首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundBacterial infections represent a major worldwide health problem the antimicrobial peptides (AMPs) have been considered as potential alternative agents for treating these infections. Here we demonstrated the antimicrobial activity of EcDBS1R6, a peptide derived from a signal peptide sequence of Escherichia coli that we previously turned into an AMP by making changes through the Joker algorithm.MethodsAntimicrobial activity was measured by broth microdilution method. Membrane integrity was measured using fluorescent probes and through scanning electron microscopy imaging. A sliding window of truncated peptides was used to determine the EcDBS1R6 active core. Molecular dynamics in TFE/water environment was used to assess the EcDBS1R6 structure.ResultsSignal peptides are known to naturally interact with membranes; however, the modifications introduced by Joker transformed this peptide into a membrane-active agent capable of killing bacteria. The C-terminus was unable to fold into an α-helix whereas its fragments showed poor or no antimicrobial activity, suggesting that the EcDBS1R6 antibacterial core was located at the helical N-terminus, corresponding to the signal peptide portion of the parent peptide.ConclusionThe strategy of transforming signal peptides into AMPs appears to be promising and could be used to produce novel antimicrobial agents.General significanceThe process of transforming an inactive signal peptide into an antimicrobial peptide could open a new venue for creating new AMPs derived from signal peptides.  相似文献   

2.
Antimicrobial peptides (AMPs) were recently determined to be potential candidates for treating drug-resistant bacterial infections. The aim of this study was to develop shorter AMP fragments that combine maximal bactericidal effect with minimal synthesis cost. We first synthesized a series of truncated forms of AMPs (anti-lipopolysaccharide factor from shrimp, epinecidin from grouper, and pardaxin from Pardachirus marmoratus). The minimum inhibitory concentrations (MICs) of modified AMPs against ten bacterial species were determined. We also examined the synergy between peptide and non-peptide antibiotics. In addition, we measured the inhibitory rate of cancer cells treated with AMPs by MTS assay. We found that two modified antibacterial peptides (epinecidin-8 and pardaxin-6) had a broad range of action against both gram-positive and gram-negative bacteria. Furthermore, epinecidin and pardaxin were demonstrated to have high antibacterial and anticancer activities, and both AMPs resulted in a significant synergistic improvement in the potencies of streptomycin and kanamycin against methicillin-resistant Staphylococcus aureus. Neither AMP induced significant hemolysis at their MICs. In addition, both AMPs inhibited human epithelial carcinoma (HeLa) and fibrosarcoma (HT-1080) cell growth. The functions of these truncated AMPs were similar to those of their full-length equivalents. In conclusion, we have successfully identified shorter, inexpensive fragments with maximal bactericidal activity. This study also provides an excellent basis for the investigation of potential synergies between peptide and non-peptide antibiotics, for a broad range of antimicrobial and anticancer activities.  相似文献   

3.
Bacterial resistance to conventional antibiotics is a global threat that has spurred the development of antimicrobial peptides (AMPs) and their mimetics as novel anti-infective agents. While the bioavailability of AMPs is often reduced due to protease activity, the non-natural structure of AMP mimetics renders them robust to proteolytic degradation, thus offering a distinct advantage for their clinical application. We explore the therapeutic potential of N-substituted glycines, or peptoids, as AMP mimics using a multi-faceted approach that includes in silico, in vitro, and in vivo techniques. We report a new QSAR model that we developed based on 27 diverse peptoid sequences, which accurately correlates antimicrobial peptoid structure with antimicrobial activity. We have identified a number of peptoids that have potent, broad-spectrum in vitro activity against multi-drug resistant bacterial strains. Lastly, using a murine model of invasive S. aureus infection, we demonstrate that one of the best candidate peptoids at 4 mg/kg significantly reduces with a two-log order the bacterial counts compared with saline-treated controls. Taken together, our results demonstrate the promising therapeutic potential of peptoids as antimicrobial agents.  相似文献   

