首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Concentrations of acetylcholine and the monoaminergic neurotransmitters dopamine, serotonin and their respective metabolites 3,4-dihydroxyphenylacetic acid (DOPAC), 4-hydroxy-3-methoxyphenylacetic acid (HVA), 5-hydroxyindolacetic acid (5-HIAA) and choline were simultaneously determined in the corpus striatum of rats after 15 min. complete cerebral ischemia (CCI) and in different intervals (1, 24, 48, 72, 96 hours) of postischemic cerebral reperfusion. Results were compared to respective sham-operated control animals. After 15 min. CCI acetylcholine concentration decreased to 15%, and dopamine concentration to 56% of the control values. The metabolite levels of DOPAC decreased to 40% and HVA to 64% of the control values. Acetylcholine, dopamine, serotonin and choline concentrations were not changed significantly after reperfusion. The metabolites HVA and 5-HIAA showed their maximum increases after 1 and 24 hours of reperfusion, additionally HVA was decreased both, after 72 and 96 hours of reperfusion. The data indicate that surprisingly little permanent damage could be caused by a 15 min. ischemia in the striatum. Tissue levels of the neurotransmitters appeared differentially altered but similarly regulated during ischemia and subsequent recirculation. Acetylcholine and dopamin levels decreased profoundly during ischemia. However, acetylcholine levels could be compensated rapidly during reperfusion, whereas the dopaminergic system showed a long-lasting change in its turnover rate. Although serotonin levels were unaffected by CCI, there was an increase of its presumed turnover rate during reperfusion.  相似文献   

2.
Striatal microdialysis was performed in rats subjected to 20 min of transient forebrain ischemia produced by occlusion of the carotid arteries during hemorrhagic hypotension. Extracellular changes of dopamine, serotonin, and their metabolites were monitored before, during, and after the ischemic insult at 10-min intervals by on-line HPLC analysis. During ischemia, extracellular dopamine increased dramatically (156 times baseline), as did 3-methoxytyramine (3-MT), whereas 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) decreased (15-25% of baseline). Upon reperfusion, dopamine was cleared from the extracellular fluid within 40 min and reached a stable level (70% of baseline). DOPAC and HVA increased (250-330%) transiently and reached their maximum 1 h following reperfusion, whereas 3-MT decreased to undetectable levels within 20 min. Although baseline levels of serotonin were not detectable, serotonin and 5-hydroxyindoleacetic acid showed a qualitatively similar temporal pattern to dopamine and its acid metabolites. Killing rats by cervical dislocation produced changes in extracellular dopamine, serotonin, and their metabolites that were almost identical to those seen during ischemia. Pargyline pretreatment 2 h before ischemia had marginal effects on the postischemic clearing of dopamine. The pargyline pretreatment, however, did increase the survival rate of rats subjected to ischemia, and this protective effect might be due to the pargyline-induced blockade of the post-ischemic monoamine oxidase-mediated increase in dopamine metabolism and the concurrent production of the potentially neurotoxic molecule, hydrogen peroxide.  相似文献   

3.
Previous work has shown that the potent, selective metabotropic glutamate mGlu2/3 receptor agonist LY379268 acts like the atypical antipsychotic clozapine in behavioral assays. To investigate further the potential antipsychotic actions of this agent, we examined the effects of LY379268 using microdialysis in awake, freely moving rats, on extracellular levels of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindole-3-acetic acid (5-HIAA) in rat medial prefrontal cortex. Systemic LY379268 increased extracellular levels of dopamine, DOPAC, HVA, and 5-HIAA in a dose-dependent, somewhat delayed manner. LY379268 (3 mg/kg s.c. ) increased levels of dopamine, DOPAC, HVA, and 5-HIAA to 168, 170, 169, and 151% of basal, respectively. Clozapine (10 mg/kg) also increased dopamine, DOPAC, and HVA levels, with increases of 255, 262, and 173%, respectively, but was without effect on extracellular 5-HIAA levels by 3 mg/kg LY379268 were reversed by the selective mGlu2/3 receptor antagonist LY341495 (1 mg/kg). Furthermore, LY379268 (3 mg/kg)-evoked increases in DOPAC and HVA were partially blocked and the increase in 5-HIAA was completely blocked by local application of 3 microM tetrodotoxin. Therefore, we have demonstrated that mGlu2/3 receptor agonists activate dopaminergic and serotonergic brain pathways previously associated with the action of atypical antipsychotics such as clozapine and other psychiatric agents.  相似文献   

