首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cysteine protease brucipain is an important drug target in the protozoan Trypanosoma brucei, the causative agent of both Human African trypanosomiasis and Animal African trypanosomiasis. Brucipain is closely related to mammalian cathepsin L and currently used as a framework for the development of inhibitors that display anti-parasitic activity. We show that recombinant brucipain lacking the C-terminal extension undergoes inhibition by the substrate benzyloxycarbonyl-FR-7-amino-4-methylcoumarin at concentrations above the Km, but not by benzyloxycarbonyl-VLR-7-amino-4-methylcoumarin. The allosteric modulation exerted by the substrate is controlled by temperature, being apparent at 25 °C but concealed at 37 °C. The behavior of the enzyme in vitro can be explained by discrete conformational changes caused by the shifts in temperature that render it less susceptible to substrate inhibition. Enzyme inhibition by the di-peptydyl substrate impaired the degradation of human fibrinogen at 25 °C, but not at 37 °C. We also found that heparan sulfate acts as a natural allosteric modulator of the enzyme through interactions that prevent substrate inhibition. We propose that brucipain shifts between an active and an inactive form as a result of temperature-dependent allosteric regulation.  相似文献   

2.
A new fluorogenic substrate for the pyridoxal 5'-phosphate-dependent enzyme tryptophanase is described. L-Serine, which is linked to 7-amino-4-methylcoumarin through an O-carbamoyl tether, serves as a substrate for the enzyme. The released moiety, 7-amino-4-methylcoumarin (AMC), can be detected by either absorbance (355 nm) or fluorescence (excitation 365 nm/emission 440 nm). Kinetic constants were measured using each of these techniques: Km = 85 +/- 20 microM, Vmax = 2.9 +/- 0.4 mumol/min/mg (fluorescence) and Km = 129 +/- 21 microM, Vmax = 3.1 +/- 0.3 mumol/min/mg (absorbance). The Vmax for serine-AMC-carbamate is approximately 1.9 times faster than that of the natural substrate, tryptophan. Using fluorescence detection, solutions containing 10(-3) units of activity could be routinely assayed.  相似文献   

3.
Morty RE  Shih AY  Fülöp V  Andrews NW 《FEBS letters》2005,579(10):2191-2196
Oligopeptidase B (OpdB) from Trypanosoma brucei is a candidate therapeutic target in African trypanosomiasis. OpdB is an atypical serine peptidase, since activity is inhibited by thiol-blocking reagents and enhanced by reducing agents. We have identified C256 as the reactive cysteine residue that mediates OpdB inhibition by N-ethylmaleimide and iodoacetic acid. Modeling studies suggest that C256 adducts occlude the P(1) substrate-binding site, preventing substrate binding. We further demonstrate that C559 and C597 are responsible for the thiol-enhancement of OpdB activity. These studies may facilitate the development of specific OpdB inhibitors with therapeutic potential, by exploiting these unique properties of this enzyme.  相似文献   

4.
New fluorogenic substrates for renin   总被引:1,自引:0,他引:1  
A simple and sensitive fluorometric assay was developed to test renin activity within several hours. Two new fluorogenic peptides, Arg-Pro-Phe-His-Leu-Leu-Val-Tyr-4-methylcoumaryl-7-amide (octapeptide-MCA) and a succinyl derivative of the octapeptide-MCA were synthesized and used as a renin substrate. Renin cleaved the substrates at the Leu-Leu bond, releasing Leu-Val-Tyr-MCA. Three amino acids of this product were then successively split off by the auxiliary enzyme, leucine aminopeptidase, to liberate free 7-amino-4-methylcoumarin (AMC). The generation of the fluorescent 7-amino-4-methylcoumarin was proportional to renin concentrations up to 100 mGoldblatt U/tube. The optimal pH of renin reaction for both substrates was 6.5 to 7.0. As low as 5 mGoldblatt U of renin could be detected by this method. This method was applied to the assay of renin during its purification.  相似文献   

