首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular aggregate size of the closed state of the colicin E1 channel was determined by fluorescence resonance energy transfer experiments involving a fluorescence donor (three tryptophans, wild-type protein) and a fluorescence acceptor (5-(((acetyl)amino)ethyl)aminonaphthalene-1-sulfonic acid (AEDANS), Trp-deficient protein). There was no evidence of energy transfer between the donor and acceptor species when bound to membrane large unilamellar vesicles. These experiments led to the conclusion that the colicin E1 channel is monomeric in the membrane-bound closed channel state. Experiments were also conducted to study the membrane topology of the closed colicin channel in membrane large unilamellar vesicles using acrylamide as the membrane-impermeant, nonionic quencher of tryptophan fluorescence in a battery of single tryptophan mutant proteins. Furthermore, additional fluorescence parameters, including fluorescence emission maximum, fluorescence quantum yield, and fluorescence decay times, were used to assist in mapping the topology of the closed channel. Results suggest that the closed channel comprises most of the polypeptide of the channel domain and that the hydrophobic anchor domain does not transverse the membrane bilayer but nonetheless is deeply embedded within the hydrocarbon core of the membrane. Finally, a model is proposed which features at least two states that are in rapid equilibrium with each other and in which one state is more heavily populated than the other.  相似文献   

2.
Gating of ion channels is strictly regulated by physiological conditions as well as intra/extracellular ligands. To understand the underlying structures mediating ion channel gating, we investigated the pH-dependent gating of the K(+) channel KcsA under near-physiological conditions, using solution-state NMR. In a series of (1)H(15)N-TROSY HSQC (transverse relaxation optimized spectroscopy-heteronuclear single quantum coherence) spectra measured at various pH values, significant chemical shift changes were detected between pH 3.9 and 5.2, reflecting a conformational rearrangement associated with the gating. The pH-dependent chemical shift changes were mainly observed for the resonances from the residues near the intracellular helix bundle, which has been considered to form the primary gate in the K(+) channel, as well as the intracellular extension of the inner helix. The substitution of His-25 by Ala abolished this pH-dependent conformational rearrangement, indicating that the residue serves as a "pH-sensor" for the channel. Although the electrophysiological open probability of KcsA is less than 10%, the conformations of the intracellular helix bundle between the acidic and neutral conditions seem to be remarkably different. This supports the recently proposed "dual gating" properties of the K(+) channel, in which the activation-coupled inactivation at the selectivity filter determines the channel open probability of the channel. Indeed, a pH-dependent chemical shift change was also observed for the signal from the Trp-67 indole, which is involved in a hydrogen bond network related to the activation-coupled inactivation. The slow kinetic parameter obtained for the intracellular bundle seems to fit better into the time scale for burst duration than very fast fluctuations within a burst period, indicating the existence of another gating element with faster kinetic properties.  相似文献   

3.
Potassium channels play a key role in establishing the cell membrane potential and are expressed ubiquitously. Today, more than 70 mammalian K(+) channel genes are known. The diversity of K(+) channels is further increased by the fact that different K(+) channel family members may assemble to form heterotetramers. We present a method based on fluorescence microscopy to determine the subunit composition of a tetrameric K(+) channel. We generated artificial "heteromers" of the K(+) channel hK(Ca)3.1 by coexpressing two differently tagged hK(Ca)3.1 constructs containing either an extracellular hemagglutinin (HA) or an intracellular V5 epitope. hK(Ca)3.1 channel subunits were detected in the plasma membrane of MDCK-F cells or HEK293 cells by labeling the extra- and intracellular epitopes with differently colored quantum dots (QDs). As previously shown for the extracellular part of hK(Ca)3.1 channels, its intracellular domain can also bind only one QD label at a time. When both channel subunits were coexpressed, 27.5 ± 1.8% and 24.9 ± 2.1% were homotetramers consisting of HA- and V5-tagged subunits, respectively. 47.6 ± 3.2% of the channels were heteromeric and composed of both subunits. The frequency distribution of HA- and V5-tagged homo- and heteromeric hK(Ca)3.1 channels is reminiscent of the binomial distribution (a + b)(2) = a(2) + 2ab + b(2). Along these lines, our findings are consistent with the notion that hK(Ca)3.1 channels are assembled from two homomeric dimers and not randomly from four independent subunits. We anticipate that our technique will be applicable to other heteromeric membrane proteins, too.  相似文献   

