首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Flow cytometry for high-throughput, high-content screening   总被引:5,自引:0,他引:5  
Flow cytometry is a mature platform for quantitative multi-parameter measurement of cell fluorescence. Recent innovations allow up to 30-fold faster serial processing of bulk cell samples. Homogeneous discrimination of free and cell-bound fluorescent probe eliminates wash steps to streamline sample processing. Compound screening throughput may be further enhanced by multiplexing of assays on color-coded bead or cell suspension arrays and by integrating computational techniques to create smaller, focused compound libraries. Novel bead-based assay systems allow studies of real-time interactions between solubilized receptors, ligands and molecular signaling components that recapitulate and extend measurements in intact cells. These new developments, and its broad usage, position flow cytometry as an attractive analysis platform for high-throughput, high-content biological testing and drug discovery.  相似文献   

2.
3.
FLOSYS is an interactive web-accessible bioinformatics workflow system designed to assist biologists in multi-step data analyses. FLOSYS allows the user to create complex analysis pathways (protocols) graphically, similar to drawing a flowchart: icons representing particular bioinformatics tools are dragged and dropped onto a canvas and lines connecting those icons are drawn to specify the relationships between the tools. In addition, FLOSYS permits to select input-data, execute the protocol and store the results in a personal workspace. The three-tier architecture of FLOSYS has been implemented in Java and uses a relational database system together with new technologies for distributed and web computing such as CORBA, RMI, JSP and JDBC. The prototype of FLOSYS, which is part of the bioinformatics workbench AnaBench, is accessible on-line at http://malawimonas.bcm.umontreal.ca: 8091/anabench. The entire package is available on request to academic groups who wish to have a customized local analysis environment for research or teaching.  相似文献   

4.
A new program is described for the analysis of DNA histograms from flow cytometry. The fundamental model representing the cell population is similar to one described previously. It assumes the population is grouped into compartments, each consisting of cells having approximately the same DNA content. After staining the cells with an appropriate fluorochrome, the fluorescence distribution of cells within each compartment is assumed to be Gaussian. In the present algorithm, the parameters of the model can either be computed directly by the program from the data, or can be specified as input by the user. When synchronous cell populations lacking distinct G1 and G2/M phases are analyzed, the parameter values must first be obtained using an appropriate control. Percentages of cells in the various compartments are computed using a gradient search method described by Bevington.  相似文献   

5.
A major advantage of flow cytometry is its flexible and open instrument configuration, which is highly suitable for systems integration. This flexibility permits the coupling of auxiliary instrumentation that may offer the measurement of parameters other than those typically measured by this multiparameter measurement technique. On the basis of this advantage, we explore the principle and application of hyperspectral imaging (HSI), which has the potential to be a useful add-on feature to flow cytometry applications. Application of HSI to flow cytometry involves the acquisition of spatial information and rendering it in spectral form. In this work, we describe the development and application of an HSI system which provides both spectral and spatial information. Spectral information was generated by obtaining an entire spectrum of a single sample site within a wavelength region of interest, while spatial information was generated by recording a two-dimensional (2D) image of an area of the sample of interest at one specific wavelength. HSI is a promising additional feature to flow cytometry since it can provide both spatial (image format) and spectral information in addition to the multiparameter information already available from flow cytometry measurements.  相似文献   

6.
  1. Download : Download high-res image (80KB)
  2. Download : Download full-size image
  相似文献   

7.
8.
In vivo study of embryonic morphogenesis tremendously benefits from recent advances in live microscopy and computational analyses. Quantitative and automated investigation of morphogenetic processes opens the field to high-content and high-throughput strategies. Following experimental workflow currently developed in cell biology, we identify the key challenges for applying such strategies in developmental biology. We review the recent progress in embryo preparation and manipulation, live imaging, data registration, image segmentation, feature computation, and data mining dedicated to the study of embryonic morphogenesis. We discuss a selection of pioneering studies that tackled the current methodological bottlenecks and illustrated the investigation of morphogenetic processes in vivo using quantitative and automated imaging and analysis of hundreds or thousands of cells simultaneously, paving the way for high-content/high-throughput strategies and systems analysis of embryonic morphogenesis.  相似文献   

