首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eisen EJ 《Genetics》1978,88(4):781-811
Individual selection based on female performance only was conducted in four lines of mice: L+ for increased litter size, W+ for increased 6-week body weight, L-W+ for a selection index aimed at decreasing litter size and increasing 6-week body weight and L+W- for a selection index aimed at increasing litter size and decreasing 6-week body weight. A fifth line (K) served as an unselected control. All litters were standardized to eight mice at one day of age. Expected heritability was based on twice the regression of offspring on dam (h2d), which contains additive genetic variance due to direct (σ2Ao) and maternal (σ2Am) effects and their covariance (σAoAm). Responses and correlated responses were measured either deviated (method 1) or not deviated (method 2) from the control line. Realized heritabilities (h2R) for litter size were 0.19 ± 0.04 (1) and 0.16 ± 0.03 (2), which were similar to h 2d of 0.17 ± 0.04. The h2 R for 6-week body weight of 0.55 ± 0.07 (1) and 0.44 ± 0.07 (2) agreed with h2d of 0.42 ± 0.02. Realized genetic correlations (r*GR) between litter size and 6-week body weight calculated from the double-selection experiment were 0.52 ± 0.10 (1) and 0.52 ± 0.13 (2), which were not significantly different from the base population estimate of r* Gd = 0.63 ± 0.14. Divergence (L-W + minus L+W-) in the antagonistic index selection lines was 0.21 ± 0.01 index units (I = 0.305 PW - 0.436 PL, where P W and PL are the phenotypic values for 6-week body weight and litter size, respectively.). The h2 R of index units of 0.14 ± 0.02 calculated from divergence agreed with h2d of 0.14 ± 0.04. Divergences in litter size (-0.19 ± 0.07) and 6-week body weight (0.46 ± 0.10) were in the expected direction. Antagonistic index selection yielded about one-half the expected divergence in litter size, while divergence in 6-week body weight was only slightly less than expected. Realized genetic correlations indicated that litter size, 6-week body weight and index units each showed positive pleiotropy with 3-week body weight, postweaning gain and weight at vaginal introitus and negative pleiotropy with age at vaginal introitus. Sex ratio and several components of fitness (days from joining to parturition, percent fertile matings and percent perinatal survival) did not change significantly in the selected lines.  相似文献   

2.
The kinetics of growth and amylase production of Saccharomycopsis fibuligera were studied in a chemostat on a synthetic potato processing blancher water. Dilution rates (D) from 0.101 to 0.480 h−1 were examined. A mathematical model based on the Monod equation was developed. The yield of cell mass from carbohydrates was constant and equal to 0.84. The maximum specific growth rate and the Monod constant were determined to be 0.596 h−1 and 0.226 mg/ml, respectively. An equation for the steady-state starch concentrations was empirically derived. The steady-state noncarbohydrate carbon levels rose linearly with D. Reducing sugars were the growth-limiting substrate, and their steady-state levels conformed to Monod kinetics. The yield of amylase from the cell mass (Yz) declined as D rose and was described by the equation Yz = (−8.005D + 4.076). The model predicted that the maximum production of cell mass should occur at D = 0.35 h−1 and the maximum production of amylase should occur at D = 0.22 h−1. The mathematical model presented agreed with the experimental results in its prediction of the steady-state level of reducing sugar, starch, cell mass, and amylase concentrations as well as the productivity of amylase.  相似文献   

3.
An efficient enzymatic process was developed to produce optically pure D-phenylalanine through asymmetric resolution of the racemic DL-phenylalanine using immobilized phenylalanine ammonia-lyase (RgPAL) from Rhodotorula glutinis JN-1. RgPAL was immobilized on a modified mesoporous silica support (MCM-41-NH-GA). The resulting MCM-41-NH-GA-RgPAL showed high activity and stability. The resolution efficiency using MCM-41-NH-GA-RgPAL in a recirculating packed-bed reactor (RPBR) was higher than that in a stirred-tank reactor. Under optimal operational conditions, the volumetric conversion rate of L-phenylalanine and the productivity of D-phenylalanine reached 96.7 mM h−1 and 0.32 g L−1 h−1, respectively. The optical purity (ee D) of D-phenylalanine exceeded 99%. The RPBR ran continuously for 16 batches, the conversion ratio did not decrease. The reactor was scaled up 25-fold, and the productivity of D-phenylalanine (ee D>99%) in the scaled-up reactor reached 7.2 g L−1 h−1. These results suggest that the resolution process is an alternative method to produce highly pure D-phenylalanine.  相似文献   