5.
A gene encoding a UDP-glucose dehydrogenase homologue was identified in the hyperthermophilic archaeon, Pyrobaculum islandicum. This gene was expressed in Escherichia coli, and the product was purified and characterized. The expressed enzyme is the most thermostable UDP-glucose dehydrogenase so far described, with a half-life of 10 min at 90 °C. The enzyme retained its full activity after incubating in a pH range of 5.0-10.0 for 10 min at 80 °C. The temperature dependence of the kinetic parameters for this enzyme was examined at 37-70 °C. A decrease in K(m)s for UDP-glucose and NAD was observed with decreasing temperature. This resulted in the enzyme still retaining high catalytic efficiency (V(max)/K(m)) for the substrate and cofactor, even at 37 °C. These characteristics make the enzyme potentially useful for its application at a much lower temperature such as 37 °C than the optimum growth temperature of 100 °C for P. islandicum.  相似文献   

6.
L-Pyroglutamyl derivatives of p-nitroaniline and 7-amino-4-methylcoumarin were synthesized as new sensitive substrates for pyrrolidonyl peptidase (pyrrolidonecarboxylyl peptidase) from Bacillus amyloliquefaciens. Their hydrolyses could be followed by conventional colorimetric and fluorometric procedures; i.e., in terms of the increase in absorbance at 410 nm caused by the liberation of p-nitroaniline and the emission at 440 nm after excitation at 370 nm depending on the liberation of 7-amino-4-methylcoumarin. Values of Km were estimated to be 0.69 mM for anilide substrate and 0.33 mM for methylcoumarin substrate in the pyrrolidonyl peptidase reaction at pH 8.0. The methylcoumarin compound was about one thousand fold more sensitive than the anilide substrate.  相似文献   

7.
Phosphoglucose isomerase (PGI) is a multifunctional enzyme involved in glycolysis and gluconeogenesis and, in mammalian cells, functions as neuroleukin, autocrine motility factor (AMF), and differentiation and maturation factor (MF). We isolated and characterized PGI with a novel lysyl aminopeptidase (LysAP) activity (PGI-LysAP) from Vibrio vulnificus. Mass spectrometry revealed that PGI-LysAP is a heterodimer consisting of 23.4- and 60.8-kDa subunits. Only the heterodimer displayed LysAP activity. PGI-LysAP has a pI around 6.0 and high specificity toward the synthetic, fluorogenic substrate l-lysyl-7-amino-4-methylcoumarin. LysAP activity is optimal at pH 8.0, is 64% higher at 37 degrees C than at 21 degrees C, does not directly correlate with virulence, and is strongly inhibited by serine protease and metalloprotease inhibitors. PGI-LysAP was also identified in Vibrio parahaemolyticus and V. cholerae, but was absent from non-Vibrio human pathogens. Sequencing of the pgi gene revealed 1653 bp coding for a 550-amino-acid protein. Cloned and expressed PGI formed a homodimer with isomerase activity, but not LysAP activity. The finding of LysAP activity associated with heterodimeric PGI should foster a broad search for putative substrates in an effort to elucidate the role of PGI-LysAP in bacteria and its roles in the pathophysiology of diseases.  相似文献   

8.
Cysteine proteases are relevant to several aspects of the parasite life cycle and the parasite-host relationship. Moreover, they appear as promising targets for antiparasite chemotherapy. Here, a quantitative investigation on the catalytic properties of cruzain, the papain-like cysteine protease from epimastigotes of Trypanosoma cruzi, is reported. The results indicate that kinetics for the cruzain catalyzed hydrolysis of N-alpha-benzyloxycarbonyl-l-arginyl-l-alanine-(7-amino-4-methylcoumarin), N-alpha-benzyloxycarbonyl-l-phenylalanyl-l-alanine-(7-amino-4-methylcoumarin), and N-alpha-benzyloxycarbonyl-l-tyrosyl-l-alanine-(7-amino-4-methylcoumarin) can be consistently fitted to the minimum three-step mechanism of cysteine proteases involving the acyl.enzyme intermediate E.P; the deacylation step is rate-limiting in enzyme catalysis. Remarkably, these substrates show identical catalytic parameters. This reflects the ability of the cruzain Glu205 residue, located at the bottom of the S(2) subsite, to neutralize the substrate/inhibitor polar P(2) residues (e.g., Arg or Tyr) and to be solvent-exposed when substrate/inhibitor nonpolar P(2) residues (e.g., Phe) fit the S(2) subsite. More complex catalytic mechanisms are also discussed. Binding free-energy calculation provides a quantitative framework for the interpretation of these results; in particular, direct evidence for the compensatory effect between Coulomb interaction(s) and solvation effect(s) is reported. These results appear of general significance for a deeper understanding of (macro)molecular recognition and for the rational design of novel inhibitors of parasitic cysteine proteases.  相似文献   