4.
The yellow and cyan variants of green fluorescent protein (GFP) constitute an excellent pair for fluorescence resonance energy transfer (FRET) and can be used to study conformational rearrangements of proteins. Our aim was to develop a library of fluorescent large conductance voltage- and Ca2+-gated channels (BK or slo channels) for future use in FRET studies. We report the results of a random insertion of YFP and CFP into multiple sites of the alpha subunit of the hslo channel using a Tn5 transposon-based technique. 55 unique fluorescent fusion proteins were obtained and tested for cell surface expression and channel function. 19 constructs are expressed at the plasma membrane and show voltage and Ca2+-dependent currents. In 16 of them the voltage and Ca2+ dependence is very similar to the wild-type channel. Two insertions in the Ca2+ bowl and one in the RCK2 domain showed a strong shift in the G-V curve. The remaining 36 constructs were retained intracellularly; a solubility assay suggests that these proteins are not forming intracellular aggregates. The "success rate" of 19 out of 55 hslo insertion constructs compares very favorably with other studies of random GFP fusions.  相似文献   

5.
Trimeric intracellular cation-specific (TRIC) channels are integral to muscle excitation–contraction coupling. TRIC channels provide counter-ionic flux when calcium is rapidly transported from intracellular stores to the cell cytoplasm. Until recently, knowledge of the presence of these proteins was limited to animals. We analyzed the TRIC family and identified a profusion of prokaryotic family members with topologies and motifs similar to those of their eukaryotic counterparts. Prokaryotic members far outnumber eukaryotic members, and although none has been functionally characterized, the evidence suggests that they function as secondary carriers. The presence of fused N- or C-terminal domains of known biochemical functions as well as genomic context analyses provide clues about the functions of these prokaryotic homologs. They are proposed to function in metabolite (e.g., amino acid/nucleotide) efflux. Phylogenetic analysis revealed that TRIC channel homologs diverged relatively early during evolutionary history and that horizontal gene transfer was frequent in prokaryotes but not in eukaryotes. Topological analyses of TRIC channels revealed that these proteins possess seven putative transmembrane segments (TMSs), which arose by intragenic duplication of a three-TMS polypeptide-encoding genetic element followed by addition of a seventh TMS at the C terminus to give the precursor of all current TRIC family homologs. We propose that this family arose in prokaryotes.  相似文献   

6.
Metabolic injury is a complex process affecting various tissues, with intracellular Ca2+ loading recognized as a common precipitating event leading to cell death. We have recently observed that cells overexpressing recombinant ATP-sensitive K+ (KATP) channel subunits may acquire resistance against metabolic stress. To examine whether, under metabolic challenge, intracellular Ca2+ homeostasis can be maintained by an activator of channel proteins, we delivered Kir6.2 and SUR2A genes, which encode KATP channel subunits, into a somatic cell line lacking native KATP channels. Hypoxia-reoxygenation was simulated by application and removal of the mitochondrial poison 2,4 dinitrophenol. Under such metabolic stress, Ca2+ loading was induced by Ca2+ influx during hypoxia and release of Ca2+ from intracellular stores during reoxygenation. Delivery of Kir6.2/SUR2A genes, in conjunction with the KATP channel activator pinacidil, prevented intracellular Ca2+ loading irrespective of whether the channel opener was applied throughout the duration of hypoxia-reoxygenation or transiently during the hypoxic or reoxygenation stage. In all stages of injury, the effect of pinacidil was inhibited by the selective antagonist of KATP channel, 5-hydroxydecanoate. The present study provides evidence that combined use of gene delivery and pharmacological targeting of recombinant proteins can handle intracellular Ca2+ homeostasis under hypoxia-reoxygenation irrespective of the stage of the metabolic insult.  相似文献   