4.
The increase in prevalence of antimicrobial resistance makes the search for new antibiotic agents imperative. Antimicrobial peptides (AMPs) from natural resources have been recognized as suitable tools to combat antibiotic-resistant bacteria. The liver fluke Clonorchis sinensis living in germ-filled environments could be a good source of antimicrobials. Here, we report the use of a rational protocol that combines AMP predictions based on their physicochemical properties and their in vivo stability to discover AMP candidates from the entire genome of C. sinensis. To screen AMP candidates, in silico analyses based on the physicochemical properties of known AMPs, such as length, charge, isoelectric point, and in vitro and in vivo aggregation values were performed. To enhance their in vivo stability, proteins having proteolytic cleavage sites were excluded. As a consequence, four high-activity, highstability peptides were identified. These peptides could be potential starting materials for the development of new AMPs via structural modification and optimization. Thus, this study proposes a refined computational method to develop new AMPs and identifies four AMP candidates, which could serve as templates for further development of peptide antibiotics.  相似文献   

5.
Antimicrobial peptides (AMPs) belong to a class of natural microbicidal molecules that have been receiving great attention for their lower propensity for inducing drug resistance, hence, their potential as alternative drugs to conventional antibiotics. By generating AMP libraries, one can study a large number of candidates for their activities simultaneously in a timely manner. Here, we describe a novel methodology where in silico designed AMP-encoding oligonucleotide libraries are cloned and expressed in a cellular host for rapid screening of active molecules. The combination of parallel oligonucleotide synthesis with microbial expression systems not only offers complete flexibility for sequence design but also allows for economical construction of very large peptide libraries. An application of this approach to discovery of novel AMPs has been demonstrated by constructing and screening a custom library of twelve thousand plantaricin-423 mutants in Escherichia coli. Analysis of selected clones by both Sanger-sequencing and 454 high-throughput sequencing produced a significant amount of data for positionally important residues of plantaricin-423 responsible for antimicrobial activity and, moreover, resulted in identification of many novel variants with enhanced specific activities against Listeria innocua. This approach allows for generation of fully tailored peptide collections in a very cost effective way and will have countless applications from discovery of novel AMPs to gaining fundamental understanding of their biological function and characteristics.  相似文献   

6.
The rise in antibiotic resistance has led to an increased research focus on discovery of new antibacterial candidates. While broad-spectrum antibiotics are widely pursued, there is evidence that resistance arises in part from the wide spread use of these antibiotics. Our group has developed a system to produce protein affinity agents, called synbodies, which have high affinity and specificity for their target. In this report, we describe the adaptation of this system to produce new antibacterial candidates towards a target bacterium. The system functions by screening target bacteria against an array of 10,000 random sequence peptides and, using a combination of membrane labeling and intracellular dyes, we identified peptides with target specific binding or killing functions. Binding and lytic peptides were identified in this manner and in vitro tests confirmed the activity of the lead peptides. A peptide with antibacterial activity was linked to a peptide specifically binding Staphylococcus aureus to create a synbody with increased antibacterial activity. Subsequent tests showed that this peptide could block S. aureus induced killing of HEK293 cells in a co-culture experiment. These results demonstrate the feasibility of using the synbody system to discover new antibacterial candidate agents.  相似文献   

7.
The presence and antimicrobial activity of antimicrobial peptides (AMPs) has been widely recognized as an evolutionary preserved part of the innate immune system. Based on evidence in animal models and humans, AMPs are now positioned as novel anti-infective agents. The current study aimed to evaluate the potential antimicrobial activity of ubiquicidin and small synthetic fragments thereof towards methicillin resistant Staphylococcus aureus (MRSA), as a high priority target for novel antibiotics. In vitro killing of MRSA by synthetic peptides derived from the alpha-helix or beta-sheet domains of the human cationic peptide ubiquicidin (UBI 1-59), allowed selection of AMPs for possible treatment of MRSA infections. The strongest antibacterial activity was observed for the entire peptide UBI 1-59 and for synthetic fragments comprising amino acids 31-38. The availability, chemical synthesis opportunities, and size of these small peptides, combined with their strong antimicrobial activity towards MRSA make these compounds promising candidates for antimicrobial therapy and detection of infections in man.  相似文献   