4.
Shake flask experiments showed that Pseudomonas oleovorans began to be growth inhibited at 4.65 g of sodium octanoate liter-1, with total inhibition at 6 g liter-1. In chemostat studies with 2 g of ammonium sulfate and 8 g of octanoate liter-1 in the feed, the maximum specific growth rate was 0.51 h-1, and the maximum specific rate of poly-β-hydroxyalkanoate (PHA) production was 0.074 g of PHA g of cellular protein-1 h-1 at a dilution rate (D) of 0.25 h-1. When the specific growth rate (μ) was <0.3 h-1, the PHA composition was relatively constant with a C4/C6/C8/C10 ratio of 0.1:1.7:20.7:1.0. At μ > 0.3 h-1, a decrease in the percentage of C8 with a concomitant increase in C10 monomers as μ increased was probably due to the effects of higher concentrations of unmetabolized octanoate in the fermentor. At D = 0.24 h-1 and an increasing carbon/nitrogen ratio, the percentage of PHA in the biomass was constant at 13% (wt/wt), indicating that nitrogen limitation did not affect PHA accumulation. Under carbon-limited conditions, the yield of biomass from substrate was 0.76 g of biomass g of octanoate-1 consumed, the yield of PHA was 0.085 g of PHA g of octanoate-1 used, and 7.9 g of octanoate was consumed for each gram of NH4+ supplied. The maintenance coefficient was 0.046 g of octanoate g of biomass-1 h-1. Replacement of sodium octanoate with octanoic acid appeared to result in transport-limited growth due to the water insolubility of the acid.  相似文献   

5.
Summary 1. Our aim was to test the hypothesis that selectivity for D3 dopamine (DA) receptors may contribute to limbic anti-DA selectivity ofS-(+)-aporphine DA partial agonists.2. Affinity was tested with3H-emonapride, using human D3 receptors in mouse fibroblasts and D2 receptors in rat striatal tissue.3. D3 receptors showed a picomolar affinity for3H-emonapride, Na+ dependence, and reversible saturability, as well as stereoselectivity. Confirmatory or novel D3/D2 pharmacologic selectivity was found with several benzamides, thioxanthenes, buspirone, GBR-12909, and DA agonists including hydroxyaminotetralins [ADTN, (+)-7-OH-DPAT, (–)-PPHT and its fluorescein derivative], (–)-N-propylnorapomorphine, (–)-3-PPP, (–)-quinpirole, and SDZ-205-502, but neither aminoergoline nor (+)-aporphine partial agonists.4. The results extend pharmacologic characterization of D3-transfected cell membranes but fail to account for the high limbic anti-DA selectivity ofS-(+)-aporphines.  相似文献   

