首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bacterial biomass production is often estimated from incorporation of radioactively labeled leucine into protein, in both oxic and anoxic waters and sediments. However, the validity of the method in anoxic environments has so far not been tested. We compared the leucine incorporation of bacterial assemblages growing in oxic and anoxic waters from three lakes differing in nutrient and humic contents. The method was modified to avoid O(2) contamination by performing the incubation in syringes. Isotope saturation levels in oxic and anoxic waters were determined, and leucine incorporation rates were compared to microscopically observed bacterial growth. Finally, we evaluated the effects of O(2) contamination during incubation with leucine, as well as the potential effects of a headspace in the incubation vessel. Isotope saturation occurred at a leucine concentration of above about 50 nM in both oxic and anoxic waters from all three lakes. Leucine incorporation rates were linearly correlated to observed growth, and there was no significant difference between oxic and anoxic conditions. O(2) contamination of anoxic water during 1-h incubations with leucine had no detectable impact on the incorporation rate, while a headspace in the incubation vessel caused leucine incorporation to increase in both anoxic and O(2)-contaminated samples. The results indicate that the leucine incorporation method relates equally to bacterial growth rates under oxic and anoxic conditions and that incubation should be performed without a headspace.  相似文献   

2.
We studied the population sizes and substrate incorporation patterns of three phylogenetic groups of Betaproteobacteria in a coastal subtropical lagoon that is characterized by a sharp transition from humic freshwater to turbid brackish water. Various cellular processes were addressed by short-term incubations with four radiolabelled compounds and microautoradiographic assessment of substrate incorporation. Group-specific differences in the abundances and the respective physiological state of the three populations were observed upon transfer from the humic-rich compartment to the main body of the lagoon (estimated at 1–2 days). Members of the clade B of Polynucleobacter (PnecB) experienced only an insignificant change in cell numbers, but displayed a general metabolic downshift, carbon metabolism (glucose incorporation) being most affected. By contrast, bacteria from the closely related Polynucleobacter C clade (PnecC) clearly differed in total abundances and in the numbers of DNA-synthesizing or glucose incorporating cells. At the same time, PnecC bacteria maintained comparable levels of protein synthesis (leucine uptake) in both lagoon compartments, and the proportion of cells incorporating N -acetylglucosamine was even higher in the main body of the lagoon. Members of the R-BT lineage showed little changes in cell numbers, DNA synthesis and carbon metabolism. Altogether, the observed patterns of substrate metabolism suggest that different bacterial populations in the lagoon undergo specific physiological adjustments in response to changing environmental conditions.  相似文献   

3.
Bacterial biomass production is often estimated from incorporation of radioactively labeled leucine into protein, in both oxic and anoxic waters and sediments. However, the validity of the method in anoxic environments has so far not been tested. We compared the leucine incorporation of bacterial assemblages growing in oxic and anoxic waters from three lakes differing in nutrient and humic contents. The method was modified to avoid O2 contamination by performing the incubation in syringes. Isotope saturation levels in oxic and anoxic waters were determined, and leucine incorporation rates were compared to microscopically observed bacterial growth. Finally, we evaluated the effects of O2 contamination during incubation with leucine, as well as the potential effects of a headspace in the incubation vessel. Isotope saturation occurred at a leucine concentration of above about 50 nM in both oxic and anoxic waters from all three lakes. Leucine incorporation rates were linearly correlated to observed growth, and there was no significant difference between oxic and anoxic conditions. O2 contamination of anoxic water during 1-h incubations with leucine had no detectable impact on the incorporation rate, while a headspace in the incubation vessel caused leucine incorporation to increase in both anoxic and O2-contaminated samples. The results indicate that the leucine incorporation method relates equally to bacterial growth rates under oxic and anoxic conditions and that incubation should be performed without a headspace.  相似文献   