9.
An unusual effect of temperature on the ATPase activity of E. coli F1Fo ATP synthase has been investigated. The rate of ATP hydrolysis by the isolated enzyme, previously kept on ice, showed a lag phase when measured at 15 degrees C, but not at 37 degrees C. A pre-incubation of the enzyme at room temperature for 5 min completely eliminated the lag phase, and resulted in a higher steady-state rate. Similar results were obtained using the isolated enzyme after incorporation into liposomes. The initial rates of ATP-dependent proton translocation, as measured by 9-amino-6-chloro-2-methoxyacridine (ACMA) fluorescence quenching, at 15 degrees C also varied according to the pre-incubation temperature. The relationship between this temperature-dependent pattern of enzyme activity, termed thermohysteresis, and pre-incubation with other agents was examined. Pre-incubation of membrane vesicles with azide and Mg2+, without exogenous ADP, resulted in almost complete inhibition of the initial rate of ATPase when assayed at 10 degrees C, but had little effect at 37 degrees C. Rates of ATP synthesis following this pre-incubation were not affected at any temperature. Azide inhibition of ATP hydrolysis by the isolated enzyme was reduced when an ATP-regenerating system was used. A gradual reactivation of azide-blocked enzyme was slowed down by the presence of phosphate in the reaction medium. The well-known Mg2+ inhibition of ATP hydrolysis was shown to be greatly enhanced at 15 degrees C relative to at 37 degrees C. The results suggest that thermohysteresis is a consequence of an inactive form of the enzyme that is stabilized by the binding of inhibitory Mg-ADP.  相似文献   

10.
Human ubiquitin-specific cysteine protease 5 (USP5, also known as ISOT and isopeptidase T), an 835-residue multidomain enzyme, recycles ubiquitin by hydrolyzing isopeptide bonds in a variety of unanchored polyubiquitin substrates. Activation of the enzyme's hydrolytic activity toward ubiquitin-AMC (7-amino-4-methylcoumarin), a fluorogenic substrate, by the addition of free, unanchored monoubiquitin suggested an allosteric mechanism of activation by the ZnF-UBP domain (residues 163-291), which binds the substrate's unanchored diglycine carboxyl tail. By determining the structure of full-length USP5, we discovered the existence of a cryptic ZnF-UBP domain (residues 1-156), which was tightly bound to the catalytic core and was indispensable for catalytic activity. In contrast, the previously characterized ZnF-UBP domain did not contribute directly to the active site; a paucity of interactions suggested flexibility between these two domains consistent with an ability by the enzyme to hydrolyze a variety of different polyubiquitin chain linkages. Deletion of the known ZnF-UBP domain did not significantly affect rate of hydrolysis of ubiquitin-AMC and suggested that it is likely associated mainly with substrate targeting and specificity. Together, our findings show that USP5 uses multiple ZnF-UBP domains for substrate targeting and core catalytic function.  相似文献   

11.
Human African trypanosomiasis, caused by the eukaryotic parasite Trypanosoma brucei, is a serious health problem in much of central Africa. The only validated molecular target for treatment of human African trypanosomiasis is ornithine decarboxylase (ODC), which catalyzes the first step in polyamine metabolism. Here, we describe the use of an enzymatic high throughput screen of 316,114 unique molecules to identify potent and selective inhibitors of ODC. This screen identified four novel families of ODC inhibitors, including the first inhibitors selective for the parasitic enzyme. These compounds display unique binding modes, suggesting the presence of allosteric regulatory sites on the enzyme. Docking of a subset of these inhibitors, coupled with mutagenesis, also supports the existence of these allosteric sites.  相似文献   

