首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbially synthesized fatty acids are an attractive platform for producing renewable alternatives to petrochemically derived transportation fuels and oleochemicals. Free fatty acids (FFA) are a direct precursor to many high-value compounds that can be made via biochemical and ex vivo catalytic pathways. To be competitive with current petrochemicals, flux through these pathways must be optimized to approach theoretical yields. Using a plasmid-free, FFA-producing strain of Escherichia coli, a set of chemostat experiments were conducted to gather data for FFA production under phosphate limitation. A prior study focused on carbon-limited conditions strongly implicated non-carbon limitations as a preferred media formulation for maximizing FFA yield. Here, additional data were collected to expand an established kinetic model of FFA production and identify targets for further metabolic engineering. The updated model was able to successfully predict the strain’s behavior and FFA production in a batch culture. The highest yield observed under phosphate-limiting conditions (0.1 g FFA/g glucose) was obtained at a dilution rate of 0.1 h?1, and the highest biomass-specific productivity (0.068 g FFA/gDCW/h) was observed at a dilution rate of 0.25 h?1. Phosphate limitation increased yield (~45 %) and biomass-specific productivity (~300 %) relative to carbon-limited cultivations using the same strain. FFA production under phosphate limitation also led to a cellular maintenance energy ~400 % higher (0.28 g/gDCW/h) than that seen under carbon limitation.  相似文献   

2.
A Chinese hamster ovary (CHO) cell line expressing recombinant human interferon-gamma (IFN-gamma) was grown under glucose limitation in a chemostate at a constant dilution rate of 0.015 h(-1) with glucose feed concentrations of 2.75 mM and 4.25 mM. The changes in cell concentration that accompanied changes in the glucose feed concentration indicated that the cells were glucose-limited. The cell yield on glucose remained constant, but there was a decline in residual glucose concentration and a reduced lactate yield from glucose in the latter stages of the culture. The consumption rates for many of the essential amino acids were increased later in the culture. The volumetric rate of interferon-gamma production was maintained throughout the course of this culture, indicating that IFN-gamma expression was stable under these conditions. However, the specific rate of IFN-gamma production was significantly lower at the higher glucose feed concentration. Under glucose limitation, the proportion of fully glycosylated IFN-gamma produced by these cells was less than that produced in the early stages of batch cultures. The proportion of fully glycosylated IFN-gamma increased during transient periods of glucose excess, suggesting that the culture environment influences the glycosylation of IFN-gamma.  相似文献   

3.
Growth yield factors, plasmid stability, cellular plasmid content, and cloned gene product activity for Escherichia coli HB101 containing plasmid pDM246 were measured at several dilution rates in continuous culture. Cell mass yield per mass of glucose consumed declined with increasing dilution rate. There was no evidence of plasmid segregational instability in any experiments, none of which employed selective medium. Plasmid content per cell varied with population-specific growth rate as observed in earlier batch experiments with the same strain. Plasmid content declined with increasing specific growth rate following indication of a maximum number of plasmids per cell at specific growth rates of ca. 0.3 h(-1). Cloned gene product (beta-lactamase) activity exhibited a sharp maximum with respect to dilution rate in continuous culture. Qualitatively different results were observed in previous experiments in batch cultivation in which specific growth rate changes were effected by altering medium composition.  相似文献   

4.
The effects of different nutrient limitations on the production of the two enzymes of gramicidin S biosynthesis were studied during continuous culture of Bacillus brevis. Gramicidin S synthetases I and II were produced in the chemostat under carbon, nitrogen, phosphorus or sulphur limitation. The growth rate, rather than the nature of the limitation, was the major controlling factor in regulating the level of the gramicidin S synthetases. Synthetase production was low at high dilution rates (0.45 to 0.50 h-1) but increased as the dilution rate was lowered. The highest specific activities occurred at dilution rates that were different for each type of limitation: 0.40 h-1 for nitrogen, 0.32 h-1 for carbon, 0.24 h-1 for sulphur and 0.20 h-1 for phosphorus. Phosphorus limitation gave the highest specific activities. At low dilution rates (0.10 to 0.15 h-1), enzyme activities were again low. Sporulation occurred under carbon limitation, but at a lower dilution rate than that which supported optimal gramicidin S synthetase formation. The specific productivity of the synthetases in the chemostat was higher than the highest productivity obtained in batch growth.  相似文献   