7.
Calcium signaling and annexins   总被引:8,自引:0,他引:8  
The annexins, are a family of calcium ion (Ca2+)-binding proteins whose physiological functions are poorly understood. Although many diverse functions have been proposed for these proteins, such as in vesicle trafficking, this review focuses on their proposed roles as Ca2+ or other ion channels, or as intracellular ion channel regulators. Such ideas are founded mainly on in vitro and structural analyses, but there is increasing evidence that at least some members of this protein family may indeed play a part in intracellular Ca2+ signaling by acting both as atypical ion channels and as modulators of ion channel activity. This review first introduces the annexin family, then discusses intracellular localization, developmental regulation, and modes of membrane association of annexins, which suggest roles in Ca2+ homeostasis. Finally, it examines the structural and electrophysiological data that argue for key roles for annexins in the control of ion fluxes.  相似文献   

8.
Sterols such as cholesterol are important components of cellular membranes. They are not uniformly distributed among organelles and maintaining the proper distribution of sterols is critical for many cellular functions. Both vesicular and non-vesicular pathways move sterols between membranes and into and out of cells. There is growing evidence that a number of non-vesicular transport pathways operate in cells and, in the past few years, a number of proteins have been proposed to facilitate this transfer. Some are soluble sterol transfer proteins that may move sterol between membranes. Others are integral membranes proteins that mediate sterol efflux, uptake from cells, and perhaps intracellular sterol transfer as well. In most cases, the mechanisms and regulation of these proteins remains poorly understood. This review summarizes our current knowledge of these proteins and how they could contribute to intracellular sterol trafficking and distribution.  相似文献   

9.
Niu X  Qian X  Magleby KL 《Neuron》2004,42(5):745-756
Ion channels are proteins that control the flux of ions across cell membranes by opening and closing (gating) their pores. It has been proposed that channels gated by internal agonists have an intracellular gating ring that extracts free energy from agonist binding to open the gates using linkers that directly connect the gating ring to the gates. Here we find for a voltage- and Ca(2+)-activated K+ (BK) channel that shortening the linkers increases channel activity and lengthening the linkers decreases channel activity, both in the presence and absence of intracellular Ca2+. These observations are consistent with a mechanical model in which the linker-gating ring complex forms a passive spring that applies force to the gates in the absence of Ca2+ to modulate the voltage-dependent gating. Adding Ca2+ then changes the force to further activate the channel. Both the passive and Ca(2+)-induced forces contribute to the gating of the channel.  相似文献   

10.
In recent years, quantum dots (Qdot), with their unique physical, chemical, and optical properties, have been used extensively as probes to visualize several cell membrane receptors and extracellular biomolecules. However, Qdot-based intracellular imaging has always been associated with vital lacunas. High affinity between quantum dots may induce serious aggregation in the cytoplasm; as a result, quantum dot aggregates are usually misinterpreted as quantum dot-probed intracellular molecules. Moreover, due to the more viscous nature of the cytoplasm versus the extracellular aqueous media, aggregation issues become more severe during intracellular studies. In this work, we suggest direct nondestructive serotonin imaging in an intact cell using the quantum dot-based immunoassay with a rapid tunable multicolor imaging system based on the acousto-optic tunable filter. Any false-positive intracellular serotonin molecules that appeared due to the aggregation of quantum dots could be completely discriminated from the real intracellular serotonin granules through multicolor cellular imaging. The developed method is quick and has wide applicability in targeting various intracellular proteins, coenzymes, and micronutrients.  相似文献   

