首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indirect antibody labeling techniques were used to determine when cells in the chick embryo wing bud begin to synthesize troponin. Frozen sections of stage 22 through stage 27 wing buds were treated with antibodies to the troponin complex and fluorescein-labeled antiimmunoglobulin. Cells producing detectable quantities of troponin were found first in late stage 24 or early stage 25 wing buds; all wing buds stage 25 and older contained labeled cells. Cells synthesizing troponin were initially localized in the muscle-forming areas of the wing bud nearest to the body wall. As the wing bud developed, cells located in more distal areas of the wing bud became labeled with fluorescent antibody, and the number of cells engaged in troponin synthesis increased in all areas. At all stages in which labeling occurred, some cells contained fluorescent cross-striations. When placed in the context of recent studies on the appearance of myofibrillar proteins, these results indicate that myogenic cells in the chick limb bud begin to synthesize large quantities of troponin at approximately the same time as the other muscle contractile proteins.  相似文献   

2.
Using chimeras consisting of chick embryos that had received substitution grafts of quail somites, we have determined the distalmost extension of the myogenic primordia in the outgrowing wing bud at 5 days of incubation. At Hamburger-Hamilton stage 25 the most distal premuscle cell is consistently 300 mum or more from the apex of the wing mesoblast. The stage 25 wing tip resembles very early whole limb buds in not having proceeded beyond the mesenchymal state or having expressed markers of terminal differentiation. However, unlike early whole limb buds it is free of a myogenic subpopulation. We therefore propose that the stage 25 wing tip is the appropriate system for in vitro and molecular studies of cartilage differentiation.  相似文献   

3.
4.
5.
Undifferentiated limb bud mesenchyme consists of at least two separate, possibly predetermined, populations of progenitor cells, one derived from somitic mesoderm that gives rise exclusively to skeletal muscle and one derived from somatopleural mesoderm that gives rise to the cartilage and connective tissue of the limb. In the present study, we demonstrate that the inherent migratory capacity of myogenic precursor cells can be used to physically separate the myogenic and chondrogenic progenitor cells of the undifferentiated limb mesenchyme at the earliest stages of limb development. When the undifferentiated mesenchyme of stage 18/19 chick embryo wing buds or from the distal subridge region of stage 22 wing buds is placed intact upon the surface of fibronectin (FN)-coated petri dishes, a large population of cells emigrates out of the explants onto the FN substrates and differentiates into an extensive interlacing network of bipolar spindle-shaped myoblasts and multinucleated myotubes that stain with monoclonal antibody against muscle-specific fast myosin light chain. In contrast, the cells of the explants that remain in place and do not migrate away undergo extensive cartilage differentiation. Significantly, there is no emigration of myogenic cells out of explants of stage 25 distal subridge mesenchyme, which lacks myogenic progenitor cells. Myogenic precursor cells stream out of mesenchyme explants in one or occasionally two discrete locations, suggesting they are spatially segregated in discrete regions of tissue at the time of its explantation. There are subtle overall differences in the morphologies of the myogenic cells that form in stage 18/19 and stage 22 distal subridge mesenchyme explants. Finally, groups of nonmyogenic nonfibroblastic cells which are fusiform-shaped and oriented in distinct parallel arrays characteristically are found along the periphery of stage 18/19 wing mesenchyme explants. Our observations provide support for the concept that undifferentiated limb mesenchyme consists of independent subpopulations of committed precursor cells and provides a system for studying the early determinative and regulatory events involved in myogenesis or chondrogenesis.  相似文献   

6.
We have isolated an avian muscle cell line (QM) which has the essential features of established mammalian muscle cell lines. The experiments reported here were undertaken to determine the suitability of QM cells for the introduction and analysis of cloned transgenes. The promoter of the cardiac troponin T (cTNT) gene has been previously shown to contain sequence elements which govern muscle-specific expression of the chloramphenicol acetyltransferase (CAT) gene in transiently transfected primary cell cultures. We show here that QM cells stably harboring cTNT promoter-CAT fusion genes up-regulate CAT expression in concert with myogenic differentiation, and that as few as 110 upstream nucleotides are sufficient for such differentiation-dependent regulation. In addition, both transient and stable transfection experiments demonstrate that differentiated QM cells possess trans-acting factors necessary for the expression of the skeletal alpha-actin promoter, despite the absence of mRNA or protein product from the endogenous sarcomeric actin genes in these cells. Finally, to follow the developmental potential of QM cells in vivo, we created a clone, QM2ADH, which constitutively expresses the histochemical marker transgene encoding Drosophila alcohol dehydrogenase. When surgically inserted into the limb buds of developing chick embryos, QM2ADH cells are incorporated into endogenous developing muscles, indicating that QM cells are capable of recognizing and responding to host cues governing muscle morphogenesis. Thus, QM cells are versatile as recipients of transgenes for the in vitro and in vivo analysis of molecular events in muscle development.  相似文献   

