine ligand proposed to be an essential feature in catalysis. Two NH peptide groups from isoleucine 118 and histidine 119 establish hydrogen bonds involving the sulfur ligand (Desulfoarculus baarsii SOR numbering). To investigate the catalytic role of these hydrogen bonds, the isoleucine 118 residue of the SOR from Desulfoarculus baarsii was mutated into alanine, aspartate, or serine residues. Resonance Raman spectroscopy showed that the mutations specifically induced an increase of the strength of the Fe3+–S(Cys) and S–Cβ(Cys) bonds as well as a change in conformation of the cysteinyl side chain, which was associated with the alteration of the NH hydrogen bonding involving the sulfur ligand. The effects of the isoleucine mutations on the reactivity of SOR with O2 ?? were investigated by pulse radiolysis. These studies showed that the mutations induced a specific increase of the pK a of the first reaction intermediate, recently proposed to be an Fe2+–O2 ?? species. These data were supported by density functional theory calculations conducted on three models of the Fe2+–O2 ?? intermediate, with one, two, or no hydrogen bonds involving the sulfur ligand. Our results demonstrated that the hydrogen bonds between the NH (peptide) and the cysteine ligand tightly control the rate of protonation of the Fe2+–O2 ?? reaction intermediate to form an Fe3+–OOH species.  相似文献   

8.
1. The rate of RNA-DNA hybridization was studied under conditions of RNA excess, with RNA synthesized in vitro. The initial rate of the reaction was proportional to the initial RNA concentration. Throughout the observed course of the reaction there was a linear relationship between the reciprocal of the amount of RNA hybridized/mug. of DNA and the reciprocal of time. The slope of the reciprocal plot was inversely proportional to the initial RNA concentration. 2. A comparison was made of the hybridization of DNA from Escherichia coli and from bacteriophages T4 and lambda with homologous RNA. The initial rate of hybridization was inversely proportional to the genetic complexity of the hybridizing system. The slope of the reciprocal-time plot was directly proportional to genetic complexity. These results are interpreted to indicate that the rate of hybridization reflects the mean concentration of the various unique RNA species in a preparation.  相似文献   

9.
10.
1. The developmental pattern and effect of cortisone on acid beta-galactosidase and neutral beta-galactosidase were studied in postnatal rats by a recently proposed method for their independent determination. 2. After birth the acid beta-galactosidase activity increases in the ileum, whereas it decreases slightly in the jejunum. On day 16 after birth the activity in the ileum decreases and in 20-day-old rats activity in both parts of the intestine decreases to adult values. In suckling animals the activity in the ileum exceeds the jejunal activity severalfold and in adult animals the activity in the jejunum is slightly higher than that in the ileum. 3. Neutral beta-galactosidase activity is high after birth and decreases in both jejunum and ileum after day 20 after birth. In 12-20-day-old rats activity in both parts is essentially the same, but in adult animals jejunal activity exceeds ileal activity four-to five-fold. 4. Cortisone (0.5, 2.0 or 5.0mg/100g body wt. daily for 4 days) does not influence the activity of either enzyme in 60-day-old rats. Acid beta-galactosidase activity is decreased after cortisone treatment in 8-, 12-, 16-and 18-day-old rats, with sensitivity to cortisone increasing with the approach of weaning. No effect of cortisone on acid beta-galactosidase is seen in 8-day-old rats. Neutral beta-galactosidase activity is increased in the ileum of 8-, 12-, 16- and 18-day old rats, but only in the jejunum of 8-and 12-day-old rats.  相似文献   

11.
A solubilized α1,4-galacturonosyltransferase (GalAT) from tobacco transfers galacturonic acid (GalA) residues from UDP-GalA onto oligogalacturonide (OGA) exogenous acceptors with degrees of polymerization greater than nine (R.L. Doong and D. Mohnen 1998, Plant J 13: 363–374). The solubilized GalAT has been identified as putative polygalacturonate 4-α-galacturonosyltransferase (PGA-GalAT, EC 2.4.1.43) based on its α1,4-galacturonosyltransferase activity and similar K m for UDP-GalA, pH optimum and V max to those of membrane-bound PGA-GalAT (R.L. Doong et al., 1995, Plant Physiol 109: 141–152). The direction of elongation of homogalacturonan catalyzed by solubilized GalAT from microsomes of tobacco (Nicotiana tabacum L. cv. Samsun) cell suspensions has now been determined. Three different types of exogenous acceptor were used to study the direction of synthesis of homogalacturonan: unmodified OGAs, OGAs derivatized by biotinylation at the reducing end, and OGAs containing a 4,5-unsaturated GalA at the non-reducing end. The unmodified OGAs and the OGAs modified at the reducing end functioned equally well as acceptors in the galacturonosyltransferase reaction. In contrast, OGAs with the 4,5-unsaturated residue at the non-reducing end were not acceptors for homogalacturonan biosynthesis. These results show that homogalacturonan biosynthesis by solubilized GalAT occurs via the addition of GalA to the non-reducing end of the polymer chain. Received: 18 June 1998 / Accepted: 22 August 1998  相似文献   