11.
CLIC-1 is a member of a family of proteins related to the bovine intracellular chloride channel p64 which has been proposed to function as a chloride channel. We expressed CLIC-1 as a glutathione S-transferase fusion protein in bacteria. The fusion protein was purified by glutathione affinity, and CLIC-1 was released from its fusion partner by digestion with thrombin. After further purification, CLIC-1 was reconstituted into phospholipid vesicles by detergent dialysis. Chloride permeability of reconstituted vesicles was assessed using a valinomycin dependent chloride efflux assay, demonstrating increased vesicular chloride permeability with CLIC-1 compared with control. CLIC-1-dependent chloride permeability was inhibited by indanyloxyacetic acid-94 with an apparent IC(50) of 8.6 micrometer. The single channel properties of CLIC-1 were determined using the planar lipid bilayer technique. We found that CLIC-1 forms a voltage-dependent, Cl-selective channel with a rectifying current-voltage relationship and single channel conductances of 161 +/- 7.9 and 67.5 +/- 6.9 picosiemens in symmetric 300 and 150 mm KCl, respectively. The anion selectivity of this activity is Br approximately Cl > I. The open probability of CLIC-1 channels in planar bilayers was decreased by indanyloxyacetic acid-94 with an apparent IC(50) of 86 micrometer at 50 mV. These data convincingly demonstrate that CLIC-1 is capable of forming a novel, chloride-selective channel in the absence of other subunits or proteins.  相似文献   

12.
K+ channels are widely expressed in eukaryotic and prokaryotic cells, where one of their key functions is to set the membrane potential. Many K+ channels are tetramers that share common architectural properties. The crystal structure of bacterial and mammalian K+ channels has been resolved and provides the basis for modeling their three-dimensional structure in different functional states. This wealth of information on K+ channel structure contrasts with the difficulties to visualize single K+ channel proteins in their physiological environment. We describe a method to identify single Ca2+-activated K+ channel molecules in the plasma membrane of migrating cells. Our method is based on dual-color labeling with quantum dots. We show that >90% of the observed quantum dots correspond to single K+ channel proteins. We anticipate that our method can be adopted to label any other ion channel in the plasma membrane on the single molecule level. Ca2+-activated K+ channel; migration  相似文献   

13.
Fatty acid (FA) transfer proteins extract FA from membranes and sequester them to facilitate their movement through the cytosol. Detailed structural information is available for these soluble protein–FA complexes, but the structure of the protein conformation responsible for FA exchange at the membrane is unknown. Staphylococcus aureus FakB1 is a prototypical bacterial FA transfer protein that binds palmitate within a narrow, buried tunnel. Here, we define the conformational change from a “closed” FakB1 state to an “open” state that associates with the membrane and provides a path for entry and egress of the FA. Using NMR spectroscopy, we identified a conformationally flexible dynamic region in FakB1, and X-ray crystallography of FakB1 mutants captured the conformation of the open state. In addition, molecular dynamics simulations show that the new amphipathic α-helix formed in the open state inserts below the phosphate plane of the bilayer to create a diffusion channel for the hydrophobic FA tail to access the hydrocarbon core and place the carboxyl group at the phosphate layer. The membrane binding and catalytic properties of site-directed mutants were consistent with the proposed membrane docked structure predicted by our molecular dynamics simulations. Finally, the structure of the bilayer-associated conformation of FakB1 has local similarities with mammalian FA binding proteins and provides a conceptual framework for how these proteins interact with the membrane to create a diffusion channel from the FA location in the bilayer to the protein interior.  相似文献   

14.
Volume-activated organic osmolyte channels are found in a variety of vertebrates and cell types and show both common and disparate features. Upon exposure to hypotonic conditions, organic compounds such as taurine are released through these channels, reducing the intracellular solute concentration and thereby restoring cell volume. Various structurally diverse membrane proteins have been proposed as the channel. Accumulating evidence suggests that some of these proteins may play a more significant role as regulators than as the channel itself. Intracellular ionic strength may also modulate the release of organic osmolytes through these channels.  相似文献   

15.
A model for the information transfer from DNA to protein using quantum information and computation techniques is presented. DNA is modeled as the sender and proteins are modeled as the receiver of this information. On the DNA side, a 64-dimensional Hilbert space is used to describe the information stored in DNA triplets (codons). A Hamiltonian matrix is constructed for this space, using the 64 possible codons as base states. The eigenvalues of this matrix are not degenerate. The genetic code is degenerate and proteins comprise only 20 different amino acids. Since information is conserved, the information on the protein side is also described by a 64-dimensional Hilbert space, but the eigenvalues of the corresponding Hamiltonian matrix are degenerate. Each amino acid is described by a Hilbert subspace. This change in Hilbert space structure reflects the nature of the processes involved in information transfer from DNA to protein.  相似文献   