4.
3-((±)-2-Carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) is an antagonist at the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor. In the present study, levels of dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindolacetic acid (5-HIAA) were measured after intracerebroventricular injection of NMDA, CPP or both in rat striatum using a brain dialysis method. The injection of NMDA produced a significant increase in DOPAC level. HVA level was also increased by NMDA injection. The level of 5-HIAA was not affected by NMDA injection. The injection of CPP had no effect on DOPAC, HVA and 5-HIAA levels. The injection of CPP restrained the increase of DOPAC and HVA levels induced by NMDA injection. The results suggest that intracerebral injection of NMDA may increase dopamine release from rat striatum, but have no effect on serotonin release. Furthermore, CPP inhibits NMDA induced release of dopamine.  相似文献   

5.
This study examined the effects of a nerve transection on monoamine release from primary somatosensory cortex. The technique of microdialysis was employed to sample extracellular levels of norepinephrine (NE), 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxyindole-3-acetic acid (5-HIAA) and homovanillic acid (HVA) in the barrel field of freely moving rats following the surgical transection of the contralateral infraorbital nerve. Microdialysates obtained 3, 4, and 5 days after deafferentation were analyzed using high-performance liquid chromatography with electrochemical detection. We found a significant increase in the release of the dopamine metabolites, DOPAC and HVA from the deafferented cortex. Three days after deafferentation the release of DOPAC was three-fold higher in the deafferented than in the control animals, and remained about 100% higher in the next two days in this group of animals. The release of HVA showed a gradual increase following the deafferentation procedure, since a 92% larger value on day 3 increased to a 338% difference on day 5. On the other hand, the release rate of NE and the levels of the serotonin metabolite 5-HIAA were not significantly affected by the deafferentation procedure. These results are discussed in the context of the possible participation of dopamine in the reorganization of the deafferented somatosensory cortex.  相似文献   

6.
The effects of 2-guanidinoethanol (GEt) on the release of monoamines and on the activity of their degrading enzymes were studied in order to investigate why 3,4-dihydroxyphenylacetic acid (DOPAC) increased to a much greater extent than homovanillic acid (HVA) after GEt injection into rat brain. In differential pulse voltammograms recorded using an electrochemically treated carbon fiber electrode, two distinct oxidation peaks, one at 130mV (DOPAC peak) and the other at 300 mV (5-hydroxyindoleacetic acid (5-HIAA) peak), were observed. In the hippocampus, the DOPAC peak increased markedly compared to the peak height recorded prior to the intracerebroventricular injection of GEt (6mol). Although the DOPAC peak height increased to 350% 4 hours after GEt injection, the 5-HIAA peak showed no change. In the striatum, the DOPAC peak increased to 150% 3 hours after GEt injection. Serial changes in the extracellular levels of DOPAC, HVA, and 5-HIAA were monitored in the striatum after GEt injection, using an in vivo brain micro-dialysis technique. Although the DOPAC levels strated to increase 80 minutes after GEt injection, HVA and 5-HIAA levels showed no change. On the other hand, monoamineoxidase, which metabolizes dopamine to DOPAC, was not activated and catechol-0-methyltransferase, which metabolizes DOPAC to HVA, were not inhibited by 5 mM of GEt in vitro. These data suggested that GEt increased the release of dopamine, but not of serotonin, and that GEt might restrict the DOPAC transport system.  相似文献   