6.
The kinetic parameters Km, Vmax, Tt (turnover time), and v (natural velocity) were determined for H2 and acetate conversion to methane by Wintergreen Lake sediment, using short-term (a few hours) methods and incubation temperatures of 10 to 14°C. Estimates of the Michaelis-Menten constant, Km, for both the consumption of hydrogen and the conversion of hydrogen to methane by sediment microflora averaged about 0.024 μmol g−1 of dry sediment. The maximal velocity, Vmax, averaged 4.8 μmol of H2 g−1 h−1 for hydrogen consumption and 0.64 μmol of CH4 g−1 h−1 for the conversion of hydrogen to methane during the winter. Estimated natural rates of hydrogen consumption and hydrogen conversion to methane could be calculated from the Michaelis-Menten equation and estimates of Km, Vmax, and the in situ dissolved-hydrogen concentration. These results indicate that methane may not be the only fate of hydrogen in the sediment. Among several potential hydrogen donors tested, only formate stimulated the rate of sediment methanogenesis. Formate conversion to methane was so rapid that an accurate estimate of kinetic parameters was not possible. Kinetic experiments using [2-14C]acetate and sediments collected in the summer indicated that acetate was being converted to methane at or near the maximal rate. A minimum natural rate of acetate conversion to methane was estimated to be about 110 nmol of CH4 g−1 h−1, which was 66% of the Vmax (163 nmol of CH4 g−1 h−1). A 15-min preincubation of sediment with 5.0 × 10−3 atm of hydrogen had a pronounced effect on the kinetic parameters for the conversion of acetate to methane. The acetate pool size, expressed as the term Km + Sn (Sn is in situ substrate concentration), decreased by 37% and Tt decreased by 43%. The Vmax remained relatively constant. A preincubation with hydrogen also caused a 37% decrease in the amount of labeled carbon dioxide produced from the metabolism of [U-14C]valine by sediment heterotrophs.  相似文献   

7.
Tpt1, an essential component of the fungal and plant tRNA splicing machinery, catalyzes transfer of an internal RNA 2′-PO4 to NAD+ yielding RNA 2′-OH and ADP-ribose-1′,2′-cyclic phosphate products. Here, we report NMR structures of the Tpt1 ortholog from the bacterium Runella slithyformis (RslTpt1), as apoenzyme and bound to NAD+. RslTpt1 consists of N- and C-terminal lobes with substantial inter-lobe dynamics in the free and NAD+-bound states. ITC measurements of RslTpt1 binding to NAD+ (KD ∼31 μM), ADP-ribose (∼96 μM) and ADP (∼123 μM) indicate that substrate affinity is determined primarily by the ADP moiety; no binding of NMN or nicotinamide is observed by ITC. NAD+-induced chemical shift perturbations (CSPs) localize exclusively to the RslTpt1 C-lobe. NADP+, which contains an adenylate 2′-PO4 (mimicking the substrate RNA 2′-PO4), binds with lower affinity (KD ∼1 mM) and elicits only N-lobe CSPs. The RslTpt1·NAD+ binary complex reveals C-lobe contacts to adenosine ribose hydroxyls (His99, Thr101), the adenine nucleobase (Asn105, Asp112, Gly113, Met117) and the nicotinamide riboside (Ser125, Gln126, Asn163, Val165), several of which are essential for RslTpt1 activity in vivo. Proximity of the NAD+ β-phosphate to ribose-C1″ suggests that it may stabilize an oxocarbenium transition-state during the first step of the Tpt1-catalyzed reaction.  相似文献   

8.
Summary The influence of temperature on the growth of the theromophilic Bacillus caldotenax was investigated using chemostat techniques and a chemically defined minimal medium. All determined growth constants, that is maximal specific growth rate, yield and maintenance, were temperature dependent. It was striking that the very large maintenance requirement was about 10 times higher than for mesophilic cells under equivalent conditions. A death rate, which was very substantial at optimal and supraoptimal growth temperatures, was estimated by comparing the maintenance for substrate and oxygen. There was no indication for a thermoadaptation as postulated by Haberstich and Zuber (1974).Symbols D Dilution rate (h–1) - Dc=max Critical dilution rate (h–1) - E Temperature characteristic (J mol–1) - k Organism constant - kd Death rate coefficient (h–1) - km Maintenance substrate coefficient estimated from MO (h–1) - MO Maintenance respiration, mmol O2 per g dry biomass and h (mmol g–1h–1) - MO Maintenance respiration, taking kd into account - mS Maintenance substrate coefficient, g glucose per g dry biomass and h (h–1) - OD Optical density at 546 nm - QO2 Specific O2-uptake rate (mmol g–1h–1) - Q O2 V Specific O2-uptake rate for viable portion of biomass (mmol g–1 h–1) - QS Specific glucose uptake rate (h–1) - Q S V Specific glucose uptake rate for viable portion of biomass (h–1) - R Gas constant 8.28 J mol–1K–1 - S Substrate concentration in reactor (g l–1) - SO Influent substrate concentration (g l–1) - Tmax Maximal growth temperature (°C) - Tmin Minimal growth temperature (°C) - X Dry biomass (g l–1) - XtOt=X Dry biomass containing dead and viable cells - Xv Viable portion of biomass - Y O m Potential yield for O2 corrected for maintenance respiration (g mol–1) - Y S m Potential yield for substrate corrected for maintenance requirement, g biomass per g glucose (–) - Specific growth rate (h–1) - max Maximal specific growth rate (h–1)  相似文献   