5.
Studies in conventional batch culture confirmed that the maximum citric acid production rate occurred prior to exhaustion of the growth-limiting nutrient, i.e., when the growth rate was nonzero. The effects of dilution rate and the culture dissolved oxygen tension (DOT) were studied in chemostat culture. Maximum citric acid yield and production rate were observed at low dilution rate (0.017 h(-1)) and high DOT value (90% of saturation). These findings were applied to a nitrogen-limited fed batch culture, and allowed a productivity increase of 100% when compared with conventional batch culture.  相似文献   

6.
Hyaluronic acid is routinely produced through fermentation of both Group A and C streptococci. Despite significant production costs associated with short fermentations and removal of contaminating proteins released during entry into stationary phase, hyaluronic acid is typically produced in batch rather than continuous culture. The main reason is that hyaluronic acid synthesis has been found to be unstable in continuous culture except at very low dilution rates. Here, we investigated the mechanisms underlying this instability and developed a stable, high dilution rate (0.4 h-1) chemostat process for both chemically defined and complex media operating for more than 150 h of production. In chemically defined medium, the product yield was 25% higher in chemostat cultures than in conventional batch culture when arginine or glucose was the limiting substrate. In contrast, glutamine limitation resulted in higher ATP requirements and a yield similar to that observed in batch culture. In complex, glucose-limited medium, ATP requirements were greatly reduced but biomass synthesis was favored over hyaluronic acid and no improvement in hyaluronic acid yield was observed. The successful establishment of continuous culture at high dilution rate enables both commercial production at reduced cost and a more rational characterization and optimization of hyaluronic acid production in streptococci.  相似文献   

7.
8.
The fibrillar strain Streptococcus salivarius HB and a non-fibrillar mutant, strain HB-B, were grown in a defined medium under glucose limitation in a chemostat. Fermentation balances were produced for both strains in batch culture and at growth rates between 0.1/h and 1.1/h. In batch culture both strains fermented glucose to lactate, but in continuous culture glucose was fermented to formate, acetate and ethanol with increasing amounts of lactate as the growth rate was increased. Lactate never became the major fermentation product even at the highest growth rate. Amino acid analysis showed that only lysine was more than 50% utilized, while proline and tyrosine showed net production. The non-fibrillar strain HB-B showed, in general, a reduced utilization of amino acids compared with the fibrillar strain HB. Calculated growth yields and maintenance energies for the two strains showed that there was a reduction in the true growth yield and the maintenance energy coefficient of the non-fibrillar strain HB-B when compared with the fibrillar strain HB. The increase in the maintenance energy of the fibrillar strain HB (1.382 mmol/g/h) when compared with the non-fibrillar strain HB-B (0.546 mmol/g/h) of 153% is proposed to be the energy required for the maintenance of the fibrillar surface of the cell.  相似文献   

9.
The fibrillar strain Streptococcus salivarius HB and a non-fibrillar mutant, strain HB-B, were grown in a defined medium under glucose limitation in a chemostat. Fermentation balances were produced for both strains in batch culture and at growth rates between 0.1/h and 1.1/h. In batch culture both strains fermented glucose to lactate, but in continuous culture glucose was fermented to formate, acetate and ethanol with increasing amounts of lactate as the growth rate was increased. Lactate never became the major fermentation product even at the highest growth rate. Amino acid analysis showed that only lysine was more than 50% utilized, while proline and tyrosine showed net production. The non-fibrillar strain HB-B showed, in general, a reduced utilization of amino acids compared with the fibrillar strain HB. Calculated growth yields and maintenance energies for the two strains showed that there was a reduction in the true growth yield and the maintenance energy coefficient of the non-fibrillar strain HB-B when compared with the fibrillar strain HB. The increase in the maintenance energy of the fibrillar strain HB (1.382 mmol/g/h) when compared with the non-fibrillar strain HB-B (0.546 mmol/g/h) of 153% is proposed to be the energy required for the maintenance of the fibrillar surface of the cell.  相似文献   