16.
The Agrobacterium tumefaciens VirB4 ATPase functions with other VirB proteins to export T-DNA to susceptible plant cells and other DNA substrates to a variety of prokaryotic and eukaryotic cells. Previous studies have demonstrated that VirB4 mutants with defects in the Walker A nucleotide-binding motif are non-functional and exert a dominant negative phenotype when synthesized in wild-type cells. This study characterized the oligomeric structure of VirB4 and examined the effects of Walker A sequence mutations on complex formation and transporter activity. VirB4 directed dimer formation when fused to the amino-terminal portion of cI repressor protein, as shown by immunity of Escherichia coli cells to lambda phage infection. VirB4 also dimerized in Agrobacterium tumefaciens, as demonstrated by the recovery of a detergent-resistant complex of native protein and a functional, histidine-tagged derivative by precipitation with anti-His6 antibodies and by Co2+ affinity chromatography. Walker A sequence mutants directed repressor dimerization in E. coli and interacted with His-VirB4 in A. tumefaciens, indicating that ATP binding is not required for self-association. A dimerization domain was localized to a proposed N-terminal membrane-spanning region of VirB4, as shown by the dominance of an allele coding for the N-terminal 312 residues and phage immunity of host cells expressing cI repressor fusions to alleles for the first 237 or 312 residues. A recent study reported that the synthesis of a subset of VirB proteins, including VirB4, in agrobacterial recipients has a pronounced stimulatory effect on the virB-dependent conjugal transfer of plasmid RSF1010 by agrobacterial donors. VirB4'312 suppressed the stimulatory effect of VirB proteins for DNA uptake when synthesized in recipient cells. In striking contrast, Walker A sequence mutants contributed to the stimulatory effect of VirB proteins to the same extent as native VirB4. These findings indicate that the oligomeric structure of VirB4, but not its capacity to bind ATP, is important for the assembly of VirB proteins as a DNA uptake system. The results of these studies support a model in which VirB4 dimers or homomultimers contribute structural information for the assembly of a transenvelope channel competent for bidirectional DNA transfer, whereas an ATP-dependent activity is required for configuring this channel as a dedicated export machine.  相似文献   

17.
Zucker SD 《Biochemistry》2001,40(4):977-986
The mechanism (or mechanisms) whereby fatty acids and other amphipathic compounds are transported from the plasma membrane to intracellular sites of biotransformation remains poorly defined. In an attempt to better characterize the role of cytosolic binding proteins in this process, a kinetic model of intermembrane ligand transport was developed in which diffusional transfer of ligand between membrane and protein is assumed. The model was tested by utilizing stopped-flow techniques to monitor the transfer of the fluorescent fatty acid analogue, 12-anthroyloxy stearate (12-AS), between model membrane vesicles. Studies were conducted in the presence or absence of bovine serum albumin (BSA), liver fatty acid-binding protein (L-FABP), and intestinal fatty acid-binding protein (I-FABP) in order to determine the effect of soluble proteins on the rate of intermembrane ligand transfer. As predicted by the model, the initial velocity of 12-AS arrival at the acceptor membrane increases in an asymptotic manner with the acceptor concentration. Furthermore, probe transfer velocity was found to decline asymptotically with increasing concentrations of BSA or L-FABP, proteins that exhibit diffusional transfer kinetics. This observation was found to hold true independent of whether donor or acceptor vesicles were preequilibrated with the protein. In contrast, 12-AS transfer velocity exhibited a linear correlation with the concentration of I-FABP, a protein that is thought to transport fatty acids, at least in part, via a collisional mechanism. Taken together, these findings validate the derived kinetic model of protein-mediated ligand transport and further suggest that the mechanism of ligand-protein interaction is a key determinant of the effect of cytosolic proteins on intracellular ligand diffusion.  相似文献   