4.
It has been hypothesized that the potential for anaerobic metabolism might be a common feature of bacteria in coastal marine waters (L. Riemann and F. Azam, Appl. Environ. Microbiol. 68: 5554-5562, 2002). Therefore, we investigated whether different phylogenetic groups of heterotrophic picoplankton from the coastal North Sea were able to take up a simple carbon source under anoxic conditions. Oxic and anoxic incubations (4 h) or enrichments (24 h) of seawater with radiolabeled glucose were performed in July and August 2003. Bacteria with incorporated substrate were identified by using a novel protocol in which we combined fluorescence in situ hybridization and microautoradiography of cells on membrane filters. Incorporation of glucose under oxic and anoxic conditions was found in alpha-Proteobacteria, gamma-Proteobacteria, and the Cytophaga-Flavobacterium cluster of the Bacteroidetes at both times, but not in marine Euryarchaeota. In July, the majority of cells belonging to the alpha-proteobacterial Roseobacter clade showed tracer incorporation both in oxic incubations and in oxic and anoxic enrichments. In August, only a minority of the Roseobacter cells, but most bacteria affiliated with Vibrio spp., were able to incorporate the tracer under either condition. A preference for glucose uptake under anoxic conditions was observed for bacteria related to Alteromonas and the Pseudoalteromonas-Colwellia group. These genera are commonly considered to be strictly aerobic, but facultatively fermentative strains have been described. Our findings suggest that the ability to incorporate substrates anaerobically is widespread in pelagic marine bacteria belonging to different phylogenetic groups. Such bacteria may be abundant in fully aerated coastal marine surface waters.  相似文献   

5.
It has been hypothesized that the potential for anaerobic metabolism might be a common feature of bacteria in coastal marine waters (L. Riemann and F. Azam, Appl. Environ. Microbiol. 68: 5554-5562, 2002). Therefore, we investigated whether different phylogenetic groups of heterotrophic picoplankton from the coastal North Sea were able to take up a simple carbon source under anoxic conditions. Oxic and anoxic incubations (4 h) or enrichments (24 h) of seawater with radiolabeled glucose were performed in July and August 2003. Bacteria with incorporated substrate were identified by using a novel protocol in which we combined fluorescence in situ hybridization and microautoradiography of cells on membrane filters. Incorporation of glucose under oxic and anoxic conditions was found in α-Proteobacteria, γ-Proteobacteria, and the Cytophaga-Flavobacterium cluster of the Bacteroidetes at both times, but not in marine Euryarchaeota. In July, the majority of cells belonging to the α-proteobacterial Roseobacter clade showed tracer incorporation both in oxic incubations and in oxic and anoxic enrichments. In August, only a minority of the Roseobacter cells, but most bacteria affiliated with Vibrio spp., were able to incorporate the tracer under either condition. A preference for glucose uptake under anoxic conditions was observed for bacteria related to Alteromonas and the Pseudoalteromonas-Colwellia group. These genera are commonly considered to be strictly aerobic, but facultatively fermentative strains have been described. Our findings suggest that the ability to incorporate substrates anaerobically is widespread in pelagic marine bacteria belonging to different phylogenetic groups. Such bacteria may be abundant in fully aerated coastal marine surface waters.  相似文献   

6.
Mineralization and redistribution of carbon from14C-labelled oat shoots and [14C(U)] labelled glucose, leucine, acetate and phenylacetate were studied in light loamy sand and medium clay loam under different levels of mineral nutrition. Losses of mineralized14C as CO2 were greater in the sandy soil than in the clay soil. NPK and NPK+Ca fertilization increased the rates of decay of the introduced plant organic matter. Among the small molecular organic compounds glucose was degraded fastest and phenylacetate slowest. Incorporation of radioactive carbon into humus fractions varied and depended on the nature of the compound introduced and on the soil type. Carbon of glucose, phenylacetate and acetate was mainly incorporated into fulvic acids, whereas14C of leucine was almost evenly distributed between humic and fulvic acids and14C of oat residues in fulvic acids and humin fractions. There was significantly higher incorporation of14C into humic acids and lower incorporation into humins in the sandy soil compared to the clay soil. NPK+Ca decreased the conversion of14C from phenylacetate and acetate to bitumens and increased its content in humic acids, particularly in the clay soil. The incorporation of14C from phenylacetate to humins benefitted from mineral fertilization during the first 30 days of the experiment in both soils.  相似文献   