8.
Various semen extender formulas are in use to maintain sperm longevity and quality whilst acting against bacterial contamination in liquid sperm preservation. Aminoglycosides are commonly supplemented to aid in the control of bacteria. As bacterial resistance is increasing worldwide, antimicrobial peptides (AMPs) received lively interest as alternatives to overcome multi-drug resistant bacteria. We investigated, whether synthetic cationic AMPs might be a suitable alternative for conventional antibiotics in liquid boar sperm preservation. The antibacterial activity of two cyclic AMPs (c-WWW, c-WFW) and a helical magainin II amide analog (MK5E) was studied in vitro against two Gram-positive and eleven Gram-negative bacteria. Isolates included ATCC reference strains, multi-resistant E. coli and bacteria cultured from boar semen. Using broth microdilution, minimum inhibitory concentrations were determined for all AMPs. All AMPs revealed activity towards the majority of bacteria but not against Proteus spp. (all AMPs) and Staphylococcus aureus ATCC 29213 (MK5E). We could also demonstrate that c-WWW and c-WFW were effective against bacterial growth in liquid preserved boar semen in situ, especially when combined with a small amount of gentamicin. Our results suggest that albeit not offering a complete alternative to traditional antibiotics, the use of AMPs offers a promising solution to decrease the use of conventional antibiotics and thereby limit the selection of multi-resistant strains.  相似文献   

9.
Antimicrobial peptides (AMPs) have attracted attentions as a novel antimicrobial agent because of their unique activity against microbes. In the present study, we described a new, previously unreported AMP, moronecidin-like peptide, from Hippocampus comes and compared its antimicrobial activity with moronecidin from hybrid striped bass. Antibacterial assay indicated that gram-positive bacteria were more sensitive to moronecidin and moronecidin-like compared with gram-negative bacteria. Furthermore, both AMPs were found to exhibit effective antifungal activity. Comparative analysis of the antimicrobial activity revealed that moronecidin-like peptide has higher activity against Acinetobacter baumannii and Staphylococcus epidermidis relative to moronecidin. Both moronecidin-like and moronecidin peptides retained their antibacterial activity in physiological pH and salt concentration. The time-killing assay showed that the AMPs completely killed A. baumannii and S. epidermidis isolates after 1 and 5 h at five- and tenfold above their corresponding MICs, respectively. Anti-biofilm assay demonstrated that peptides were able to inhibit 50% of biofilm formation at sub-MIC of 1/8 MIC. Furthermore, moronecidin-like significantly inhibited biofilm formation more than moronecidin at 1/16 MIC. Collectively, our results revealed that antimicrobial and anti-biofilm activities of moronecidin-like are comparable to moronecidin. In addition, the hemolytic and cytotoxic activities of moronecidin-like were lower than those of moronecidin, suggesting it as a potential novel therapeutic agent, and a template to design new therapeutic AMPs.  相似文献   

10.
Antimicrobial peptides (AMPs) are important components of the innate immunity. Many antimicrobial peptides have been found from marine mollusks. Little information about AMPs of mollusks living on land is available. A novel cysteine-rich antimicrobial peptide (mytimacin-AF) belonging to the peptide family of mytimacins was purified and characterized from the mucus of the snail of Achatina fulica. Its cDNA was also cloned from the cDNA library. Mytimacin-AF is composed of 80 amino acid residues including 10 cysteines. Mytimacin-AF showed potent antimicrobial activity against Gram-negative and Gram-positive bacteria and the fungus Candida albicans. Among tested microorganisms, it exerted strongest antimicrobial activity against Staphylococcus aureus with a minimal peptide concentration (MIC) of 1.9 μg/ml. Mytimacin-AF had little hemolytic activity against human blood red cells. The current work confirmed the presence of mytimacin-like antimicrobial peptide in land-living mollusks.  相似文献   

11.