12.
Acid α-glucosidase (α-d-glucoside glucohydrolase, EC 3.2.1.20) from human placenta (70 and 76 kDa) was found to contain 4 N-glycosidic carbohydrate chains per molecule. Sugar analysis of purified enzyme revealed the presence of mannose, N-acetylglucosamine and fucose at a molar ratio of 5.0:2.0:0.6. In addition, trace amounts of galactose and N-acetylneuraminic acid were detected. The sugar chains were liberated from the polypeptides by the hydrazinolysis procedure and subsequently fractionated by gel filtration and HPLC. Purified compounds were investigated by 500-MHz 1H-NMR spectroscopy. Oligomannoside-type chains of intermediate size, e.g., Man5GlcNAcGlcNAc-ol and Man7GlcNAcGlcNAc-ol, and N-type chains of smaller size e.g., Man2–3GlcNAc[Fuc]0–1GlcNAc-ol, were demonstrated to be present at a ratio of 2:3. In addition, a small amount of sialylated N-acetyllactosamine-type chains has been found. The possible biosynthetic route of the fucose-containing small-size chains is discussed.  相似文献   

13.
Fractions of synaptosomes were used to study the regulation of -aminobutyric acid (GABA) synthesis. The isolated synaptosomes were superfused in media of various compositions. [3H]GABA and GABA released into the medium or remaining in the synaptosomes were analyzed by liquid scintillation and HPLC techniques. Different conditions, designed to increase the GABA efflux rate were used: the rate of superfusion was varied and the concentrations of K+ and Ca2+ were altered. Stimulation of GABA efflux was paralleled with an increased synthesis of GABA, since, in spite of the increased GABA efflux, a relatively constant intraterminal level was found. The findings suggest that the intraterminal concentration of GABA and thus also its synthesis is regulated via product inhibition. In addition, [3H]GABA, exogenous, and GABA, endogenous, responded to external stimulae (Ca2+, veretradine, various GABA concentrations and the glutaminase inhibitor diazo-nor-leucine) in a way which was compatible with them being localized in and/or released from different compartments.  相似文献   

14.
Two amino acid sequences from potentially helical fragments of low-sulphur proteins from α-keratin have been analysed computationally and periods 9.4 and 28 residues long noted in the axial disposition of charged residues. Ionic interactions between chains have also been calculated and these indicate a preference for the helical fragments to aggregate in parallel with zero shift between chains in a manner essentially identical to that found for α-tropomyosin.  相似文献   

15.
D-amino acid oxidase (DAAO) from pig has been reported to catalyze the β-elimination of Cl(-) from βCl-D-alanine via abstraction of the substrate α-H as H(+) ("carbanion mechanism") (Walsh, C. T., Schonbrunn, A., and Abeles, R. H. (1971) J. Biol. Chem. 246, 6855-6866). In view of the fundamental mechanistic importance of this reaction and of the recent reinterpretation of the DAAO dehydrogenation step as occurring via a hydride mechanism, we reinvestigated the elimination reaction using yeast DAAO. That enzyme catalyzes the same reactions as the pig enzyme but with a much higher efficiency and a substantially different kinetic behavior. The reaction is initiated by a very rapid and fully reversible dehydrogenation step. This leads to an equilibrium (k(on) ≈ k(reverse)) between the complexes of oxidized enzyme-βCl-D-alanine and reduced enzyme-βCl-iminopyruvate. In the presence of O(2) the latter complex can partition between an oxidative half-reaction and elimination of Cl(-), which proceeds at a rate of ≈50 s(-1). This step forms a complex between oxidized enzyme and enamine that is characterized by a charge transfer absorption (which describes its rates of formation and decay). A minimal scheme that lists relevant steps of the reductive and oxidative half-reactions and elimination pathways along with the estimate of the corresponding rate constants is presented. β-Elimination of Cl(-) is proposed to originate at the locus of the enzyme-βCl-iminopyruvate complex. A chemical mechanism that can account for elimination is discussed in detail.  相似文献   

