首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hybrid 5' regulatory regions were constructed in which the upstream activator sequence (UAS) and promoter of various nif genes were exchanged with the upstream regulatory sequence (URS) of the fdhF gene from Escherichia coli. They were analysed for their regulatory response under different growth conditions with the aid of fdhF'-'lacZ or nif'-'lacZ fusions. Placement of the UAS from the Bradyrhizobium japonicum nifH gene in front of the spacer (DNA region between URS and promoter) plus promoter from fdhF renders fdhF expression activatable by the Klebsiella pneumoniae NIFA protein, both under aerobic and anaerobic conditions. This excludes the possibility that the spacer of the fdhF5' flanking region contains a site recognized by a putative oxygen- or nitrate-responsive repressor. There was also considerable activation by NIFA of fdhF expression in a construct lacking the nifH UAS but containing the fdhF spacer plus promoter. Further experimental evidence suggests that this reflects a direct interaction between NIFA and RNA polymerase at the ntrA-dependent promoter. A second set of hybrid constructs in which the URS from fdhF (E. coli) was placed in front of the nifD spacer plus promoter from B. japonicum or in front of the K. pneumoniae nifH, nifU, nifB spacers and promoters, delivered inactive constructs in the case of the nifD, nifU and nifB genes. However, a nifH'-'lacZ fusion preceded by its own spacer and promoter plus the foreign fdhF URS displayed all the regulatory characteristics of fdhF expression, i.e. anaerobic induction with formate and repression by oxygen and nitrate. Although it is not known why only one out of the four nif promoters could be activated by the fdhF URS, this result nevertheless demonstrates that the various regulatory stimuli affecting expression of fdhF in E. coli have their target at the upstream regulatory sequence.  相似文献   

3.
In the slow-growing soybean symbiont, Bradyrhizobium japonicum (strain 110), a nifA-like regulatory gene was located immediately upstream of the previously mapped fixA gene. By interspecies hybridization and partial DNA sequencing the gene was found to be homologous to nifA from Klebsiella pneumoniae and Rhizobium meliloti, and to a lesser extent, also to ntrC from K. pneumoniae. The B. japonicum nifA gene product was shown to activate B. japonicum and K. pneumoniae nif promoters (using nif::lacZ translational fusions) both in Escherichia coli and B. japonicum backgrounds. In the heterologous E. coli system activation was shown to be dependent on the ntrA gene product. Site-directed insertion and deletion/replacement mutagenesis revealed that nifA is probably the promoter-distal cistron within an operon. NifA- mutants were Fix- and pleiotropic: (i) they were defective in the synthesis of several proteins including the nifH gene product (nitrogenase Fe protein); the same proteins had been known to be repressed under aerobic growth of B. japonicum but derepressed at low O2 tension; (ii) the mutants had an altered nodulation phenotype inducing numerous, small, widely distributed soybean nodules in which the bacteroids were subject to severe degradation. These results show that nifA not only controls nitrogenase genes but also one or more genes involved in the establishment of a determinate, nitrogen-fixing root nodule symbiosis.  相似文献   

4.
5.
The fixA, fixB, fixC, and fixX genes of Rhizobium meliloti 1021 constitute an operon and are required for nitrogen fixation in alfalfa nodules. DNA homologous to the R. meliloti fixABC genes is present in all other Rhizobium and Bradyrhizobium species examined, but fixABC-homologous sequences were found in only one free-living diazotroph, Azotobacter vinelandii. To determine whether the fixABCX genes share sequence homology with any of the 17 Klebsiella pneumoniae nif genes, we determined the entire nucleotide sequence of the fixA, fixB, fixC, and fixX genes and defined four open reading frames that code for polypeptides of molecular weights 31,146, 37,786, 47,288, and 10,937, respectively. Neither DNA nor amino acid sequence homology to the R. meliloti fixA, -B, -C, and -X genes was found in the K. pneumoniae nif operon. The fixX gene contains a cluster of cysteine residues characteristic of ferredoxins and is highly homologous to an Azotobacter ferredoxin which has been shown to donate electrons to nitrogenase. The fixABC operon contains a promoter region that is highly homologous to other nifA-activated promoters. We also found a duplication of the 5' end of the fixABCX operon; a 250-bp region located 520 bp upstream of the fixABCX promoter bears more than 65% homology to the 5' end of the transcribed region, including the first 32 codons of fixA.  相似文献   