7.
In vivo microdialysis was employed in order to characterize the steady-state kinetics of the turnover of specific dopamine and serotonin metabolites in the rat striatum 48 h after surgery. Inhibitors of monoamine oxidase (MAO; pargyline) and catechol-O-methyltransferase (COMT; Ro 40-7592) were administered, either separately or in conjunction, at doses sufficient to block these enzymes in the CNS. In some experiments, the acid metabolite carrier was blocked with probenecid. Temporal changes were then observed in the efflux of interstitial dopamine, 3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA). The fractional rate constants for the accumulation or disappearance of the metabolites could be determined after pharmacological blockade of catabolic enzymes or the acid metabolite carrier. Interstitial 5-HIAA was found to be cleared with a half-life of approximately 2 h. After blockade of either MAO or COMT, HVA disappeared with a half-life of 17 min. Experiments employing probenecid suggested that some of the interstitial HVA was cleared by the acid metabolite carrier, the remainder being cleared by a probenecid-insensitive process, possibly conjugation. After MAO inhibition, DOPAC disappeared with an apparent half-life of 11.3 min. The rate of 3-MT accumulation after pargyline indicated that the majority of interstitial HVA (> 95%) is formed from DOPAC rather than 3-MT. The formation of 3-MT from interstitial dopamine, calculated from the accumulation rate of 3-MT after pargyline, appeared to follow first-order kinetics (k = 0.1 min-1).  相似文献   

8.
Rat brain monoamine and serotonin S2 receptor changes during pregnancy   总被引:1,自引:0,他引:1  
The concentrations of noradrenaline (NA), dopamine (DA), serotonin (5-HT), and their metabolites were determined in 5 brain areas of non-pregnant, 15 and 20 day pregnant and 4 day post-partum rats. Striatal 5-HT content was significantly lower in 15 and 20 day pregnant rats than in estrous controls. A significant decrease in striatal and frontal cortex 5-hydroxyindole-3-acetic acid (5-HIAA) concentration was observed in 15 day pregnant rats. Significant increases in hypothalamic and hippocampal NA levels were observed at 4 days post-partum. Frontal cortex serotonin S2 receptorKd was reduced in 4 day post-partum rats. There was no significant change in S2 receptorB max during pregnancy. Levels of progesterone were negatively correlated with striatal DA, homovanillic acid (HVA), 5-HT, and 5-HIAA levels, hypothalamic DA, hippocampal 5-HT, and frontal cortex 5-HIAA values as well as striatal HVA to DA, and HVA to 3,4-dihydroxyphenylacetic acid (DOPAC) ratios and amygdaloid HVA to DOPAC ratios. The limbic neurotransmitter changes might possibly contribute to mood changes which occur during pregnancy and post-partum.  相似文献   

9.
Microdialysis probes were inserted bilaterally into the striatum of 7-day-old rat pups (n = 30) to examine extracellular fluid levels of dopamine, its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA). The dialysis samples were assayed by HPLC with electrochemical detection. Baseline levels, measured after a 2-h stabilization period, were as follows: dopamine, not detected; DOPAC, 617 +/- 33 fmol/min; HVA, 974 +/- 42 fmol/min; and 5-HIAA, 276 +/- 15 fmol/min. After a 40-min baseline sampling period, 12 animals were exposed to 8% oxygen for 120 min. Hypoxia produced marked reductions in the striatal extracellular fluid levels of both dopamine metabolites (p less than 0.001 by analysis of variance) and a more gradual and less prominent reduction in 5-HIAA levels (p less than 0.02 by analysis of variance), compared with controls (n = 12) sampled in room air. In the first hour after hypoxia, DOPAC and HVA levels rose quickly, whereas 5-HIAA levels remained suppressed. The magnitude of depolarization-evoked release of dopamine (elicited by infusion of potassium or veratrine through the microdialysis probes for 20 min) was evaluated in control and hypoxic animals. Depolarization-evoked dopamine efflux was considerably higher in hypoxic pups than in controls: hypoxic (n = 7), 257 +/- 32 fmol/min; control (n = 12), 75 +/- 14 fmol/min (p less than 0.001 by analysis of variance). These data demonstrate that a brief exposure to moderate hypoxia markedly disrupts striatal catecholamine metabolism in the immature rodent brain.  相似文献   

