首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
Keratin-associated proteins (KAPs) are among the main structural components of the animal fibers and form semi-rigid matrix wherein the keratin intermediate filaments (KIFs) are embedded. Variation in the KAP genes has been reported to affect the structure of KAPs and hence fiber characteristics. As no information is available on this gene in Capra hircus therefore, present work was undertaken to characterize and explore the different polymorphic variants of KAP1.4 gene at DNA level in different breeds/genetic groups of goats of Kashmir. Cashmere (Changthangi, 30 animals) and non-Cashmere (Bakerwal and Kargil goats, 20 animals each) goats formed the experimental animals for the study. Single strand conformation polymorphism technique was employed for exploring variability at gene level. On exploring the size variability in KAP1.4 gene between Ovine and Caprine, it was concluded that sheep KAP1.4 gene has a deletion of 30 nucleotides. In comparison to published nucleotide sequences of sheep, goat sequences explored are differing at positions 174, 462 and 568 and at these positions “G”, “T” and “T” nucleotides are present in sheep, but are replaced by “A”, “C” and “C” respectively, in goats. By SSC studies, two genotypes were observed in each genetic group and in Bakerwal goats the genotypes were designated as A1A1 (0.40) and A1A2 (0.60) and were formed by two alleles A1 (0.70) andA2 (0.30). The different SSC patterns observed in Kargil goats were designated as B1B1 (0.35) and B1B2 (0.65) genotypes with frequencies of B1 and B2 alleles as 0.675 and 0.325, respectively. Similarly, two genotypes C1C1 (0.60) and C1C2 (0.40) were observed in Changthangi goats and the frequencies of C1 and C2 alleles were 0.80 and 0.20, respectively. These alleles were later confirmed by sequencing. The sequences of these alleles are available in NCBI under Acc. No's. JN012101.1, JN012102.1, JN000317.1, JN000318.1, JQ436929 and JQ627657. It was concluded that all the alleles observed in a breed were unique to the breed. The designated A1 and A2 alleles of Bakerwal goats differ from each other at positions 245 and the nucleotides observed were “C” or “A” and at position 605 of the nucleotide sequence “T” or “C”, were observed. The designated B1 and B2 alleles of Kargil goats differed from each other at positions 224, 374, 375 and 521. The nucleotides observed in two SSC pattern were C→G, A→G, G→A and T→C, respectively. The designated C1 and C2 alleles of Changthangi goats differed from each other at one position 440 with the change of “A”→“C”.  相似文献   

4.
5.
6.
7.
In this report, we investigated the frequency and spectrum of mitochondrial 12S rRNA variants in a large cohort of 1642 Han Chinese pediatric subjects with aminoglycoside-induced and nonsyndromic hearing loss. Mutational analysis of 12S rRNA gene in these subjects identified 68 (54 known and 14 novel) variants. The frequencies of known 1555A>G and 1494C>T mutations were 3.96% and 0.18%, respectively, in this cohort with nonsyndromic and aminoglycoside-induced hearing loss. Prevalence of other putative deafness-associated mutation at positions 1095 and 961 were 0.61% and 1.7% in this cohort, respectively. Furthermore, the 745A>G, 792C>T, 801A>G, 839A>G, 856A>G, 1027A>G, 1192C>T, 1192C>A, 1310C>T, 1331A>G, 1374A>G and 1452T>C variants conferred increased sensitivity to ototoxic drugs or nonsyndromic deafness as they were absent in 449 Chinese controls and localized at highly conserved nucleotides of this rRNA. However, other variants appeared to be polymorphisms. Moreover, 65 Chinese subjects carrying the 1555A>G mutation exhibited bilateral and sensorineural hearing loss. A wide range of severity, age-of-onset and audiometric configuration was observed among these subjects. In particular, the sloping and flat-shaped patterns were the common audiograms in individuals carrying the 1555A>G mutation. The phenotypic variability in subjects carrying these 12S rRNA mutations indicated the involvement of nuclear modifier genes, mitochondrial haplotypes, epigenetic and environmental factors in the phenotypic manifestation of these mutations. Therefore, our data demonstrated that mitochondrial 12S rRNA is the hot spot for mutations associated with aminoglycoside ototoxicity.  相似文献   