9.
The cytokinesis-block micronucleus (CBMN) assay is employed in biological dosimetry to determine the dose of radiation to an exposed individual from the frequency of micronuclei (MN) in binucleated lymphocyte cells. The method has been partially automated for the use in mass casualty events, but it would be advantageous to further automate the method for increased throughput. Recently, automated image analysis has been successfully applied to the traditional, slide-scoring-based method of the CBMN assay. However, with the development of new technologies such as the imaging flow cytometer, it is now possible to adapt this microscope-based assay to an automated imaging flow cytometry method. The ImageStreamX is an imaging flow cytometer that has adequate sensitivity to quantify radiation doses larger than 1 Gy while adding the increased throughput of traditional flow cytometry. The protocol and analysis presented in this work adapts the CBMN assay for the use on the ImageStreamX. Ex vivo-irradiated whole blood samples cultured for CBMN were analyzed on the ImageStreamX, and preliminary results indicate that binucleated cells and MN can be identified, imaged and enumerated automatically by imaging flow cytometry. Details of the method development, gating strategy and the dose response curve generated are presented and indicate that adaptation of the CBMN assay for the use with imaging flow cytometry has potential for high-throughput analysis following a mass casualty radiological event.  相似文献   

10.
《Trends in parasitology》2023,39(9):718-719
High-content imaging has produced greater insights into the complexities of cell biology. The ability to characterise specific phenotypes, as demonstrated by Rosenthal and Ng, provides a powerful tool for elucidating mechanisms of action and resistance, illustrating that high-content imaging in malaria research is only limited by our creativity.  相似文献   

11.
Battye F 《Cytometry》2001,43(2):143-149
BACKGROUND: The obvious benefits of centralized data storage notwithstanding, the size of modern flow cytometry data files discourages their transmission over commonly used telephone modem connections. The proposed solution is to install at the central location a web servlet that can extract compact data arrays, of a form dependent on the requested display type, from the stored files and transmit them to a remote client computer program for display. METHODS: A client program and a web servlet, both written in the Java programming language, were designed to communicate over standard network connections. The client program creates familiar numerical and graphical display types and allows the creation of gates from combinations of user-defined regions. Data compression techniques further reduce transmission times for data arrays that are already much smaller than the data file itself. RESULTS: For typical data files, network transmission times were reduced more than 700-fold for extraction of one-dimensional (1-D) histograms, between 18 and 120-fold for 2-D histograms, and 6-fold for color-coded dot plots. Numerous display formats are possible without further access to the data file. CONCLUSIONS: This scheme enables telephone modem access to centrally stored data without restricting flexibility of display format or preventing comparisons with locally stored files.  相似文献   

12.
For direct and on-line study of the physiological states of cell cultures, a robust flow injection system has been designed and interfaced with flow cytometry (FI-FCM). The core of the flow injection system includes a microchamber designed for sample processing. The design of this microchamber allows not only an accurate on-line dilution but also on-line cell fixation, staining, and washing. The flow injection part of the system was tested by monitoring the optical density of a growing E.coli culture on-line using a spectrophotometer. The entire growth curve, from lag phase to stationary phase, was obtained with frequent sampling. The performance of the entire FI-FCM system is demonstrated in three applications. The first is the monitoring of green fluorescent protein fluorophore formation kinetics in E.coli by visualizing the fluorescence evolution after protein synthesis is inhibited. The data revealed a subpopulation of cells that do not become fluorescent. In addition, the data show that single-cell fluorescence is distributed over a wide range and that the fluorescent population contains cells that are capable of reaching significantly higher expression levels than that indicated by the population average. The second application is the detailed flow cytometric evaluation of the batch growth dynamics of E.coli expressing Gfp. The collected single-cell data visualize the batch growth phases and it is shown that a state of balanced growth is never reached by the culture. The third application is the determination of distribution of DNA content of a S. cerevisiae population by automatically staining cells using a DNA-specific stain. Reproducibility of the on-line staining reaction shows that the system is not restricted to measuring the native properties of cells; rather, a wider range of cellular components could be monitored after appropriate sample processing. The system is thus particularly useful because it operates automatically without direct operator supervision for extended time periods.  相似文献   

13.
Flow cytometry (FCM) allows the simultaneous measurement of multiple fluorescences and light scatter induced by illumination of single cells or microscopic particles in suspension, as they flow rapidly through a sensing area. In some systems, individual cells or particles may be sorted according to the properties exhibited. By using appropriate fluorescent markers, FCM is unique in that multiple structural and functional parameters can be quantified simultaneously on a single-particle basis, whereas up to thousands of biological particles per second may be examined. FCM is increasingly used for basic, clinical, biotechnological, and environmental studies of biochemical relevance. In this critical review, we summarize the main advantages and limitations of FCM for biochemical studies and discuss briefly the most relevant parameters and analytical strategies. Graphical examples of the biological information provided by multiparametric FCM are presented. Also, this review contains specific sections on flow cytoenzymology, FCM analysis of isolated subcellular organelles, and cell-free FCM.  相似文献   