7.
The Polynucleobacter-Euplotes association is an obligatory symbiotic system between a monophyletic group of ciliate species belonging to the genus Euplotes and bacteria of the species Polynucleobacter necessarius (Betaproteobacteria). Both organisms are unable to survive independently. Several studies revealed the existence of free-living populations of Polynucleobacter bacteria which are phylogenetically closely related to the endosymbiotic ones, but never share associations with Euplotes in the natural environment. Hence, following the most parsimonious explanation on the origin of the association, this symbiosis should represent a synapomorphic character for the hosts' clade. Nevertheless, phylogenetic analyses performed on an increased number of strains here presented suggest that Euplotes species, during their evolution, recruited Polynucleobacter bacteria as symbionts more than once. Moreover, in three cases, we observed different bacteria as obligate symbionts. These symbionts are the first characterized representatives of a phylogenetic lineage branching in a basal position with respect to the genus Polynucleobacter. The hypothesis that the original obligate symbionts belonged to this newly discovered clade and that, only subsequently, in most cases they have been replaced by Polynucleobacter bacteria recruited from the environment is proposed and discussed. The evolutionary path of this association seems anyway to have been more complex than so far supposed.  相似文献   

8.
The distribution and abundance of Betaproteobacteria and three of its genera - Limnohabitans (R-BT065 lineage), Polynucleobacter (including subclusters Polynucleobacter necessarius and Polynucleobacter acidiphobus/Polynucleobacter difficilis), and Methylophilus - across the epilimnia of 72 limnologically diverse freshwater habitats were investigated using fluorescence in situ hybridization. Moreover, seasonal development of Betaproteobacteria subgroups along the longitudinal axis of a reservoir was followed. Betaproteobacteria comprised on average 29.1%, Polynucleobacter 11.6%, P.?necessarius 10.1%, P.?acidiphobus/difficilis 0.5%, Limnohabitans 8.9%, and Methylophilus 0.9% of total bacterioplankton cells in the investigated habitats. Polynucleobacter necessarius and Limnohabitans coexisted in the majority of habitats but showed contrasting abundance patterns along the pH gradient of habitats (pH, 3.8-8.5). The observed distribution patterns could theoretically be explained by different preferences for substrate sources, that is, substances of humic origin in acidic waters and algal-derived substances in alkaline waters. However, substrate utilization patterns observed in laboratory experiments indicate no coherent group-specific differences in substrate preferences. Interestingly, similar distribution patterns were revealed for Limnohabitans and P.?acidiphobus/difficilis, suggesting similar ecological adaptations of these distantly related taxa. Our findings further emphasize that at least two taxa of freshwater Betaproteobacteria represent ecologically diversified groups. Investigations at higher phylogenetic resolution are required for obtaining further insights into their ecology.  相似文献   

9.
Anoxia occurs in bottom waters of stratified estuaries when respiratory consumption of oxygen, primarily by bacteria, outpaces atmospheric and photosynthetic reoxygenation. Once water becomes anoxic, bacterioplankton must change their metabolism to some form of anaerobic respiration. Analysis of redox chemistry in water samples spanning the oxycline of Chesapeake Bay during the summer of 2004 suggested that there was a succession of respiratory metabolism following the loss of oxygen. Bacterial community doubling time, calculated from bacterial abundance (direct counts) and production (anaerobic leucine incorporation), ranged from 0.36 to 0.75 day and was always much shorter than estimates of the time that the bottom water was anoxic (18 to 44 days), indicating that there was adequate time for bacterial community composition to shift in response to changing redox conditions. However, community composition (as determined by PCR-denaturing gradient gel electrophoresis analysis of 16S rRNA genes) in anoxic waters was very similar to that in surface waters in June when nitrate respiration was apparent in the water column and only partially shifted away from the composition of the surface community after nitrate was depleted. Anoxic water communities did not change dramatically until August, when sulfate respiration appeared to dominate. Surface water populations that remained dominant in anoxic waters were Synechococcus sp., Gammaproteobacteria in the SAR86 clade, and Alphaproteobacteria relatives of Pelagibacter ubique, including a putative estuarine-specific Pelagibacter cluster. Populations that developed in anoxic water were most similar (<92% similarity) to uncultivated Firmicutes, uncultivated Bacteroidetes, Gammaproteobacteria in the genus Thioalcalovibrio, and the uncultivated SAR406 cluster. These results indicate that typical estuarine bacterioplankton switch to anaerobic metabolism under anoxic conditions but are ultimately replaced by different organisms under sulfidic conditions.  相似文献   

10.
Sequencing batch operation was used for nutrient (COD, NH4-N, NO3-N, PO4-P) removal from synthetic wastewater by using different carbon sources. Operation consisted of anaerobic, anoxic, oxic, anoxic and oxic (An/Ax/Ox/Ax/Ox) phases with durations of 2/1/4.5/1.5/1.5 h. Glucose, acetate and a mixture of glucose/acetate were used as carbon source to yield a COD/N/P ratio of 100/5/1.5 in the feed. Sludge age was kept constant at 10 days. COD, NH4-N, NO3-N and PO4-P removal efficiencies were maximum at the levels of 96%, 87%, 81% and 90% respectively, when a mixture (50/50) of glucose and acetate was used.  相似文献   