18.
The aim of this work was to investigate interactions of the human ether-a-go-go channel heag2 with human brain proteins. For this, we used heag2-GST fusion proteins in pull-down assays with brain proteins and mass spectrometry, as well as coimmunoprecipitation. We identified tubulin and heat shock 70 proteins as binding to intracellular C-terminal regions of the channel. To study functional effects, heag2 channels were expressed in Xenopus laevis oocytes for two-electrode voltage clamping. Coexpression of alpha-tubulin or the application of colchicine significantly prolonged channel activation times. Application at different times of colchicine gave similar results. The data suggest that colchicine application and tubulin expression do not affect heag2 trafficking and that tubulin may associate with the channel to cause functional effects. Coexpression of heat shock 70 proteins had no functional effect on the channel. The role of tubulin in the cell cytoskeleton suggests a link for the heag2 channel in tubulin-dependent physiological functions, such as cellular proliferation.  相似文献   

19.
Two classes of small homologous basic proteins, mamba snake dendrotoxins (DTX) and bovine pancreatic trypsin inhibitor (BPTI), block the large conductance Ca2+-activated K+ channel (BKCa, KCa1.1) by production of discrete subconductance events when added to the intracellular side of the membrane. This toxin-channel interaction is unlikely to be pharmacologically relevant to the action of mamba venom, but as a fortuitous ligand-protein interaction, it has certain biophysical implications for the mechanism of BKCa channel gating. In this work we examined the subconductance behavior of 9 natural dendrotoxin homologs and 6 charge neutralization mutants of δ-dendrotoxin in the context of current structural information on the intracellular gating ring domain of the BKCa channel. Calculation of an electrostatic surface map of the BKCa gating ring based on the Poisson-Boltzmann equation reveals a predominantly electronegative surface due to an abundance of solvent-accessible side chains of negatively charged amino acids. Available structure-activity information suggests that cationic DTX/BPTI molecules bind by electrostatic attraction to site(s) on the gating ring located in or near the cytoplasmic side portals where the inactivation ball peptide of the β2 subunit enters to block the channel. Such an interaction may decrease the apparent unitary conductance by altering the dynamic balance of open versus closed states of BKCa channel activation gating.  相似文献   

20.
Electron transfer is an essential activity in biological systems. The migrating electron originates from water-oxygen in photosynthesis and reverts to dioxygen in respiration. In this cycle two metal porphyrin complexes possessing circular conjugated system and macrocyclic pi-clouds, chlorophyll and heme, play a decisive role in mobilising electrons for travel over biological structures as extraneous electrons. Transport of electrons within proteins (as in cytochromes) and within DNA (during oxidative damage and repair) is known to occur. Initial evaluations did not favour formation of semiconducting pathways of delocalized electrons of the peptide bonds in proteins and of the bases in nucleic acids. Direct measurement of conductivity of bulk material and quantum chemical calculations of their polymeric structures also did not support electron transfer in both proteins and nucleic acids. New experimental approaches have revived interest in the process of charge transfer through DNA duplex. The fluorescence on photo-excitation of Ru-complex was found to be quenched by Rh-complex, when both were tethered to DNA and intercalated in the base stack. Similar experiments showed that damage to G-bases and repair of T-T dimers in DNA can occur by possible long range electron transfer through the base stack. The novelty of this phenomenon prompted the apt name, "chemistry at a distance". Based on experiments with ruthenium modified proteins, intramolecular electron transfer in proteins is now proposed to use pathways that include C-C sigma-bonds and surprisingly hydrogen bonds which remained out of favour for a long time. In support of this, some experimental evidence is now available showing that hydrogen bond-bridges facilitate transfer of electrons between metal-porphyrin complexes. By molecular orbital calculations over 20 years ago we found that "delocalization of an extraneous electron is pronounced when it enters low-lying virtual orbitals of the electronic structures of peptide units linked by hydrogen bonds". This review focuses on supramolecular electron transfer pathways that can emerge on interlinking by hydrogen bonds and metal coordination of some unnoticed structures with pi-clouds in proteins and nucleic acids, potentially useful in catalysis and energy missions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号