8.
A study was carried out to characterize and explore the expression profile of BMP 3 gene in control broiler and control layer chicken. The total open reading frame of BMP 3 (1389 bp) was cloned and sequenced. The control broiler and control layer chicken showed variation at nucleotide and amino acid level with reference gene (Gallus gallus, NCBI Acc. No. NM_001034819). When compared to reference gene, the control broiler showed four nucleotide differences (c.192A>G, c.519C>T, 903G>A and 960C>G), while, control layer showed variation at c.33G>C, 192A>G, 858G>A, 904G>A, 960C>G and 1257C>T making six differences in total. However, between control broiler and control layer lines, nucleotide differences was observed at c.33G>C, 519T>C, 858G>A, 903A>G, 904G>A and 1257C>T. The change at amino acid level between reference and control broiler was p.D320N and with control layer chicken, it was p.D302N and p.D320N. On the other hand, a single amino acid difference (p.D302N) was observed between the control broiler and control layer chicken lines. The phylogenetic study displayed a close relationship between broiler and layer lines and reference gene and also with other avian species resulting in a cluster formation. These cluster in turn displayed a distant link with the mammalian species. The expression profile of BMP 3 gene exhibited a variation at different stages of embryonic development and also at post embryonic period among the lines with control layer showing higher expression than that of broiler chicken. The protein was also detected in bone marrow tissue of broiler and layer lines by western blotting. It is concluded that the BMP 3 gene sequence differed at nucleotide and amino acid level among the lines and the gene expressed differentially at different periods of embryonic development and also at post hatch period.  相似文献   

9.
10.
11.
The promoter polymorphisms of drug-metabolizing genes can lead to interindividual differences in gene expression, which may result in adverse drug effects and therapeutic failure. Based on the database of CYP2D6 gene polymorphisms in the Chinese Han population established by our group, we functionally characterized the single nucleotide polymorphisms (SNPs) of the promoter region and corresponding haplotypes in this population. Using site-directed mutagenesis, all the five SNPs identified and ten haplotypes with a frequency equal to or greater than 0.01 in the population were constructed on a luciferase reporter system. Dual luciferase reporter systems were used to analyze regulatory activity. The activity produced by Haplo3(−2183G>A, −1775A>G, −1589G>C, −1431C>T, −1000G>A, −678A>G), Haplo8(−2065G>A, −2058T>G, −1775A>G, −1589G>C, −1235G>A, −678A>G) and MU3(−498C>A) was 0.7−, 0.7−, 1.2− times respectively compared with the wild type in human hepatoma cell lines(p<0.05). These findings might be useful for optimizing pharmacotherapy and the design of personalized medicine.  相似文献   

12.
13.
Mutations in the MECP2 gene are known to cause Rett syndrome (RTT)—a neurodevelopmental disorder, one of the most common causes of intellectual disability in females, with an incidence of 1 in 10000–15000. We have investigated exons 3 and 4 of the MECP2 gene, that coding MBD and TRD domains of the MeCP2 protein, in 21 RTT patients from Ukraine by PCR-DGGE analysis followed by Sanger sequencing of PCR fragments with abnormal migration profiles. In 13 of 21 (61.9%) patients 7 different mutations were identified one nonsense mutation—c. NC_000023.11:g.154031326G>A (MECP2:c.502C>T) and 4 missense mutation NC_000023.11:g.154031409G>T (MECP2:c.419C>T), NC_000023.11:g.154031355G>A (MECP2:c.473C>T), NC_000023.11:g.154031354A>C (MECP2:c.472A>C), NC_000023.11:g.154031431G>A (MECP2:c.397C>T) located in exon 4, a rare RTT-causing splice site mutation NC_000023.10:g.153296903T>G (MECP2:c.378-2A>C) in intron 3 and deletion NC_000023.10:g.1532 96079_153296122del44 in exon 4. The novel mutation MECP2:c.472A>C identified in our study in patients withclassic RTT phenotype leds to T158P substitution. It is one more confirmation of crucial role that 158 codon in MECP2 protein function.  相似文献   