11.
The Black Sea is the largest anoxic water basin on Earth and its stratified water column comprises an upper oxic, middle suboxic and a lower permanently anoxic, sulfidic zone. The abundance of sulfate-reducing bacteria (SRB) in water samples was determined by quantifying the copy number of the dsrA gene coding for the alpha subunit of the dissimilatory (bi)sulfite reductase using real-time polymerase chain reaction. The dsrA gene was detected throughout the whole suboxic and anoxic zones. The maximum dsrA copy numbers were 5 x 10(2) and 6.3 x 10(2) copies ml(-1) at 95 m in the suboxic and at 150 m in the upper anoxic zone, respectively. The proportion of SRB to total Bacteria was 0.1% in the oxic, 0.8-1.9% in the suboxic and 1.2-4.7% in the anoxic zone. A phylogenetic analysis of 16S rDNA clones showed that most clones from the anoxic zone formed a coherent cluster within the Desulfonema-Desulfosarcina group. A similar depth profile as for dsrA copy numbers was obtained for the concentration of non-isoprenoidal dialkyl glycerol diethers (DGDs), which are most likely SRB-specific lipid biomarkers. Three different DGDs were found to be major components of the total lipid fractions from the anoxic zone. The DGDs were depleted in (13)C relative to the delta(13)C values of dissolved CO(2) (delta(13)C(CO2)) by 14-19 per thousand. Their delta(13)C values [delta(13)C(DGD(II-III))] co-varied with depth showing the least (13)C-depleted values in the top of the sulfidic, anoxic zone and the most (13)C-depleted values in the deep anoxic waters at 1500 m. This co-variation provides evidence for CO(2) incorporation by the DGD(II-III)-producing SRB, while the 1:2 relationship between delta(13)C(CO2) and delta(13)C(DGD(II-III)) indicates the use of an additional organic carbon source.  相似文献   

12.
We studied the carbon dioxide fixation activity in a stratified hypereutrophic karstic lagoon using a combination of fingerprinting techniques targeting bacterial and archaeal 16S rRNA genes, functional gene cloning [the acetyl-CoA carboxylase (accC)], and isotopic labelling ((14)C-bicarbonate) coupled to single-cell analyses [microautoradiography combined with catalyzed reported deposition-FISH (MAR-CARD-FISH)]. The microbial planktonic community was dominated by bacteria with maximal abundances of archaea just below the oxic/anoxic transition zone (7% of total cells). In situ incubations with radiolabelled bicarbonate showed maximal photoassimilation activity in the oxic epilimnion, whereas dark CO(2) fixation was consistently observed throughout the water column, with a maximum at the oxic/anoxic interface (8.6 mg C m(-3) h(-1)). The contributions of light and dark carbon fixation activities in the whole water column were 69% and 31% of the total C incorporated, respectively. MAR-CARD-FISH incubations corroborated these results and revealed that the highest fraction of bacterial and archaeal cells actively uptaking bicarbonate in the light was found at the surface. The bacterial community was mainly composed of green sulfur bacteria (Chlorobi) and members of the Betaproteobacteria and the Bacteroidetes. The archaeal assemblage was composed of phylotypes of the Miscellaneous Crenarchaeotic Group and a few methanogens. Clone libraries of the accC gene showed an absolute dominance of bacterial carboxylases. Our results suggest that the dark carbon fixation activity measured was mainly related to CO(2) incorporation by heterotrophs rather than to the activity of true chemoautotrophs.  相似文献   