12.
Yersinia pestis is a bacterium that is transmitted between fleas, which have a body temperature of 26 °C, and mammalian hosts, which have a body temperature of 37 °C. To adapt to the temperature shift, phenotype variations, including virulence, occur. In this study, an antigen microarray including 218 proteins of Y. pestis was used to evaluate antibody responses in a pooled plague serum that was unadsorbed, adsorbed by Y. pestis cultivated at 26 °C, or adsorbed by Y. pestis cultivated at 26 and 37 °C to identify protein expression changes during the temperature shift. We identified 12 proteins as being expressed at 37 °C but not at 26 °C, or expressed at significantly higher levels at 37 °C than at 26 °C. The antibodies against 7 proteins in the serum adsorbed by Y. pestis cultivated at 26 and 37 °C remained positive, suggesting that they were not expressed on the surface of Y. pestis in LB broth in vitro or specifically expressed in vivo. This study proved that protein microarray and antibody profiling comprise a promising technique for monitoring gene expression at the protein level and for better understanding pathogenicity, to find new vaccine targets against plague.  相似文献   

13.
Abstract Daily torpor results in an ~70% decrease in metabolic rate (MR) and a 20%-70% decrease in state 3 (phosphorylating) respiration rate of isolated liver mitochondria in both dwarf Siberian hamsters and mice even when measured at 37°C. This study investigated whether mitochondrial metabolic suppression also occurs in these species during euthermic fasting, when MR decreases significantly but torpor is not observed. State 3 respiration rate measured at 37°C was 20%-30% lower in euthermic fasted animals when glutamate but not succinate was used as a substrate. This suggests that electron transport chain complex I is inhibited during fasting. We also investigated whether mitochondrial metabolic suppression alters mitochondrial reactive oxygen species (ROS) production. In both torpor and euthermic fasting, ROS production (measured as H(2)O(2) release rate) was lower with glutamate in the presence (but not absence) of rotenone when measured at 37°C, likely reflecting inhibition at or upstream of the complex I ROS-producing site. ROS production with succinate (with rotenone) increased in torpor but not euthermic fasting, reflecting complex II inhibition during torpor only. Finally, mitochondrial ROS production was twofold more temperature sensitive than mitochondrial respiration (as reflected by Q(10) values). These data suggest that electron leak from the mitochondrial electron transport chain, which leads to ROS production, is avoided more efficiently at the lower body temperatures experienced during torpor.  相似文献   

14.
The antineoplastic enzyme L-asparaginase is commonly used for the induction of remission in acute lymphoblastic leukemia (ALL). There is no simple method available for measuring the activity of this highly toxic drug. We incubated L-asparaginase from Erwinia chrysanthemi with L-aspartic acid beta-(7-amido-4-methylcoumarin) and measured the release of 7-amino-4-methylcoumarin fluorometrically for 30-300 min. The rate of the hydrolysis of the substrate was linear over a 50-fold range of the concentration of the enzyme. With increasing substrate concentration, the enzyme showed a saturable kinetic pattern with V(max) of 0.547 (SD 0.059) microM/min/mg of enzyme (n = 3) and Km of 0.302 (SD 0.095) mM (n = 3). This assay enables rapid analysis of L-asparaginase activity in biological samples and it can be used, for example, for monitoring of L-asparaginase activity in serum of ALL patients during their L-asparaginase therapy.  相似文献   

15.
The action of a potent tricyclic cholinesterase inhibitor ethopropazine on the hydrolysis of acetylthiocholine and butyrylthiocholine by purified horse serum butyrylcholinesterase (EC 3.1.1.8) was investigated at 25 and 37 degrees C. The enzyme activities were measured on a stopped-flow apparatus and the analysis of experimental data was done by applying a six-parameter model for substrate hydrolysis. The model, which was introduced to explain the kinetics of Drosophila melanogaster acetylcholinesterase [Stojan et al. (1998) FEBS Lett. 440, 85-88], is defined with two dissociation constants and four rate constants and can describe both cooperative phenomena, apparent activation at low substrate concentrations and substrate inhibition by excess of substrate. For the analysis of the data in the presence of ethopropazine at two temperatures, we have enlarged the reaction scheme to allow primarily its competition with the substrate at the peripheral site, but the competition at the acylation site was not excluded. The proposed reaction scheme revealed, upon analysis, competitive effects of ethopropazine at both sites; at 25 degrees C, three enzyme-inhibitor dissociation constants could be evaluated; at 37 degrees C, only two constants could be evaluated. Although the model considers both cooperative phenomena, it appears that decreased enzyme sensitivity at higher temperature, predominantly for the ligands at the peripheral binding site, makes the determination of some expected enzyme substrate and/or inhibitor complexes technically impossible. The same reason might also account for one of the paradoxes in cholinesterases: activities at 25 degrees C at low substrate concentrations are higher than at 37 degrees C. Positioning of ethopropazine in the active-site gorge by molecular dynamics simulations shows that A328, W82, D70, and Y332 amino acid residues stabilize binding of the inhibitor.  相似文献   