Background

To facilitate the screening of large quantities of new antimicrobial peptides (AMPs), we describe a cost-effective method for high throughput prokaryotic expression of AMPs. EDDIE, an autoproteolytic mutant of the N-terminal autoprotease, Npro, from classical swine fever virus, was selected as a fusion protein partner. The expression system was used for high-level expression of six antimicrobial peptides with different sizes: Bombinin-like peptide 7, Temporin G, hexapeptide, Combi-1, human Histatin 9, and human Histatin 6. These expressed AMPs were purified and evaluated for antimicrobial activity.

Results

Two or four primers were used to synthesize each AMP gene in a single step PCR. Each synthetic gene was then cloned into the pET30a/His-EDDIE-GFP vector via an in vivo recombination strategy. Each AMP was then expressed as an Npro fusion protein in Escherichia coli. The expressed fusion proteins existed as inclusion bodies in the cytoplasm and the expression levels of the six AMPs reached up to 40% of the total cell protein content. On in vitro refolding, the fusion AMPs was released from the C-terminal end of the autoprotease by self-cleavage, leaving AMPs with an authentic N terminus. The released fusion partner was easily purified by Ni-NTA chromatography. All recombinant AMPs displayed expected antimicrobial activity against E. coli, Micrococcus luteus and S. cerevisia.

Conclusions

The method described in this report allows the fast synthesis of genes that are optimized for over-expression in E. coli and for the production of sufficiently large amounts of peptides for functional and structural characterization. The Npro partner system, without the need for chemical or enzymatic removal of the fusion tag, is a low-cost, efficient way of producing AMPs for characterization. The cloning method, combined with bioinformatic analyses from genome and EST sequence data, will also be useful for screening new AMPs. Plasmid pET30a/His-EDDIE-GFP also provides green/white colony selection for high-throughput recombinant AMP cloning.  相似文献   

12.
Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics in order to defeat multidrug-resistant bacteria such as Streptococcus pneumoniae. In this study, thirteen antimicrobial peptides were designed based on two natural peptides indolicidin and ranalexin. Our results revealed that four hybrid peptides RN7-IN10, RN7-IN9, RN7-IN8, and RN7-IN6 possess potent antibacterial activity against 30 pneumococcal clinical isolates (MIC 7.81-15.62µg/ml). These four hybrid peptides also showed broad spectrum antibacterial activity (7.81µg/ml) against S. aureus, methicillin resistant S. aureus (MRSA), and E. coli. Furthermore, the time killing assay results showed that the hybrid peptides were able to eliminate S. pneumoniae within less than one hour which is faster than the standard drugs erythromycin and ceftriaxone. The cytotoxic effects of peptides were tested against human erythrocytes, WRL-68 normal liver cell line, and NL-20 normal lung cell line. The results revealed that none of the thirteen peptides have cytotoxic or hemolytic effects at their MIC values. The in silico molecular docking study was carried out to investigate the binding properties of peptides with three pneumococcal virulent targets by Autodock Vina. RN7IN6 showed a strong affinity to target proteins; autolysin, pneumolysin, and pneumococcal surface protein A (PspA) based on rigid docking studies. Our results suggest that the hybrid peptides could be suitable candidates for antibacterial drug development.  相似文献   

13.
Peptides derived from shrimp hemocyanin have antimicrobial properties. This is the first report of hemocyanin cDNA (FCHc) cloned from Fenneropenaeus chinensis and recombinant expression of two C-terminal fragments. Based on sequence analysis of Fenneropenaeus chinensis hemocyanin FCHc, we subcloned two FCHc fragments by designing special primers. Two antimicrobial peptides (AMPs) were derived from FCHc (FCHc-C1 and FCHc-C2). The recombinant sequence of FCHc-C1 consisted of 207 bp encoding 69 amino acids and the recombinant sequence of FCHc-C2 consisted of 120 bp encoding 40 amino acids. The results of Tricine–sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting indicated that recombinant FCHc-C1 and FCHc-C2 peptides (rFCHc-C1 and rFCHc-C2) were expressed successfully. An inhibition assay showed that FCHc-C1 and FCHc-C2 were anionic AMPs with antifungal and antibacterial activities.  相似文献   