13.
Anoxia occurs in bottom waters of stratified estuaries when respiratory consumption of oxygen, primarily by bacteria, outpaces atmospheric and photosynthetic reoxygenation. Once water becomes anoxic, bacterioplankton must change their metabolism to some form of anaerobic respiration. Analysis of redox chemistry in water samples spanning the oxycline of Chesapeake Bay during the summer of 2004 suggested that there was a succession of respiratory metabolism following the loss of oxygen. Bacterial community doubling time, calculated from bacterial abundance (direct counts) and production (anaerobic leucine incorporation), ranged from 0.36 to 0.75 day and was always much shorter than estimates of the time that the bottom water was anoxic (18 to 44 days), indicating that there was adequate time for bacterial community composition to shift in response to changing redox conditions. However, community composition (as determined by PCR-denaturing gradient gel electrophoresis analysis of 16S rRNA genes) in anoxic waters was very similar to that in surface waters in June when nitrate respiration was apparent in the water column and only partially shifted away from the composition of the surface community after nitrate was depleted. Anoxic water communities did not change dramatically until August, when sulfate respiration appeared to dominate. Surface water populations that remained dominant in anoxic waters were Synechococcus sp., Gammaproteobacteria in the SAR86 clade, and Alphaproteobacteria relatives of Pelagibacter ubique, including a putative estuarine-specific Pelagibacter cluster. Populations that developed in anoxic water were most similar (<92% similarity) to uncultivated Firmicutes, uncultivated Bacteroidetes, Gammaproteobacteria in the genus Thioalcalovibrio, and the uncultivated SAR406 cluster. These results indicate that typical estuarine bacterioplankton switch to anaerobic metabolism under anoxic conditions but are ultimately replaced by different organisms under sulfidic conditions.  相似文献   

14.
Although many northern peat-forming wetlands (peatlands) are a suitable habitat for anaerobic CH 4 -producing bacteria (methanogens), net CH 4 fluxes are typically low in forested systems. We examined whether soil factors (aeration, substrate availability, peat size fractions) constrained net CH 4 production in peat from a Sphagnum -moss dominated, forested peatland in central New York State. The mean rate of net CH 4 production measured at 24° C was 79 nmol g -1 d -1 , and the mean rate of CO 2 production (respiration) was 5.7 w mol g -1 d -1 , in surface (0 to 10 cm) and subsurface (30 to 40 cm) peat. Saturated peat (900% water content) exposed to oxic conditions for 2 days or 14 days showed no net CH 4 production when subsequently exposed to anoxic conditions. Rates of CO 2 production, measured concomitantly, were essentially the same under oxic and anoxic conditions, and net CH 4 consumption under oxic conditions was barely affected by short-term exposure to anoxic conditions. Therefore, methanogens were particularly sensitive to aeration. Net CH 4 production in whole peat increased within hours of adding either acetate, glucose, or ethanol, substrates that methanogens can convert directly or indirectly into CH 4 , indicating that availability of these substrate might limit net CH 4 production in situ. In longer incubations of 30 days, only ethanol addition stimulated a large increase in net CH 4 production, suggesting growth in the population of methanogens when ethanol was available. We fractionated peat into size fractions and the largest sized fraction (> 1.19 mm), composed mostly of roots, showed the greatest net CH 4 production, although net CH 4 production in smaller fractions showed the largest response to ethanol addition. The circumstantial evidence presented here, that ethanol coming from plant roots supports net CH 4 production in forested sites, merits more research.  相似文献   

15.
Fluorescent in situ hybridization (FISH) was used to analyze the abundance and phylogenetic composition of sulfate-reducing bacteria in the aerobic waters and in the oxic/anoxic transitional zone (chemocline) of the Black Sea, where biogenic formation of reduced sulfur compounds was detected by radioisotope techniques. Numerous sulfate-reducing bacteria of the genera Desulfotomaculum (30.5% of detected bacterial cells), Desulfovibrio (29.6%), and Desulfobacter (6.7%) were revealed in the aerobic zone at a depth of 30 m, while Desulfomicrobium-related bacteria (33.5%) were prevalent in the upper chemocline waters at 150-m depth. Active cells of sulfate-reducing bacteria were much more abundant in the samples collected in summer than in the winter samples from the deep-sea zone. The presence of physiologically active sulfate reducers in oxic and chemocline waters of the Black Sea correlates with the hydrochemical data on the presence of reduced sulfur compounds in the aerobic water column.  相似文献   