7.
8.
The borders of myogenic cell invasion of avian wing and leg buds were determined using the interspecific grafting technique between quail and chick embryos. Distal parts of quail limb buds were grafted ectopically into the coelomic cavity of chick embryos. The presence or absence of skeletal muscle was investigated in histological sections of the reincubated grafts. A comparison between the borders of myogenic cell invasion of the wing and leg buds showed that the differences in the position of the distal most muscles in the adult avian limbs could be a consequence of the cranio-caudal sequence of development.  相似文献   

9.
The effect of bovine fibroblast growth factor (FGF) on the in vitro differentiation of various stage-specific populations of skeletal muscle colony-forming (MCF) cells from the developing chick wing bud was examined. The results show that bovine FGF (3 ng/ml daily) delays the onset of differentiation of MCF cells obtained from Day 4-12 wing buds by about 1 day; but, in addition, the results demonstrate that a subset of colony-forming cells derived from stage 23-27 (Day 4-5) embryos require FGF for myogenic differentiation. The FGF-dependent MCF cells attach and grow in the absence of FGF, but do not differentiate unless given FGF within 1-3 days after inoculation. Thus, between stages 23 and 27 the myogenic population contains discrete subclasses that are FGF dependent and others that are FGF independent. Both subclasses are found within two of the previously classified MCF cell populations, the early and late MCF cells. FGF-dependent and independent early MCF cells are present within the wing bud until stage 25, after which only the FGF-independent early MCF subclass persists. Similarly, both FGF-dependent and -independent late MCF cells are present between stages 25 and 27, but only the FGF-independent late MCF subclass remains after stage 31. The mechanisms responsible for relative changes in the proportions of MCF cell subclasses and for the FGF requirements are not understood. In addition, while FGF is required, there is no evidence suggesting that FGF triggers skeletal muscle terminal differentiation within the FGF-dependent MCF cell subclasses.  相似文献   

10.
11.
Alternative splicing of cardiac troponin T (cTNT) exon 5 undergoes a developmentally regulated switch such that exon inclusion predominates in embryonic, but not adult, striated muscle. We previously described four muscle-specific splicing enhancers (MSEs) within introns flanking exon 5 in chicken cTNT that are both necessary and sufficient for exon inclusion in embryonic muscle. We also demonstrated that CUG-binding protein (CUG-BP) binds a conserved CUG motif within a human cTNT MSE and positively regulates MSE-dependent exon inclusion. Here we report that CUG-BP is one of a novel family of developmentally regulated RNA binding proteins that includes embryonically lethal abnormal vision-type RNA binding protein 3 (ETR-3). This family, which we call CELF proteins for CUG-BP- and ETR-3-like factors, specifically bound MSE-containing RNAs in vitro and activated MSE-dependent exon inclusion of cTNT minigenes in vivo. The expression of two CELF proteins is highly restricted to brain. CUG-BP, ETR-3, and CELF4 are more broadly expressed, and expression is developmentally regulated in striated muscle and brain. Changes in the level of expression and isoforms of ETR-3 in two different developmental systems correlated with regulated changes in cTNT splicing. A switch from cTNT exon skipping to inclusion tightly correlated with induction of ETR-3 protein expression during differentiation of C2C12 myoblasts. During heart development, the switch in cTNT splicing correlated with a transition in ETR-3 protein isoforms. We propose that ETR-3 is a major regulator of cTNT alternative splicing and that the CELF family plays an important regulatory role in cell-specific alternative splicing during normal development and disease.  相似文献   