9.
Flocs consisting of Anabaena and Zoogloea spp. were used as a model system for the study of planktonic phototroph-heterotroph interactions. In CO2-limited continuous culture (3.2 μmol of NaHCO3 liter−1 h−1, 1.5 μmol of glucose liter−1 h−1, pH 8.5, D = 0.026 h−1), the biomass of the phototroph increased 8.6-fold due to association. However, direct CO2 exchange accounted for only a 3.8-fold increase. When the glucose supply rate was increased to 7.5 μmol liter−1 h−1, there was a 26-fold increase in biomass. When CO2 was supplied in excess, there was no difference due to association. In batch culture, using the same medium, the specific growth rate was 0.029 h−1 for the phototroph alone and 0.047 h−1 for the phototroph in association with the heterotroph. The stimulatory effect of the heterotroph was found only under CO2-limiting conditions and was directly related to the concentration of organic matter supplied in the medium. Both the biomass and the growth rate of the Anabaena sp. were increased by association with the Zoogloea sp. Thus, dissolved organic matter may substitute for CO2 to maximize both growth rate and biomass production by phototrophs when heterotrophic bacteria are present.  相似文献   

10.
四川柏木人工林林下植被生物量与林分结构的关系   总被引:1,自引:0,他引:1  
金艳强  包维楷 《生态学报》2014,34(20):5849-5859
森林结构与林下植被生物量的关系是森林持续经营与森林碳计量监测的科学基础,但一直缺乏必要的研究。以四川柏木(Cupressus funebris)人工林为研究对象,揭示林下植被生物量(Wu)、灌木生物量(Ws)和草本生物量(Wh)与林分结构的关系,并试图构建区域性林下植被生物量估测的混合模型。结果表明:(1)乔、灌、草群体共12个结构因子中,灌木群体的平均基径(Ds)、盖度(Cs)、高度(Hs)、体积(Vs)与林下植被生物量关系更紧密,在林下植被生物量模型构建中更有效;(2)多模型拟合与比较表明,柏木林Ws最佳估算模型为Ws=0.0005V1.0411s(R2a=0.762,P0.001,n=40),而Wu的最佳估算模型为ln Wu=0.0158Hs+0.0111Cs-0.5358(R2a=0.695,P0.001,n=40),但对于Wh未能获得较为理想的估算模型(R2a0.410,P0.01,n=40);(3)林分密度(Du)整合进入多元线性模型提高了林下植被生物量的估测精度,ln Wu=a+b Du+c Hs+d Cs(R2a=0.721,P0.001,n=40)。研究为区域性林下生物量估测模型构建提供了新论据。  相似文献   

11.
We demonstrate that a diffusible factor is secreted by h cells of the fission yeast Schizosaccharomyces pombe, whose mating pheromones have not been described. This factor, tentatively named the h-factor, affects h+ S. pombe cells and induces their elongation under nitrogen-depleted conditions. Circumstantial evidence suggests its physiological significance in the mating process. Despite their sterility, h ras1 cells secrete this factor. However, h+ ras1 cells have apparently lost the ability to respond to it. This may suggest that the gene product of S. pombe ras1, a homologue of mammalian ras oncogenes, is involved in the mechanism for responding to mating pheromones.  相似文献   