10.
The effects of 20-min transient, global, forebrain ischaemia and cardiac arrest on extracellular concentrations of dopamine (DA), serotonin (5-HT), and their respective metabolites, homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), were measured in vivo by dialysis of rat striatum and hippocampus. During the ischaemic period, striatal DA content increased (250-fold basal concentrations) with parallel but much less marked increases of both striatal and hippocampal 5-HT content (eight- to 10-fold). Baseline values were restored during reperfusion. Subsequent increases of DA and 5-HT levels on cardiac arrest were comparable after both sham operation and ischaemia. Significant decreases of HVA and 5-HIAA levels were observed following ischaemia or cardiac arrest. The differential effects of ischaemia on DA and 5-HT suggest selective alterations in disposition or metabolism of the two transmitters and that dopaminergic neurones may be more vulnerable to ischaemic insults.  相似文献   

11.
By the use of the brain micro-dialysis technique combined with HPLC, the changes in the extracellular levels of dopamine (DA) and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and a serotonin(5-HT) metabolite, 5-hydroxyindoleacetic acid (5-HIAA) were examined in the rat striatum before and after intracerebral injection of a vehicle or (6R)-l-erythro-tetrahydrobiopterin (6R-BH4), the natural form of the cofactor for the tryrosine hydroxylase and tryptophan hydroxylase. No apparent change after the 6R-BH, treatment was found in the levels of DA, DOPAC, HVA and 5-HIAA in the striatal dialysate. In contrast, the levels of total biopterin in both the operated (dialysis probe-implanted) and unoperated striatum of 6R-BH4-treated rats increased by 23- and 93-fold, respectively, when compared with those of the control, vehicle-treated rats. The results indicate that increased levels of the tetrahydrobiopterin cofactor may not affect the release of DA and the extracellular level of DA and 5-HT metabolites in the physiologically normal brain.  相似文献   

12.
Regional extracellular release of dopamine (DA) and its metabolites, 3,4-dihydroxy-phenylacetic acid (DOPAC), homovanillic acid (HVA) and 3-methoxytyramine (3-MT) was measured in gerbils (with or without pargyline pretreatment) subjected to bilateral carotid artery occlusion (15 min) and various periods of recirculation (up to 6 hr), utilizing intracerebral microdialysis and high-performance liquid chromatography (HPLC) with electrochemical detection. Mitochondrial monoamine oxidase (MAO) and superoxide dismutase (SOD) activities andin vitro stimulated lipid peroxidation (TBARM) were determined in separate experimental groups of animals. The ischemically induced DA release, decrease of MAO-derived DA metabolites DOPAC and HVA, and accumulation of 3-MT were potentiated and prolonged by pargyline pretreatment. Mitochondrial MAO and SOD activities were significantly reduced during ischemia alone and up to 1 hr of reperfusion, whereas TBARM was enhanced during reflow only. The data suggest that reduced activity of mitochondrial antioxidative enzyme(s) but not DA metabolism by MAO may contribute to free radical-mediated injury of (mitochondrial) membranes.  相似文献   

13.
Intraperitoneal injection 10 min before sacrifice of 1.5 g ethanol/kg weight produced an increase in rat striatal levels of homovanillic acid (HVA) (p < 0.05) but did not affect the striatal concentrations of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA). A similar ethanol treatment led to decreases in 5-HT (p < 0.05) and 5-HIAA (p < 0.05) from cerebral cortex (prefrontal and anterior cingulate areas). The results point to several ethanol-linked alterations in central serotonergic and dopaminergic systems.  相似文献   