14.
Worldwide bacterial resistance to traditional antibiotics has drawn much research attention to naturally occurring antimicrobial peptides (AMPs) owing to their potential as alternative antimicrobials. Structural studies of AMPs are essential for an in-depth understanding of their activity, mechanism of action, and in guiding peptide design. Two-dimensional solution proton NMR spectroscopy has been the major tool. In this article, we describe the applications of natural abundance 13C NMR spectroscopy that provides complementary information to 2D 1H NMR. The correlation of 13Cα secondary shifts with both 3D structure and heteronuclear 15N NOE values indicates that natural abundance carbon chemical shifts are useful probes for backbone structure and dynamics of membrane peptides. Using human LL-37-derived peptides (GF-17, KR-12, and RI-10), as well as amphibian antimicrobial and anticancer peptide aurein 1.2 and its analog LLAA, as models, we show that the cross peak intensity plots of 2D 1H-13Cα HSQC spectra versus residue number present a wave-like pattern (HSQC wave) where key hydrophobic residues of micelle-bound peptides are located in the troughs with weaker intensities, probably due to fast exchange between the free and bound forms. In all the cases, the identification of aromatic phenylalanines as a key membrane-binding residue is consistent with previous intermolecular Phe-lipid NOE observations. Furthermore, mutation of one of the key hydrophobic residues of KR-12 to Ala significantly reduced the antibacterial activity of the peptide mutants. These results illustrate that natural abundance heteronuclear-correlated NMR spectroscopy can be utilized to probe backbone structure and dynamics, and perhaps to map key membrane-binding residues of peptides in complex with micelles. 1H-13Cα HSQC wave, along with other NMR waves such as dipolar wave and chemical shift wave, offers novel insights into peptide-membrane interactions from different angles.  相似文献   

15.
16.
Antimicrobial peptides (AMPs) inactivate microbial cells through pore formation in cell membrane. Because of their different mode of action compared to antibiotics, AMPs can be effectively used to combat drug resistant bacteria in human health. AMPs can also be used to replace antibiotics in animal feed and immobilized on food packaging films. In this research, we developed a methodology based on mechanistic evaluation of peptide-lipid bilayer interaction to identify AMPs from soy protein. Production of AMPs from soy protein is an attractive, cost-saving alternative for commercial consideration, because soy protein is an abundant and common protein resource. This methodology is also applicable for identification of AMPs from any protein. Initial screening of peptide segments from soy glycinin (11S) and soy β-conglycinin (7S) subunits was based on their hydrophobicity, hydrophobic moment and net charge. Delicate balance between hydrophilic and hydrophobic interactions is necessary for pore formation. High hydrophobicity decreases the peptide solubility in aqueous phase whereas high hydrophilicity limits binding of the peptide to the bilayer. Out of several candidates chosen from the initial screening, two peptides satisfied the criteria for antimicrobial activity, viz. (i) lipid-peptide binding in surface state and (ii) pore formation in transmembrane state of the aggregate. This method of identification of antimicrobial activity via molecular dynamics simulation was shown to be robust in that it is insensitive to the number of peptides employed in the simulation, initial peptide structure and force field. Their antimicrobial activity against Listeria monocytogenes and Escherichia coli was further confirmed by spot-on-lawn test.  相似文献   