10.
Bacteroides fragilis NCTC 9343 has been grown in continuous cultures with glucose as growth-limiting factor. At pH 7.0 and at a dilution rate of 0.07 per h, glucose limited growth in concentrations up to 0.6%. Maximal cell yield and productivity were obtained with 0.87% glucose in the inflowing medium. A pH of 7.0 was optimal for growth. With 0.6% glucose in the fresh medium and at pH 7.0, cell yield and productivity were highest at a dilution rate of 0.07 per h and 0.11 per h, respectively. At dilution rates higher than 0.07 per h, glucose was no longer growth limiting, and at dilution rates above 0.11 per h, another compound seemed to have replaced glucose also as energy source. When grown in batch cultures at pH 7.0, the best yields of B. fragilis was achieved with 0.6% glucose in the fresh medium. The highest specific growth rate (mum) determined from viable counts was 0.45, corresponding to a mean generation time of 92 min.  相似文献   

11.
The Continuous fermentation of Jerusalem artichoke juice to ethanol by free cells of Kluyveromyces marxianus UCD (FST) 55-82 has been studied in a continuous-stirred-tank bioreactor at 35 degrees C and pH 4.6. A maximum yield of 90% of the theoretical was obtained at a dilution rate of 0.05 h(-1). About 95% of the sugars were utilized at dilution rates lower than 0.15 h(-1). Volumetric ethanol productivity and volumetric biomass productivity reached maximum values of 7 g ETOH/L/h and 0.6 g dry wt/L/h, respectively, at a dilution rate of 0.2 h(-1). The maintenance energy coefficient for K. marxianus culture was found to be 0.46 g sugar/g biomass/h/ Oscillatory behavior was following a change in dilution rate from a previous steady state and from batch to continuous culture. Values of specific ethanol production rate and specific sugar uptake were found to increase almost linearly with the increase of the dilution rate. The maximum specific ethanol production rate and maximum specific sugar uptake rate were found to be 2.6 g ethanol/g/ cell/h and 7.9 sugars/g cell/h, respectively. Washout occurred at a dilution rate of 0.41 h(-1).  相似文献   

12.
Growth, substrate consumption, metabolite formation, biomass composition and respiratory parameters of Kluyveromyces marxianus ATCC 26548 were determined during aerobic batch and chemostat cultivations, using mineral medium with glucose as the sole carbon source, at 30 degrees C and pH 5.0. Carbon balances closed within 95-101% in all experiments. A maximum specific growth rate of 0.56 h(-1), a biomass yield on glucose of 0.51 g g(-1), and a maximum specific consumption of oxygen of 11.1 mmol g(-1) h(-1) were obtained during batch cultures. The concentration of excreted metabolites was very low at the culture conditions applied, representing 6% of the consumed carbon at most. Acetate and pyruvate were excreted to a larger extent than ethanol under the batch conditions, and the protein content accounted for 54.6% of the biomass dry weight. Steady states were obtained during chemostats at dilution rates of 0.1, 0.25 and 0.5 h(-1). At the two former dilution rates, cells grew at carbon limitation and the biomass yield on glucose was similar to that obtained under the batch conditions. Metabolite formation was rather low, accounting for a total of 0.005 C-mol C-mol(-1) substrate. At 0.5 h(-1), although the biomass yield on glucose was similar to the value obtained under the above-mentioned conditions, the cultivation was not under carbon limitation. Under this condition, 2-oxoglutarate, acetate, pyruvate and ethanol were the prevalent metabolites excreted. Total metabolite formation only accounted to 0.056 C-mol C-mol(-1) of substrate. A very high protein and a low carbohydrate content (71.9% and 9.6% of biomass dry weight, respectively) were measured in cells under this condition. It is concluded that K. marxianus aligns with the so-called aerobic-respiring or Crabtree-negative yeasts. Furthermore, it has one of the highest growth rates among yeasts, and a high capacity of converting sugar into biomass, even when carbon is not the limiting nutrient. These results provide useful data regarding the future application of K. marxianus in processes aimed at the production of biomass-linked compounds, with high yields and productivities.  相似文献   