12.
《FEBS letters》1997,400(2-3):191-195
The different murine D2-type dopamine receptors (D2L, D2S, D3L, D3S, and D4) were expressed in Xenopus laevis oocytes. The D2-type receptors were all similarly and efficiently expressed in Xenopus oocytes and were shown to bind the D2 antagonist [125I]sulpride. They were all shown to activate Cl influx upon agonist stimulation. Using the diagnostic inhibitor bumetanide, we were able to separate the Na+/K+/2Cl cotransporter component of the Cl influx from the total unidirectional Cl influx. The D3L subtype was found to operate exclusively through the bumetanide-insensitive Cl influx whereas the other D2-type receptors acted on the Na+/K+/2Cl cotransporter as well. The pertussis toxin sensitivity of the receptor-activated chloride influx via the Na+/K+/2Cl cotransporter varied between the various D2-type receptors showing that they may couple to different G proteins, and activate different second messenger systems.  相似文献   

13.
Many studies have found that plant invasion can enhance soil organic carbon (SOC) pools, by increasing net primary production (NPP) and/or decreased soil respiration. While most studies have focused on C input, little attention has been paid to plant invasion effects on soil respiration, especially in wetland ecosystems. Our study examined the effects of Spartina alterniflora invasion on soil respiration and C dynamics in the Yangtze River estuary. The estuary was originally occupied by two native plant species: Phragmites australis in the high tide zone and Scirpus mariqueter in the low tide zone. Mean soil respiration rates were 185.8 and 142.3 mg CO2 m−2 h−1 in S. alterniflora and P. australis stands in the high tide zone, and 159.7 and 112.0 mg CO2 m−2 h−1 in S. alterniflora and S. mariqueter stands in the low tide zone, respectively. Aboveground NPP (ANPP), SOC, and microbial biomass were also significantly higher in the S. alterniflora stands than in the two native plant stands. S. alterniflora invasion did not significantly change soil inorganic carbon or pH. Our results indicated that enhanced ANPP by S. alterniflora exceeded invasion-induced C loss through soil respiration. This suggests that S. alterniflora invasion into the Yangtze River estuary could strengthen the net C sink of wetlands in the context of global climate change.  相似文献   

14.
A perfusion method for assaying nitrogenase activity (acetylene reduction) in marine sediments was developed. The method was used to assay sediment cores from Spartina alterniflora (salt marsh), Zostera marina (sea grass), and Thalassia testudinum (sea grass) communities, and the results were compared with those of conventional sealed-flask assays. Rates of ethylene production increased progressively with time in the perfusion assays, reaching plateau values of 2 to 3 nmol · g of dry sediment−1 · h−1 by 10 to 20 h. Depletion of interstitial NH4+ was implicated in this stimulation of nitrogenase activity. Initial acetylene reduction rates determined by the perfusion assay of cores from the Spartina community ranged from 0.15 to 0.60 nmol of C2H4 · g of dry sediment−1 · h−1. These rates were similar to those for sediments assayed in sealed flasks without seawater when determined over linear periods of C2H4 production. Initial values obtained by using the perfusion method were 0.66 nmol of C2H4 · g of dry sediment−1 · h−1 for sediments from Zostera communities and 0.70 nmol of C2H4 · g of dry sediment−1 · h−1 for sediments from Thalassia communities. In all cases, rates determined by simultaneous slurry assays were lower than those determined by the perfusion method.  相似文献   

