共查询到6条相似文献,搜索用时 15 毫秒
1.
2.
Anthropologists have repeatedly noted that there has been little theoretical progress in the anthropology of religion over the past fifty years.1–7 By the 1960s, Geertz2 had pronounced the field dead. Recently, however, evolutionary researchers have turned their attention toward understanding the selective pressures that have shaped the human capacity for religious thoughts and behaviors, and appear to be resurrecting this long‐dormant but important area of research.8–19 This work, which focuses on ultimate evolutionary explanations, is being complemented by advances in neuropsychology and a growing interest among neuroscientists in how ritual, trance, meditation, and other altered states affect brain functioning and development.20–26 This latter research is providing critical insights into the evolution of the proximate mechanisms responsible for religious behavior. Here we review these literatures and examine both the proximate mechanisms and ultimate evolutionary processes essential for developing a comprehensive evolutionary explanation of religion. 相似文献
3.
4.
Kinesins and protein kinases: key players in the regulation of microtubule dynamics and organization
Microtubule dynamics is controlled and amplified in vivo by complex sets of regulators. Among these regulatory proteins, molecular motors from the kinesin superfamily are taking an increasing importance. Here we review how microtubule disassembly or assembly into interphase microtubules, mitotic spindle or cilia may involve kinesins and how protein kinases may participate in these kinesin-dependent regulations. 相似文献
5.
Viewing the universe as being composed of hierarchically arranged systems is widely accepted as a useful model of reality. In ecology, three levels of organization are generally recognized: organisms, populations, and communities (biocoenoses). For half a century increasing numbers of ecologists have concluded that recognition of a fourth level would facilitate increased understanding of ecological phenomena. Sometimes the word "ecosystem" is used for this level, but this is arguably inappropriate. Since 1986, I and others have argued that the term "landscape" would be a suitable term for a level of organization defined as an ecological system containing more than one community type. However, "landscape" and "landscape level" continue to be used extensively by ecologists in the popular sense of a large expanse of space. I therefore now propose that the term "ecoscape" be used instead for this fourth level of organization. A clearly defined fourth level for ecology would focus attention on the emergent properties of this level, and maintain the spatial and temporal scale-free nature inherent in this hierarchy of organizational levels for living entities. 相似文献
6.
Catheleyne D'hondt Bernard Himpens Geert Bultynck 《Journal of visualized experiments : JoVE》2013,(77)
Intercellular communication is essential for the coordination of physiological processes between cells in a variety of organs and tissues, including the brain, liver, retina, cochlea and vasculature. In experimental settings, intercellular Ca2+-waves can be elicited by applying a mechanical stimulus to a single cell. This leads to the release of the intracellular signaling molecules IP3 and Ca2+ that initiate the propagation of the Ca2+-wave concentrically from the mechanically stimulated cell to the neighboring cells. The main molecular pathways that control intercellular Ca2+-wave propagation are provided by gap junction channels through the direct transfer of IP3 and by hemichannels through the release of ATP. Identification and characterization of the properties and regulation of different connexin and pannexin isoforms as gap junction channels and hemichannels are allowed by the quantification of the spread of the intercellular Ca2+-wave, siRNA, and the use of inhibitors of gap junction channels and hemichannels. Here, we describe a method to measure intercellular Ca2+-wave in monolayers of primary corneal endothelial cells loaded with Fluo4-AM in response to a controlled and localized mechanical stimulus provoked by an acute, short-lasting deformation of the cell as a result of touching the cell membrane with a micromanipulator-controlled glass micropipette with a tip diameter of less than 1 μm. We also describe the isolation of primary bovine corneal endothelial cells and its use as model system to assess Cx43-hemichannel activity as the driven force for intercellular Ca2+-waves through the release of ATP. Finally, we discuss the use, advantages, limitations and alternatives of this method in the context of gap junction channel and hemichannel research. 相似文献