14.
Levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), noradrenaline (NA), 3-methoxy-4-hydroxyphenylglycol (MHPG), and 5-hydroxyindoleacetic acid (5-HIAA) in the CSF of patients with Huntington's disease (HD) were measured by HPLC. CSF DA, DOPAC, and MHPG levels were found to be increased in HD patients. Levels of HVA, 5-HIAA, and NA in the CSF of HD patients did not differ from those of controls. Changes in CSF DA and DOPAC levels were consistent with previous findings of increased DA tissue content in some brain areas of patients with HD. These results suggest that CSF DOPAC levels could be a more reliable index of overactive dopaminergic brain systems in HD than CSF HVA levels.  相似文献   

15.
Ozone (O3) is widely distributed in environments with high levels of air pollution. Since cerebellar morphologic disruptions have been reported with prenatal O3 exposure, O3 may have an effect on some neurotransmitter systems, such as monoamines. In order to test this hypothesis, we used 60 male rats taken from either, mothers exposed to 1 ppm of O3 during the entire pregnancy, or from mothers breathing filtered and clean air during pregnancy. The cerebellum was extracted at 0, 5, and 10 postnatal days. Tissues were processed in order to analyze by HPLC, dopamine (DA) levels, 3,4 dihydroxyphenilacetic acid (DOPAC) and homovanillic acid (HVA), norepinephrine (NA), serotonin, and 5-hydroxy-indole-acetic acid (5-HIAA) contents. Results showed a decrease of DA, NA, DOPAC and HVA mainly in 0 and 5 postnatal days. There were no changes in 5-HT levels, and 5-HIAA showed an increase after 10 postnatal days. DOPAC + HVA/DA ratio showed changes in 0 and 10 postnatal days, while 5-HIAA/5-HT ratio showed a slight decrease in 0 days. The data suggest that prenatal O3 exposure disrupts the cerebellar catecholamine system rather than the indole-amine system. Disruptions in cerebellar NA could lead to ataxic symptoms and also could limit recovery after cortical brain damage in adults. These finding are important given that recovery mechanisms observed in animals are also observed in humans.  相似文献   

16.
Intracerebral dialysis was used to monitor the in vivo efflux of striatal dopamine (DA), homovanillic acid (HVA), dihydroxyphenylacetic acid (DOPAC) and 3-methoxytyramine (3-MT) in the pentobarbital anesthetized rat. In untreated rats, there were low levels of extra-cellular DA and 3-MT which were increased 15-fold by treatment with amphetamine. Under basal and drug-stimulated conditions, 3-MT concentrations were maintained at approximately 30% of the extracellular DA levels. These data agree with in vivo turnover estimates which indicate that 20 to 30% of DA turnover is through the 3-MT pool in the striatum. In contrast, extracellular DOPAC and HVA levels were reduced only slightly by amphetamine and with a delayed onset. Our data support the hypothesis that striatal DOPAC is an accurate index of intraneuronal DA metabolism and that 3-MT is an index of the extracellular concentration of DA.  相似文献   

17.
Levels of norepinephrine, epinephrine, dopamine, and serotonin (5-HT) and their precursors [tyrosine, L-3,4-dihydroxyphenylalanine, tryptophan, and 5-hydroxytryptophan (5-HTP)] and metabolites [3,4-dihydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT), homovanillic acid, 3-methoxy-4-hydroxyphenylglycol, and 5-hydroxyindoleacetic acid (5-HIAA)] were determined concurrently in samples of chick retina, pineal gland, and nine selected areas of the brain (optic lobes, thalamus, hypothalamus, optic chiasm, pons/medulla, cerebellum, neostriatum/ectostriatum, hyperstriatum, and basal forebrain) using HPLC coupled with a coulometric electrode array detection system. The norepinephrine level was highest in the pineal gland, but it was also widely distributed throughout the chick brain, with the thalamus and hypothalamus showing substantial levels. The dopamine level was highest in the basal forebrain. The epinephrine level was highest in the hypothalamus. The thalamus and hypothalamus showed the highest levels of 5-HT. Daytime levels (1100 h) of these compounds were compared with levels in chicks killed in the middle of the dark phase (2300 h). In the brain areas examined, no day/night variations in levels of norepinephrine, epinephrine, dopamine, or 5-HT were seen, although significant nocturnal changes in levels of their metabolites were observed in some areas. Pineal levels of 5-HIAA decreased significantly at night. The retina showed significant nocturnal increases in 5-HTP, 5-HT, and 5-HIAA levels. Retinal levels of 3-MT and DOPAC were significantly decreased at night.  相似文献   