6.
The Klebsiella pneumoniae nifU promoter is positively controlled by the NifA protein and requires a form of RNA polymerase holoenzyme containing the rpoN encoded sigma factor, sigma 54. Occupancy of the K. pneumoniae nifU promoter by NifA was examined using in vivo dimethyl sulphate footprinting. Three binding sites for NifA (Upstream Activator Sequences, UASs 1, 2 and 3) located at -125, -116 and -72 were identified which conform to the UAS consensus sequence TGT-N10-ACA. An additional NifA binding site was identified at position -90. The UASs located at -125 (UAS1) and -116 (UAS2) overlap and do not appear to bind NifA as independent sites. They may represent a NifA binding site interacting with two NifA dimers. UAS3 is located at -72, and abuts a binding site for integration host factor (IHF) and is not normally highly occupied by NifA. In the absence of IHF UAS3 showed increased occupancy by NifA. Mutational and footprinting analysis of the three UASs indicates (1) IHF and NifA can compete for binding and that this competition influences the level of expression from the nifU promoter (2) that UAS2 is a principle sequence of the UAS 1,2 region required for activation and (3) that none of the NifA binding sites interacts with NifA independently. In vivo KMnO4 footprinting demonstrated that NifA catalyses open complex formation at the nifU promoter. IHF was required for maximal expression from the nifU and nifH promoters in Escherichia coli, and for the establishment of a Nif+ phenotype in E. coli from the nif plasmid pRD1.  相似文献   

7.
8.
DNA fragments containing either the nifD or nifH promoter and 5' structural gene sequences from Bradyrhizobium japonicum I110 were fused in frame to the lacZ gene. Stable integration of these nif promoter-lacZ fusions by homologous double reciprocal crossover into a symbiotically nonessential region of the B. japonicum chromosome provided an easy assay for the effects of potential nif regulatory mutants. The level of beta-galactosidase activity expressed from these two nif promoter-lacZ fusions was assayed in bacteroids of B. japonicum I110 wild type and Fix mutants generated by transposon Tn5 mutagenesis and identified in the accompanying paper. No nif-positive regulatory mutants were identified from among an array of Fix- mutants in which Tn5 was inserted 9 kilobase pairs upstream of the nifDK operon and within the 18-kilobase-pair region separating the nifDK and nifH operons. This result indicates that there are no genes in these regions involved in the regulation of nitrogenase structural gene expression. Interestingly, the level of beta-galactosidase activity expressed from the nifH promoter was twice that expressed from the nifD promoter, suggesting that the normal cellular level of the nifH gene product in bacteroids is in a 2:1 ratio with the nifD gene product instead of in the 1:1 stoichiometry of the nitrogenase enzyme complex.  相似文献   

9.
10.
11.
12.
Rhizobium japonicum nitrogenase Fe protein gene (nifH).   总被引:15,自引:6,他引:9       下载免费PDF全文
  相似文献   

13.
14.
15.
16.
17.
The location of structural nitrogen-fixation genes was determined for the slow- and fast-growing types of Rhizobium japonicum. Slow-growing R. japonicum strains do not harbor structural nif genes, homologous to nifD and nifH, on large plasmids (100 to 200 megadaltons). In contrast, all fast-growing R. japonicum strains, except PRC194, contain structural nif genes on large plasmids.  相似文献   

18.
19.
20.
Abstract A modified capture polymerase chain reaction (CPCR) technique was used to isolate the entire sequence of the nifH gene and its flanking regions from a natural population of Trichodesmium sp. A set of specific CPCR primers derived from a known 72-bp DNA segment of the nifH sequence permitted isolation of both the upstream and the downstream region of Trichodesmium sp. nifH . The 882-bp nifH gene presented here is the first full-length gene isolated from Trichodesmium sp. A sequence similar to a nif -like promoter was found in front of nifH . The nifH open reading frame of Trichodesmium sp. encoded 294 amino acids. Comparative analysis of the Trichodesmium sp. NifH sequence revealed strong similarity with 23 known NifH proteins. Amino acids postulated to be involved in binding of the 4Fe:4S cluster and those subjected to ADP-ribosylation were present. An open reading frame for the nifD gene was identified 189 bp downstream of nifH . A sequence similar to the consensus of the nif -like promoter was also found in front of nifD .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号