13.
Escherichia coli is able to grow on sugars in the presence of a bulk n-alkane phase. When E. coli is equipped with the alk genes from Pseudomonas oleovorans, the resulting recombinant strain converts n-alkanes into the corresponding alkanoic acids. To study the effects of growth rate and exposure to a bulk apolar phase on the physiology and the productivity of E. coli, we have grown this microorganism in two-liquid-phase continuous cultures containing 5% (v/v) n-octane.In contrast to batch cultures of wild-tape E. coli grown in the presence of n-octane, cells remained viable during the entire continuous culture, which lasted 200 h. Bioconversion of n-octane to n-octanoic acid by a recombinant E. coli (alk(+)) in a two-liquid-phase continuous culture was made possible by optimizing both the recombinant host strain and the conditions of culturing the organism. Continuous production in such two-phase systems has been maintained for the least 125 h without any changes in the product concentration in the fermentation medium. The volumetric productivity was determined as a function of growth rate and showed a maximum at a dilution rate D = 0.32 h(-1), reaching a continuous production rate of 0.5 g octanoate/L . h (4 tons/m(3) . year). (c) 1993 John Wiley & Sons, Inc.  相似文献   

14.
Vancomycin production in batch and continuous culture   总被引:5,自引:0,他引:5  
Production of the glycopeptide antibiotic vancomycin by two Amycolatopsis orientalis strains was examined in batch shake flask culture in a semidefined medium with peptone as the nitrogen source. Different growth and production profiles were observed with the two strains; specific production (Y(p/x)) was threefold higher with strain ATCC 19795 than with strain NCIMB 12945. A defined medium with amino acids as the nitrogen source was developed by use of the Plackett-Burman statistical screening method. This technique identified certain amino acids (glycine, phenylalanine, tyrosine, and arginine) that gave significant increased specific production, whereas phosphate was identified as inhibitory for high specific vancomycin production. Experiments made with the improved medium and strain ATCC 19795 showed that vancomycin production kinetics were either growth dissociated or growth associated, depending on the amino acid concentration. In chemostat culture at a constant dilution rate (0.087 h(-1)), specific vancomycin production rate (q(vancomycin)) decreased linearly as the medium phosphate concentration was increased from 2 to 8 mM. In both phosphate and glucose limited chemostats, q(vancomycin) was a function of specific growth rate; the maximum value was observed at D = 0.087 h(-1) (52% of the maximum specific growth rate). Under phosphate limited growth conditions, q(vancomycin) was threefold higher (0.37 mg/g dry weight/h) than under glucose limitation (0.12 mg/g dry weight/h). (c) 1996 John Wiley & Sons, Inc.  相似文献   

15.
A process for maximizing the volumetric productivity of recombinant ovine growth hormone (r-oGH) expressed in Escherichia coli during high cell density fermentation process has been devised. Kinetics of r-oGH expression as inclusion bodies and its effect on specific growth rates of E. coli cells were monitored during batch fermentation process. It was observed that during r-oGH expression in E. coli, the specific growth rate of the culture became an intrinsic property of the cells which reduced in a programmed manner upon induction. Nutrient feeding during protein expression phase of the fed-batch process was designed according to the reduction in specific growth rate of the culture. By feeding yeast extract along with glucose during fed-batch operation, high cell growth with very little accumulation of acetic acid was observed. Use of yeast extract helped in maintaining high specific cellular protein yield which resulted in high volumetric productivity of r-oGH. In 16 h of fed-batch fermentation, 3.2 g l-1 of r-oGH were produced at a cell OD of 124. This is the highest concentration of r-oGH reported to date using E. coli expression system. The volumetric productivity of r-oGH was 0.2 g l-1 h-1, which is also the highest value reported for any therapeutic protein using IPTG inducible expression system in a single stage fed-batch process.  相似文献   

16.
Alcaligenes latus has been known to produce poly(3-hydroxybutyrate) (PHB) in a growth-associated manner even under nutrient-sufficient conditions. However, the PHB content obtained by fed-batch culture was always low, at ca. 50%, which makes the recovery process inefficient. In this study, the effect of applying nitrogen limitation on the production of PHB by A. latus was examined. In flask and batch cultures, the PHB synthesis rate could be increased considerably by applying nitrogen limitation. The PHB content could be increased to 87% by applying nitrogen limitation in batch culture, which was considerably higher than that typically obtainable (50%) under nitrogen-sufficient conditions. In fed-batch culture, cells were first cultured by the DO-stat feeding strategy without applying nitrogen limitation. Nitrogen limitation was applied at a cell concentration of 76 g (dry cell weight)/liter, and the sucrose concentration was maintained within 5 to 20 g/liter. After 8 h of nitrogen limitation, the cell concentration, PHB concentration, and PHB content reached 111.7 g (dry cell weight)/liter, 98.7 g/liter, and 88%, respectively, resulting in a productivity of 4.94 g of PHB/liter/h. The highest PHB productivity, 5.13 g/liter/h, was obtained after 16 h.  相似文献   