18.
Functional and behavioral disturbances associated with hydrocephalus may be due in part to altered neurotransmitter function in the brain. Hydrocephalus was induced in adult rabbits by injection of silicone oil into the cisterna magna. These and controls were killed 3 days, 1 and 4 weeks post-injection. Tissue concentrations of norepinephrine, epinephrine, serotonin, dopamine, and the metabolites 5-hydroxyindoleacetic acid (5-HIAA), homovanillic acid (HVA), and 3,4-dihydroxyphenylacetic acid (DOPAC) levels were determined in fifteen brain regions using HPLC. There were decreases in hypothalamic and medullary dopamine, transient decreases in basal ganglia serotonin, increases in thalamic noradrenaline, and increases in hypothalamic and thalamic epinephrine. Changes in the primary neurotransmitters may be attributable to damage of their axonal projection systems. Metabolite concentrations increased in the cerebrum. Reduced clearance of extracellular fluid which accompanies cerebrospinal fluid stasis may explain the accumulation of metabolites.  相似文献   

19.
Concentrations of dopamine (DA), its metabolites 3-methoxytyramine and homovanillic acid (HVA), noradrenaline (NA), its metabolites normetanephrine (NM) and 3-methoxy-4-hydroxyphenylglycol (MHPG), 5-hydroxytryptamine (5-HT, serotonin), and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) were measured in 14 brain regions and in CSF from the third ventricle of 27 human autopsy cases. In addition, in six cases, lumbar CSF was obtained. Monoamine concentrations were determined by reversed-phase liquid chromatography with electrochemical detection. Ventricular/lumbar CSF ratios indicated persistence of rostrocaudal gradients for HVA and 5-HIAA post mortem. Ventricular CSF concentrations of DA and HVA correlated positively with striatal DA and HVA. CSF NA correlated positively with NA in hypothalamus, and CSF MHPG with levels of MHPG in hypothalamus, temporal cortex, and pons, whereas CSF NM concentration showed positive correlations with NM in striatum, pons, cingulate cortex, and olfactory tubercle. CSF 5-HT concentrations correlated positively with 5-HT in caudate nucleus, whereas the concentration of CSF 5-HIAA correlated to 5-HIAA levels in thalamus, hypothalamus, and the cortical areas. These data suggest a specific topographic origin for monoamine neurotransmitters and their metabolites in human ventricular CSF and support the contention that CSF measurements are useful indices of central monoaminergic activity in man.  相似文献   

20.
A determination of dopamine (DA), noradrenaline (NA), 3,4-dihydroxyphenylalanine (DOPA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindolacetic acid (5-HIAA) in nervous tissue is described. The method is based on a rapidly performed isolation of DA, NA, DOPA, DOPAC, HVA, and 5-HIAA from one single nervous tissue sample on small columns of Sephadex G-10, followed by reverse-phase high-performance liquid chromatography with electrochemical detection. A new type of electrochemical detector based on a rotating disk electrode (RDE) was used. The rotating disc electrode was found to be a reliable and sensitive amperometric detector with several advantages over the currently used thin-layer cells. The detector appeared very useful for routine analysis. Practical details are given for the routine use of the RDE. Brain samples containing no more than 75-150 pg (DA, DOPA, DOPAC, HVA, and 5-HIAA) or 500 pg (NA) could be reproducibly assayed with high recovery (approx. 85%) and precision (approx. 5%), without the use of internal standards. Endogenous concentrations of DA, NA, DOPA, DOPAC, HVA, and 5-HIAA were determined in eight brain structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号