12.
Transcriptional repression of an embryo-specific muscle gene   总被引:5,自引:0,他引:5  
  相似文献   

13.
14.
15.
Myogenic tissue from embryonic chick wing and leg buds is composed of several subpopulations of myoblasts. These clonally distinct subpopulations first appear at different developmental stages, and are distributed differently along the proximo-distal axis of the buds, giving the appearance of a gradient of myoblast cell types. This myoblast distribution pattern has been utilized to investigate the dependence of muscle tissue outgrowth and development on the presence of the apical ectodermal ridge (AER). Wing buds which have had the AER removed at stages 17–18 (2 days) subsequently develop normal proximal regions, but fail to elaborate skeletal structures distal to the humerus. The myoblast pattern of operated buds is also normal proximally, but distal portions of the pattern are not observed. Removal of the AER at stage 20 (3 days) results in buds which develop slightly more distal skeletal structures and the coinciding portions of the myoblast pattern, but in which the more distal portions of the normal myoblast gradient are truncated. These data suggest that elaboration of the myogenic pattern in early limb buds is dependent on the continuing presence of the AER, and that early removal of the AER leads to the subsequent cessation of myoblast pattern specification.  相似文献   

16.
We have utilized a key biochemical determinant of muscle fiber type, myosin isoform expression, to investigate the initial developmental program of future fast and slow skeletal muscle fibers. We examined myosin heavy chain (HC) phenotype from the onset of myogenesis in the limb bud muscle masses of the chick embryo through the differentiation of individual fast and slow muscle masses, as well as in newly formed myotubes generated in adult muscle by weight overload. Myosin HC isoform expression was analyzed by immunofluorescence localization with a battery of anti-myosin antibodies and by electrophoretic separation with SDS-PAGE. Results showed that the initial myosin phenotype in all skeletal muscle cells formed during the embryonic period (until at least 8 days in ovo) consisted of expression of a myosin HC which shares antigenic and electrophoretic migratory properties with ventricular myosin and a distinct myosin HC which shares antigenic and electrophoretic migratory properties with fast skeletal isomyosin. Similar results were observed in newly formed myotubes in adult muscle. Future fast and slow muscle fibers could only be discriminated from each other in developing limb bud muscles by the onset of expression of slow skeletal myosin HC at 6 days in ovo. Slow skeletal myosin HC was expressed only in myotubes which became slow fibers. These findings suggest that the initial commitment of skeletal muscle progenitor cells is to a common skeletal muscle lineage and that commitment to a fiber-specific lineage may not occur until after localization of myogenic cells in appropriate premuscle masses. Thus, the process of localization, or events which occur soon thereafter, may be involved in determining fiber type.  相似文献   

17.
Summary By modifying the temporal relationship between connective tissue and myogenic cell invasion during early limb bud development new evidence of the organizing role of the connective tissue was obtained.Muscle cell-deprived wing buds were allowed to grow up to stages 22 to 27 of Hamburger and Hamilton, when they received a transplant of quail myogenic cells (somitic mesoderm or wing premuscular mass) into the dorsal face of their presumptive upper arm. Muscular arrangement in forearm and hand was analyzed 4 days later. In 8 out of 14 of those cases which had received a graft of premuscular mass before stage 25 of Hamburger and Hamilton, muscle development took place distally to the graft-site in accordance with the wing segment.  相似文献   

18.
19.
20.
Myogenesis, the process of skeletal muscle formation, is a highly coordinated multistep biological process. Accumulating evidence suggests that long non-coding RNAs (lncRNAs) are emerging as a gatekeeper in myogenesis. Up to now, most studies on muscle development-related lncRNAs are mainly focussed on humans and mice. In this study, a novel muscle highly expressed lncRNA, named lnc23, localized in nucleus, was found differentially expressed in different stages of embryonic development and myogenic differentiation. The knockdown and over-expression experiments showed that lnc23 positively regulated the myogenic differentiation of bovine skeletal muscle satellite cells. Then, TMT 10-plex labelling quantitative proteomics was performed to screen the potentially regulatory proteins of lnc23. Results indicated that lnc23 was involved in the key processes of myogenic differentiation such as cell fusion, further demonstrated that down-regulation of lnc23 may inhibit myogenic differentiation by reducing signal transduction and cell fusion among cells. Furthermore, RNA pulldown/LC-MS and RIP experiment illustrated that PFN1 was a binding protein of lnc23. Further, we also found that lnc23 positively regulated the protein expression of RhoA and Rac1, and PFN1 may negatively regulate myogenic differentiation and the expression of its interacting proteins RhoA and Rac1. Hence, we support that lnc23 may reduce the inhibiting effect of PFN1 on RhoA and Rac1 by binding to PFN1, thereby promoting myogenic differentiation. In short, the novel identified lnc23 promotes myogenesis of bovine skeletal muscle satellite cells via PFN1-RhoA/Rac1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号