17.
SO2–ethanol–water (SEW) spent liquor from spruce chips was successfully used for batch and continuous production of acetone, butanol and ethanol (ABE). Initially, batch experiments were performed using spent liquor to check the suitability for production of ABE. Maximum concentration of total ABE was found to be 8.79 g/l using 4-fold diluted SEW liquor supplemented with 35 g/l of glucose. The effect of dilution rate on solvent production, productivity and yield was studied in column reactor consisting of immobilized Clostridium acetobutylicum DSM 792 on wood pulp. Total solvent concentration of 12 g/l was obtained at a dilution rate of 0.21 h−1. The maximum solvent productivity (4.86 g/l h) with yield of 0.27 g/g was obtained at dilution rate of 0.64 h−1. Further, to increase the solvent yield, the unutilized sugars were subjected to batch fermentation.  相似文献   

18.
Previous work in our laboratories investigated the use of methyl alpha-glucoside (alpha-MG), a glucose analog that shares a phosphotransferase system with glucose, to modulate glucose uptake and therefore reduce acetate accumulation. The results of that study showed a significant improvement in batch culture performance and a reduction in acetate excretion without any significant effect on the growth rate in complex medium. The current study investigates the effect of supplementing the culture medium with the glucose analog alpha-MG on the metabolic fluxes of Escherichia coli under anaerobic chemostat conditions at two different dilution rates. Anaerobic chemostat studies utilizing complex media supplemented with glucose or glucose and alpha-MG at dilution rates of 0.1 and 0.4 h(-1), were performed, and the metabolic fluxes were analyzed. It was found that the addition of the glucose analog alpha-MG has an effect on the specific production rate of various extracellular metabolites. This effect is slightly greater at the higher dilution rate of 0.4 h(-1). However, the glucose analog does not cause any major shift in the central metabolic patterns. It was further observed that alpha-MG supplementation does not result in the reduction in specific acetate synthesis rate in anaerobic chemostat cultures. These results emphasize the importance of testing different strategies for metabolic manipulation under the actual operating conditions.  相似文献   

19.
The dynamics of glucose metabolites production by Escherichia coli CM 5199 was studied under the conditions of batch and continuous cultivation. Acetate and ethanol were shown to be accumulated in the cultural broth in considerable amounts, and the rate of their synthesis was directly proportional to the specific growth rate of the culture. Acetate inhibited E. coli growth as was found in experiments conducted in a turbidostat regimen. As a result, the specific growth rate of the strain decreased during both batch and continuous cultivation.  相似文献   

20.
We carried out the first simulation on multi-stage continuous high cell density culture (MSC-HCDC) to show that the MSC-HCDC can achieve batch/fed-batch product titer with much higher productivity to the fed-batch productivity using published fermentation kinetics of lactic acid, penicillin and ethanol. The system under consideration consists of n-serially connected continuous stirred-tank reactors (CSTRs) with either hollow fiber cell recycling or cell immobilization for high cell-density culture. In each CSTR substrate supply and product removal are possible. Penicillin production is severely limited by glucose metabolite repression that requires multi-CSTR glucose feeding. An 8-stage C-HCDC lactic acid fermentation resulted in 212.9 g/L of titer and 10.6 g/L/h of productivity, corresponding to 101 and 429% of the comparable lactic acid fed-batch, respectively. The penicillin production model predicted 149% (0.085 g/L/h) of productivity in 8-stage C-HCDC with 40 g/L of cell density and 289% of productivity (0.165 g/L/h) in 7-stage C-HCDC with 60 g/L of cell density compared with referring batch cultivations. A 2-stage C-HCDC ethanol experimental run showed 107% titer and 257% productivity of the batch system having 88.8 g/L of titer and 3.7 g/L/h of productivity. MSC-HCDC can give much higher productivity than batch/fed-batch system, and yield a several percentage higher titer as well. The productivity ratio of MSC-HCDC over batch/fed-batch system is given as a multiplication of system dilution rate of MSC-HCDC and cycle time of batch/fed-batch system. We suggest MSC-HCDC as a new production platform for various fermentation products including monoclonal antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号