16.
Studies were undertaken to understand phenomena operative during simultaneous saccharification and fermentation (SSF) of a model cellulosic substrate (Avicel) at 50°C with enzymatic hydrolysis mediated by a commercial cellulase preparation (Spezyme CP) and fermentation by a thermophilic bacterium engineered to produce ethanol at high yield, Thermoanaerobacterium saccharolyticum ALK2. Thermal inactivation at 50 °C, as shown by the loss of 50% of enzyme activity over 4 days in the absence of ethanol, was more severe than at 37 °C, where only 25% of enzyme activity was lost. In addition, at 50 °C ethanol more strongly influenced enzyme stability. Enzyme activity was moderately stabilized between ethanol concentrations of 0 and 40 g/L, but ethanol concentrations above 40 g/L accelerated enzyme inactivation, leading to 75% loss of enzymatic activity in 80 g/L ethanol after 4 days. At 37 °C, ethanol did not show a strong effect on the rate of enzyme inactivation. Inhibition of cellulase activity by ethanol, measured at both temperatures, was relatively similar, with the relative rate of hydrolysis inhibited 50% at ethanol concentrations of 56.4 and 58.7 g/L at 50 and 37 °C, respectively. A mathematical model was developed to test whether the measured phenomena were sufficient to quantitatively describe system behavior and was found to have good predictive capability at initial Avicel concentrations of 20 and 50 g/L.  相似文献   

17.
Proteinase activities of eggs and cells of the cumulus oophorous of the golden hamster were investigated with highly sensitive fluorogenic amide substrates. Eggs contain a neutral endopeptidase which hydrolyzed Suc-Ala-Ala-Phe-7-amino-4-methylcoumarin amide between the Ala and the Phe residues. Endopeptidase action on this substrate resulted in the accumulation of Phe-7-amino-4-methylcoumarin amide which was monitored by tlc identification. Hamster eggs also contained aminopeptidase and elastase-like activities but no detectable trypsin-like activity. Aminopeptidase, endopeptidase, trypsin-like, and elastase-like activities were detected in cumulus cells.  相似文献   

18.
J R Schullek  I B Wilson 《Peptides》1989,10(2):431-434
Phosphate, borate, and Tris inhibit angiotensin converting enzyme (ACE), but HEPES buffer is inert. Measurements of substrate inhibition were made in HEPES buffer at pH 7.0 and 25 degrees C and 37 degrees C. Substrate inhibition was marked and goes to completion. A new equation for substrate inhibitions enables one, under favorable circumstances, to determine whether there is cooperativity in the binding of substrate to the inhibitory and active sites. Cooperativity does occur with ACE using Hipp-His-Leu as substrate. The kinetic parameters were measured (Km = 0.21 mM, K* = 0.65 mM at 37 degrees C). The enzyme concentration (1.94 X 10(-8) M) was determined by titration with lisinopril so that kcat (5 X 10(3) at 37 degrees C) could be determined. Using this value and the molecular weight the specific activity of ACE was calculated for different common buffers. The specific activity in HEPES calculated from Vmax was 33.7 units/mg at 37 degrees C.  相似文献   

19.
田间调查结果表明,6月期间,田间小菜蛾种群密度处于相对较高水平,但在7月初至8月初期间急剧下降,8月下旬开始逐渐升高,9月~11月期间,小菜蛾种群密度显著高于春季的6月及夏季的8月下旬。总体上看,与25°C处理相比,40°C预处理田间小菜蛾8h后,氰戊菊酯、甲胺磷和阿维菌素对田间小菜蛾的24h和48h毒力均显著增高。与25℃处理相比,33.5°C预处理24h、36°C预处理8h和36℃预处理24h均显著抑制田间小菜蛾多功能氧化酶活性,且随着高温处理时间延长,抑制率明显增大。上述结果表明,夏季高温可导致田间小菜蛾种群密度急剧下降,并会显著抑制田间小菜蛾对杀虫剂的抗性水平及多功能氧化酶活性。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号