16.
17.
Oxygen-depleted bodies of water are becoming increasingly common in marine ecosystems. Solutions to reverse this trend are needed and under development, for example, by the Baltic deep-water OXygenation (BOX) project. In the framework of this project, the Swedish Byfjord was chosen for a pilot study, investigating the effects of an engineered oxygenation on long-term anoxic bottom waters. The strong stratification of the water column of the Byfjord was broken up by pumping surface water into the deeper layers, triggering several inflows of oxygen-rich water and increasing oxygen levels in the lower water column and the benthic zone up to 110 μmol l−1.We used molecular ecologic methods to study changes in bacterial community structure in response to the oxygenation in the Byfjord. Water column samples from before, during and after the oxygenation as well as from two nearby control fjords were analyzed. Our results showed a strong shift in bacterial community composition when the bottom water in the Byfjord became oxic. Initially dominant indicator species for oxygen minimum zones such as members of the SUP05 clade declined in abundance during the oxygenation event and nearly vanished after the oxygenation was accomplished. In contrast, aerobic species like SAR11 that initially were restricted to surface waters could later be detected deep into the water column. Overall, the bacterial community in the formerly anoxic bottom waters changed to a community structure similar to those found in oxic waters, showing that an engineered oxygenation of a large body of anoxic marine water is possible and emulates that of a natural oxygenation event.  相似文献   

18.
We describe a method for microscopic identification of DNA-synthesizing cells in bacterioplankton samples. After incubation with the halogenated thymidine analogue bromodeoxyuridine (BrdU), environmental bacteria were identified by fluorescence in situ hybridization (FISH) with horseradish peroxidase (HRP)-linked oligonucleotide probes. Tyramide signal amplification was used to preserve the FISH staining during the subsequent immunocytochemical detection of BrdU incorporation. DNA-synthesizing cells were visualized by means of an HRP-labeled antibody Fab fragment and a second tyramide signal amplification step. We applied our protocol to samples of prefiltered (pore size, 1.2 micro m) North Sea surface water collected during early autumn. After 4 h of incubation, BrdU incorporation was detected in 3% of all bacterial cells. Within 20 h the detectable DNA-synthesizing fraction increased to >14%. During this period, the cell numbers of members of the Roseobacter lineage remained constant, but the fraction of BrdU-incorporating Roseobacter sp. cells doubled, from 24 to 42%. In Alteromonas sp. high BrdU labeling rates after 4 to 8 h were followed by a 10-fold increase in abundance. Rapid BrdU incorporation was also observed in members of the SAR86 lineage. After 4 h of incubation, cells affiliated with this clade constituted 8% of the total bacteria but almost 50% of the visibly DNA-synthesizing bacterial fraction. Thus, this clade might be an important contributor to total bacterioplankton activity in coastal North Sea water during periods of low phytoplankton primary production. The small size and low ribosome content of SAR86 cells are probably not indications of inactivity or dormancy.  相似文献   

19.
The results of ecological studies investigating bacteria by cultivation-independent methods are expected to be influenced by the phylogenetic resolution of the applied molecular tools. This potential influence was investigated in a comparative community study on Polynucleobacter cluster bacteria (Betaproteobacteria) inhabiting the pelagic of the large, shallow, partially hypertrophic Taihu Lake located in subtropical East Asia, and the deep oligo-mesotrophic Lake Mondsee located in temperate Central Europe. The two contrasting habitats were sampled over the same period of 12 months. The community dynamics were investigated at three phylogenetic levels by fluorescent in situ hybridizations with a set of nested probes specific for the beta II clade (including the Polynucleobacter cluster), the genus-like monophyletic Polynucleobacter cluster, and four species-like subclusters. Subcluster B was the numerically dominating subcluster in both lakes over the investigation periods, but demonstrated different population dynamics in the two habitats. Interhabitat comparisons of the Polynucleobacter community structure in the two lakes in the study, and a previously investigated acidic pond indicated ecological diversification within the phylogenetically narrow Polynucleobacter cluster. These results could be obtained by help of the subcluster-specific probes, but would have been missed with probes of a lower phylogenetic resolution.  相似文献   

20.
The effect of the herbicide isoxaben on the incorporation of radiolabeled glucose, leucine, uracil, and acetate into acid insoluble cell wall material, protein, nucleic acids, and fatty acids, respectively, was measured. Dichlobenil, cycloheximide, actinomycin D, and cerulenin, inhibitors of the incorporation of these precursors into these macromolecular components, functioned as expected, providing positive controls. The incorporation of radiolabeled glucose into an acid insoluble cell wall fraction was severely inhibited by isoxaben at nanomolar concentrations. Amitrole, fluridone, ethalfluralin, and chlorsulfuron, as well as cycloheximide, actinomycin D, and cerulenin did not inhibit incorporation of glucose into this fraction, ruling out a general nonspecific effect of herbicides on glucose incorporation. The evidence thus suggests that isoxaben is an extremely powerful and specific inhibitor of cell wall biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号