14.
Twenty-nine genes for 27 species of tRNAs were deduced from the complete nucleotide sequence of the mitochondrial genome from a liverwort, Marchantia polymorpha. One to three species of tRNA genes corresponded to each of 20 amino acids including three species for leucine and arginine, two species for serine and glycine, and one for the rest of the amino acids. Interestingly, all tRNA genes were located in the semicircle of the liverwort mitochondrial genome except for the trnY and trnR genes. The region containing these tRNA genes was originally duplicated, and two trnR genes have diverged from each other. On the other hand, trnY and trnfM are present as two identical copies. The G:U and U:N wobbling between the first nucleotide of the anticodon and the third nucleotide of the codon permit the 27 tRNA identified species to translate almost all codons. However, at least two additional tRNA genes, trnl-GAU for AUY codon and trnT-UGU for ACR codon, are required to read all codons used in the liverwort mitochondrial genome. All of the identified tRNA genes are 'native' in liverwort mitochondria, not 'chloroplast-like' tRNAs as are found in the mitochondria of higher plants. This result implies that the tRNA gene transfer from chloroplast to mitochondrial genome in higher plants has occurred after the divergence from bryophytes.  相似文献   

15.
16.
Pre–messenger RNA (mRNA) 3′-end cleavage and subsequent polyadenylation strongly regulate gene expression. In comparison with the upstream or downstream motifs, relatively little is known about the feature differences of polyadenylation [poly(A)] sites among major kingdoms. We suspect that the precise poly(A) sites are very selective, and we therefore mapped mRNA poly(A) sites on complete and nearly complete genomes using mRNA sequences available in the National Center for Biotechnology Information (NCBI) Nucleotide database. In this paper, we describe the mRNA nucleotide [i.e., the poly(A) tail attachment position] that is directly in attachment with the poly(A) tail and the pre-mRNA nucleotide [i.e., the poly(A) tail starting position] that corresponds to the first adenosine of the poly(A) tail in the 29 most-mapped species (2 fungi, 2 protists, 18 animals, and 7 plants). The most representative pre-mRNA dinucleotides covering these two positions were UA, CA, and GA in 17, 10, and 2 of the species, respectively. The pre-mRNA nucleotide at the poly(A) tail starting position was typically an adenosine [i.e., A-type poly(A) sites], sometimes a uridine, and occasionally a cytidine or guanosine. The order was U>C>G at the attachment position but A>>U>C≥G at the starting position. However, in comparison with the mRNA nucleotide composition (base composition), the poly(A) tail attachment position selected C over U in plants and both C and G over U in animals, in both A-type and non-A-type poly(A) sites. Animals, dicot plants, and monocot plants had clear differences in C/G ratios at the poly(A) tail attachment position of the non-A-type poly(A) sites. This study of poly(A) site evolution indicated that the two positions within poly(A) sites had distinct nucleotide compositions and were different among kingdoms.  相似文献   

17.
18.

Background

Many published data on the association between single nucleotide polymorphisms (SNPs) in the ESR1 gene and prostate cancer susceptibility are inconclusive. The aim of this Human Genome Epidemiology (HuGE) review and meta-analysis is to derive a more precise estimation of this relationship.

Methods

A literature search of PubMed, Embase, Web of Science and Chinese Biomedical (CBM) databases was conducted from their inception through July 1st, 2012. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to assess the strength of association.

Results

Twelve case-control studies were included with a total 2,165 prostate cancer cases and 3,361 healthy controls. When all the eligible studies were pooled into the meta-analysis, ESR1 PvuII (C>T) and XbaI (A>G) polymorphisms showed no association with the risk of prostate cancer. However, in the stratified analyses based on ethnicity and country, the results indicated that ESR1 PvuII (C>T) polymorphism was significantly associated with increased risk of prostate cancer among Asian populations, especially among Indian population; while ESR1 XbaI (A>G) polymorphism may significantly increase the risk of prostate cancer among American population. Furthermore, we also performed a pooled analysis for all eligible case-control studies to explore the role of codon 10 (T>C), codon 325 (C>G), codon 594 (G>A) and +261G>C polymorphisms in prostate cancer risk. Nevertheless, no significant associations between these polymorphisms and the risk of prostate cancer were observed.

Conclusion

Results from the current meta-analysis indicate that ESR1 PvuII (C>T) polymorphism may be a risk factor for prostate cancer among Asian populations, especially among Indian population; while ESR1 XbaI (A>G) polymorphism may increase the risk of prostate cancer among American population.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号