16.
In this work, a model describing the complete enzyme catalysed synthesis of N-acetylneuraminic acid (Neu5Ac) from N-acetyl-d-glucosamine (GlcNAc) is presented. It includes the combined reaction steps of epimerisation from GlcNAc to N-acetyl-d-mannosamine (ManNAc) and the aldol condensation of ManNAc with sodium pyruvate yielding Neu5Ac. The model is expedient to predict the reaction course for various initial and feed concentrations and therefore to calculate reaction times and yields. The equilibrium constants calculated from the kinetic constants via the Haldane relationship correspond with experimental values very well (0.26 calculated and 0.24 experimental value for the epimerisation, 27.4 l mol−1 calculated and 28.7 l mol−1 experimental for the aldol condensation). The actual relevance of the model is shown by a scale-up. Using the model, an optimisation of reaction conditions in consideration of different targets is possible. Exemplarily, it is presented how the optimal ratio of the two enzymes in the reaction can be determined and how the composition of the reaction solution in a fed-batch reactor can be designed to meet downstream processing needs.  相似文献   

17.
Sialic acid synthase: the origin of fish type III antifreeze protein?   总被引:1,自引:0,他引:1  
Fish type III antifreeze protein is homologous to the C-terminal region of mammalian sialic acid synthase. Similarity is greatest in the protein core and the flat ice-binding region. This relationship adds to the growing list of links between ice-binding proteins (antifreezes) and proteins that interact with sugars and polysaccharides.  相似文献   

18.
19.
HAMLET/BAMLET (Human/Bovine α-Lactalbumin Made Lethal to Tumors) is a tumoricidal substance composed of partially unfolded human/bovine α-lactalbumin (HLA/BLA) and several oleic acid (OA) molecules. The HAMLET mechanism of interaction involves an insufficiently understood effect on the membrane or its embedded components. We examined the effect of BLAOA (bovine α-lactalbumin complexed with oleic acid, a HAMLET-like substance) and its individual components on cells and artificial lipid membranes using viability staining and metabolic dyes, fluorescence spectroscopy, leakage integrity assays and microscopy. Our results show a dose-dependency of OA used to prepare BLAOA on its ability to induce tumor cell death, and a correlation between leakage and cell death. BLAOA incorporates into the membrane, tightens the lipid packing and lowers their solvent accessibility. Fluorescence imaging reveals that giant unilamellar vesicles (GUVs) develop blebs and eventually collapse upon exposure to BLAOA, indicating that the lipid packing reorganization can translate into observable morphological effects. These effects are observed to be local in GUVs, and a tightly packed and solvent-shielded lipid environment is associated with leakage and GUV disruption. Furthermore, the effects of BLAOA on membrane are pH dependent, with an optimum of activity on artificial membranes near neutral pHs. While BLA alone is effective at membrane disruption at acidic pHs, OA is ineffective in a pH range of 4.5 to 9.1. Taken together, this supports a model where the lipid, fatty acid and protein components enhance each other's ability to affect the overall integrity of the membrane.  相似文献   

20.
Nipecotic acid is one of the most potent competitive inhibitors and alternative substrates for the high-affinity -aminobutyric acid transport system in neurons, but the structural basis of this potency is unclear. Because -aminobutyrate is a highly flexible molecule in solution, it would be expected to lose rotational entropy upon binding to the transport system, a change which does not favor binding. Nipecotic acid, in contrast, is a much less flexible molecule, and one would expect the loss of conformational entropy upon binding to be smaller thus favoring the binding of nipecotic acid over -aminobutyric acid. To investigate this possibility, the thermodynamic parameters, G°, H°, and S°, were determined for the binding of -aminobutyrate and nipecotic acid to the high affinity GABA transport system in synaptosomes. In keeping with expectations, the apparent entropy change for nipecotic acid binding (112±13 J·K–1) was more favorable than the apparent entropy change for -aminobutyric acid binding (61.3±6.6 J·K–1). The results suggest that restricted conformation per se is an important contributory factor to the affinity of nipecotic acid for the high-affinity transport system for -aminobutyric acid.This work was conducted when both authors were at the Department of Chemistry, University of Maryland, College Park.Special issue dedicated to Dr. Elling Kvamme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号