14.
BACKGROUND: Most current commercial flow cytometers employ analog circuitry to provide feature values describing the pulse waveforms produced from suspended cells and particles. This restricts the type of features that can be extracted (typically pulse height, width, and integral) and consequently places a limit on classification performance. In previous work, we described a first-generation digital data acquisition and processing system that was used to demonstrate the classification advantages provided by the extraction of additional waveform features. An improved version of the system is discussed in this paper, focusing on dual-buffering to ensure increased pulse capture. A mathematical model of the system is also presented for performance analysis. METHODS: The second-generation system incorporates fast digitization of analog pulse waveforms, instantaneous pulse detection hardware, and a novel dual-buffering scheme. A mathematical model of the system was developed to theoretically compute the capture-rate performance. RESULTS: The capture rate of the system was theoretically analyzed and empirically measured. Under typical conditions, a capture rate of 8,000 pulses/s was experimentally achieved. CONCLUSIONS: Based on these results, the dual-buffer architecture shows great potential for use in flow cytometry.  相似文献   

15.
To date microsphere-based assays in flow cytometry have focused on the detection of antibody or antigen. Most studies have been research based to evaluate the performance of the technique relative to conventional techniques. However, there have not been any carefully controlled studies of the sensitivity and specificity, as well as analytic sensitivity of the FMIA technique. As such, it is difficult to document advantages of this tecnique clearly. The data suggest that FMIA is considerably more sensitive than conventional techniques, and the ability to analyze for multiple analytes in one sample dilution is attractive. This ability to simultaneously analyze for multiple samples is primarily dependent upon the size difference as sensed by FALS of the microspheres. However, it is also possible to use microspheres of the same size but that differ in either fluorescence or RALS signal. If microspheres of the same size are used but one fluoresces red and the signal in the assay uses a green fluorochrome, then the two microspheres can be separated by their red fluorescence. Using this technique, one can increase the number of microspheres that can be used in an assay. It is also possible to use microspheres of the same size but with different abilities to scatter the incident light at right angles. The use of these microspheres is then similar to the nonfluorescent versus red microspheres. By the judicious combination of microsphere size, it is possible to easily differentiate eight different microspheres. With the addition of a fluorescebt dye and/or differences in right-angle light-scatter capabilities, the number of different microspheres that can be used simultaneously becomes quite large. In practice, the number of microspheres that can be differentiated is no doubt greater than the number of analytes that need to be assayed in one assay.Although the apparent increase in sensitivity and the ability to simultaneously detect and quantitate numerous analytes are important attributes of FMIA, there are drawbacks to this method. Although the FMIA lends itself well to one-step no-wash procedures, when wash steps are necessary they are time-consuming and ineffecient. Most wash steps in FMIA use centrifugation of the microspheres to remove them from the reagent. There is a significant loss of microspheres in these wash steps, which are time-consuming. There are studies ussing vacuum filtration of the suspension to separate the microspheres from the reagents. A number of different groups are pursuing an automated or semiautomated method for the efficient washing and reagent delivery system for FMIA. Commercial systems are being developed that may allow for the easier handling of these reagents.Numerous groups are investigating the use of microspheres and flow cytometry primarily in immunoassay development. The procedure has the advantages of the simultaneous yet discrete analysis of multiple analytes and the inherent increase in sensitivity using fluorescence over other signals. There will no doubt be wider applications  相似文献   

16.
Viruses are of particular interest as scaffolds for biotechnology applications given their wide range of shapes and sizes and the possibility to modify them with a variety of functional moieties to produce useful virus-based nanoparticles (VNPs). In order to develop functional VNPs for cell imaging and flow cytometry applications, we used the head of the T4 bacteriophage as a scaffold for bioconjugation of fluorescent dyes. Bacteriophage T4 is a double-stranded DNA virus with an elongated icosahedron head and a contractile tail. The head is ~100 nm in length and ~90 nm in width. The large surface area of the T4 head is an important advantage for the development of functional materials since it can accommodate significantly larger numbers of functional groups, such as fluorescent dyes, in comparison with other VNPs. In this study, Cy3 and Alexa Fluor 546 were chemically incorporated into tail-less T4 heads (T4 nanoparticles) for the first time, and the fluorescent properties of the dye-conjugated nanoparticles were characterized. The T4 nanoparticles were labeled with up to 19?000 dyes, and in particular, the use of Cy3 led to fluorescent enhancements of up to 90% compared to free Cy3. We also demonstrate that the dye-conjugated T4 nanoparticles are structurally stable and that they can be used as molecular probes for cell imaging and flow cytometry applications.  相似文献   

17.