17.
Designing new antimicrobial peptides (AMPs) focuses heavily on the activity of the peptide and less on the elements that stabilize the secondary structure of these peptides. Studies have shown that improving the structure of naturally occurring AMPs can affect activity and so here we explore the relationship between structure and activity of two non‐naturally occurring AMPs. We have used a backbone‐cyclized peptide as a template and designed an uncyclized analogue of this peptide that has antimicrobial activity. We focused on beta‐hairpin‐like structuring features. Improvements to the structure of this peptide reduced the activity of the peptide against gram‐negative, Escherichia coli but improved the activity against gram‐positive, Corynebacterium glutamicum. Distinctions in structuring effects on gram‐negative versus gram‐positive activity were also seen in a second peptide system. Structural improvements resulted in a peptide that was more active than the native against gram‐positive bacterium but less active against gram‐negative bacterium. Our results show that there is not always a correlation between improved hairpin‐structuring and activity. Other factors such as the type of bacteria being targeted as well as net positive charge can play a role in the potency of AMPs. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
Emerging drug resistance in Salmonella coupled with the recent poor success rate of antibiotic discovery programs of the pharmaceutical industry is a cause for significant concern. It has forced the scientific community to look for alternative new classes of antimicrobial compounds. In this context, combinations of antimicrobial peptides (AMPs) and conventional antibiotics have gained interest owing to their versatile applications. The present study was therefore planned to evaluate the synergistic effects, if any, of cryptdin-2, a mouse Paneth cell alpha-defensin, in combination with four different antibiotics i.e. ciprofloxacin, ceftriaxone, cefotaxime and chloramphenicol, which are conventionally used against Salmonella. Minimum bactericidal concentrations of the selected antimicrobial agents were determined by micro and macro broth dilution assays. In-vitro synergy between the agents was evaluated by fractional bactericidal concentration index (checkerboard test) and time-kill assay. Cryptdin-2-ciprofloxacin, cryptdin-2-ceftriaxone and cryptdin-2-cefotaxime combinations were found synergistic as evident by in vitro assays. This synergism provides an additional therapeutic choice by allowing the use of conventional antibiotics in conjunction with AMPs against MDR Salmonella.  相似文献   

19.
Antimicrobial peptides (AMPs) are conserved evolutionary components of the innate immune system that are being tested as alternatives to antibiotics. Slow release of AMPs using biodegradable polymers can be advantageous in maintaining high peptide levels for topical treatment, especially in the oral environment in which dosage retention is challenged by drug dilution with saliva flow and by drug inactivation by salivary enzymatic activity. Enterococcus faecalis is a multidrug resistant nosocomial pathogen and a persistent pathogen in root canal infections. In this study, four ultra-short lipopeptides (C16-KGGK, C16-KLLK, C16-KAAK and C16-KKK) and an amphipathic α-helical antimicrobial peptide (Amp-1D) were tested against E. faecalis. The antibacterial effect was determined against planktonic bacteria and bacteria grown in biofilm. Of the five tested AMPs, C16-KGGK was the most effective. Next C16-KGGK was formulated with one of two polymers poly (lactic acid co castor oil) (DLLA) or ricinoleic acid-based poly (ester-anhydride) P(SA-RA). Peptide-synthetic polymer conjugates, also referred to as biohybrid mediums were tested for antibacterial activity against E. faecalis grown in suspension and in biofilms. The new formulations exhibited strong and improved anti- E. faecalis activity.  相似文献   

20.
Natural antimicrobial peptides (AMPs), a family of small polypeptides that are produced by constitutive or inducible expression in organisms, are integral components of the host innate immune system. In addition to their broad-spectrum antibacterial activity, natural AMPs also have many biological activities against fungi, viruses and parasites. Natural AMPs exert multiple immunomodulatory roles that may predominate under physiological conditions where they lose their microbicidal properties in serum and tissue environments. Increased drug resistance among microorganisms is occurring far more quickly than the discovery of new antibiotics. Natural AMPs have shown promise as ‘next generation antibiotics’ due to their broad-spectrum curative effects, low toxicity, the fact that they are not residual in animals, and the low rates of resistance exhibited by many pathogens. Many types of synthetic AMPs are currently being tested in clinical trials for the prevention and treatment of various diseases such as chemotherapy-associated infections, diabetic foot ulcers, catheter-related infections, and other conditions. Here, we provide an overview of the types and functions of natural AMPs and their role in combating microorganisms and different infectious and inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号