Background  

In a high throughput setting, effective flow cytometry data analysis depends heavily on proper data preprocessing. While usual preprocessing steps of quality assessment, outlier removal, normalization, and gating have received considerable scrutiny from the community, the influence of data transformation on the output of high throughput analysis has been largely overlooked. Flow cytometry measurements can vary over several orders of magnitude, cell populations can have variances that depend on their mean fluorescence intensities, and may exhibit heavily-skewed distributions. Consequently, the choice of data transformation can influence the output of automated gating. An appropriate data transformation aids in data visualization and gating of cell populations across the range of data. Experience shows that the choice of transformation is data specific. Our goal here is to compare the performance of different transformations applied to flow cytometry data in the context of automated gating in a high throughput, fully automated setting. We examine the most common transformations used in flow cytometry, including the generalized hyperbolic arcsine, biexponential, linlog, and generalized Box-Cox, all within the BioConductor flowCore framework that is widely used in high throughput, automated flow cytometry data analysis. All of these transformations have adjustable parameters whose effects upon the data are non-intuitive for most users. By making some modelling assumptions about the transformed data, we develop maximum likelihood criteria to optimize parameter choice for these different transformations.  相似文献   

18.
We recently developed an approach combining fluorescence in situ hybridization (FISH) and flow cytometry for detecting low levels of Salmonella spp. (∼103 cells/mL sprout wash) against high levels of naturally occurring sprout flora (∼107–108 CFU/g sprouts). Although this “FISH and flow” approach provided rapid presence/absence testing for Salmonella in this complex food system, it was not capable of more nuanced tasks, such as probing the phenotypic complexity of the microbes present in sprouts or determining the physical interactions of Salmonella with these microbes, or with sprout debris. In the present study, we have combined rapid FISH-based labeling of Salmonella spp. in sprout washes with flow-through imaging cytometry (FT-IC), using the ImageStream® 100, a commercial FT-IC instrument. This approach enables image-based characterization of various subpopulations of interest occurring within these samples. Here, we demonstrate the ability of FT-IC to unambiguously identify cells, cell aggregates and other events within these subpopulations based on both cell morphology and hybridization status after reaction with a Salmonella-targeted probe cocktail. Our ability to directly explore the nature of these events expands the layers of information possible from cytometric analyses of these complex samples and clearly demonstrates that “a picture is worth a thousand dots”.  相似文献   

19.
Cell size is a defining characteristic central to cell function and ultimately to tissue architecture. The ability to sort cell subpopulations of different sizes would facilitate investigation at genomic and proteomic levels of mechanisms by which cells attain and maintain their size. Currently available cell sorters, however, cannot directly measure cell volume electronically, and it would therefore be desirable to know which of the optical measurements that can be made in such instruments provide the best estimate of volume. We investigated several different light scattering and fluorescence measurements in several different cell lines, sorting cell fractions from the high and low end of distributions, and measuring volume electronically to determine which sorting strategy yielded the best separated volume distributions. Since we found that different optical measurements were optimal for different cell lines, we suggest that following this procedure will enable other investigators to optimize their own cell sorters for volume-based separation of the cell types with which they work.  相似文献   

20.
Multiparameter flow cytometric measurements are of growing interest in the study of complex features of biological cells. With state of the art instrumentation, three-parameter (3-P) data handling is relatively complicated and time consuming and the display methods are not satisfactory. As an alternative, an interactive 3-P analyzing module, Cytomic 123 is described, which displays 3-P fields during and immediately after data uptake in the form of a cubic array of 32,768 channels. The fields can be randomly rotated by hardware and software. The event frequencies in the field are primarily visualized by brightness modulation of the display dots. Additionally, the display of the field may be confined to user selected ranges of event frequencies, which may also be superposed to mixed frequency displays. A set of preprogrammed functions is available for the following tasks: (a) uptake of 3-P histograms combined with on-line control of the transducer pulses, (b) automatic uptake of a series of 2-P time correlated histograms in the cube, (c) generation and numerical evaluation of sections and projections of cube histograms, (d) interactive generation and evaluation of spatial subfields for integration, or as sorting matrix by successive erosion of section planes, or reprojection of projection windows, and (e) isometric display of sections and projections and exchange of data sets with other Cytomic modules or other data systems, especially the Cytomic 12 module, whose 2-P capabilities can be used. The module is built with low cost Z80 microprocessor eurocards. A standard oscilloscope serves as a display unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号