15.
Summary Some environmental affects on cell aggregation described in the literature are briefly summarized. By means of a biomass recirculation culture (Contact system), using the yeast Torulopsis glabrata, the aggregation behavior of cells in static and in dynamic test systems is described. Sedimentation times required to obtain 50 g · l–1 yeast dry matter in static systems were always higher than in dynamic ones.In addition to, influencing the biomass yield, the specific growth rate of the yeast also affected cell aggregation. The specific growth rate and therefore the aggregation could be regulated by the biomass recirculation rate as well as by the sedimenter volume.Abbreviations fo Overflow flow rate (l·h–1) - fR Recycle flow rate (l·h–1) - ft0t Total flow rate through the fermenter (l·h–1) - g Gram - h Hour - DR Fermenter dilution rate due to recycle (h–1) - DS Fermeter dilution rate due to substrate (h–1) - Dtot Total fermenter dilution rate (h–1) - l Liter - Specific growth rate (h–1) - PF Fermenter productivity (g·l–1·h–1) - PFS Overall productivity (g·l–1·h–1) - RpM Rates per minute - RS Residual sugar content in the effluent with respect to the substrate concentration (%) - Y Yield of biomass with respect to sugar concentration (%) - Sed 50 Sedimentation time to reach a YDM of 50 g·l–1 (min) - V Volume (l) - VF Fermenter volume (l) - VSed Sedimenter volume (l) - VVM Volumes per volume and minute - XF YDM in the fermenter (g·l–1) - XF YDM in the recycle (g·l–1) - XS Yeast dry matter due to substrate concentration (g·l–1) - YDM Yeast dry matter (g·l–1)  相似文献   

16.
1. A method is described for the quantitative separation of the sulphur compounds in a single sample of tissue by passing an extract through a serial assembly of ion-exchange resins in the order: Dowex 2 (Cl form), Dowex 1 (CO32− form), Amberlite CG-50 (H+ form) and Zeo-Karb 225 (H+ form). 2. Groups of sulphur amino acids were eluted separately from each column; the recovery of sulphur compounds after their labelling with 35S in vivo by injection of l-[35S]-methionine was 91–106%. Individual sulphur compounds were further resolved by one-dimensional or two-dimensional paper chromatography. 3. Evidence is presented on the occurrence of S-adenosylmethionine and S-adenosylhomocysteine in rat liver and brain. Rat liver and brain contained 83·6 and 31·4mμ-moles/g. respectively of S-adenosylmethionine.  相似文献   

17.
The specific growth rate is a key control parameter in the industrial production of baker’s yeast. Nevertheless, quantitative data describing its effect on fermentative capacity are not available from the literature. In this study, the effect of the specific growth rate on the physiology and fermentative capacity of an industrial Saccharomyces cerevisiae strain in aerobic, glucose-limited chemostat cultures was investigated. At specific growth rates (dilution rates, D) below 0.28 h−1, glucose metabolism was fully respiratory. Above this dilution rate, respirofermentative metabolism set in, with ethanol production rates of up to 14 mmol of ethanol · g of biomass−1 · h−1 at D = 0.40 h−1. A substantial fermentative capacity (assayed offline as ethanol production rate under anaerobic conditions) was found in cultures in which no ethanol was detectable (D < 0.28 h−1). This fermentative capacity increased with increasing dilution rates, from 10.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.025 h−1 to 20.5 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.28 h−1. At even higher dilution rates, the fermentative capacity showed only a small further increase, up to 22.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.40 h−1. The activities of all glycolytic enzymes, pyruvate decarboxylase, and alcohol dehydrogenase were determined in cell extracts. Only the in vitro activities of pyruvate decarboxylase and phosphofructokinase showed a clear positive correlation with fermentative capacity. These enzymes are interesting targets for overexpression in attempts to improve the fermentative capacity of aerobic cultures grown at low specific growth rates.  相似文献   

18.
A method for estimating the hydraulic diameter of a pore or conduit having a noncircular opening is presented with special reference to plant anatomy. An ellipse or a rectangle is inscribed within the opening, and the length of the short axis (a) is measured. The hydraulic diameter (Dh) is estimated for the ellipse (Dh = 1.4a) or rectangle (Dh = 2a). Use of these equations often gives a more accurate estimate of the hydraulic diameter of a pore or conduit than does averaging the lengths of the short and long axes (Dh = [a + b]/2, b is the long axis) or assuming that the opening is circular (Dh = a). A table of the error in each method is included, and the errors inherent in the use of Dh are discussed. Because fewer measurements are required, estimation based on the measurement of one axis is much faster than calculation using both the short and long axes. The equations and table should permit anatomists and physiologists to rapidly determine the best method for estimating the hydraulic diameter of a pore or conduit, and to more accurately and quickly estimate the hydraulic diameters of large numbers of openings. However, because of potential pitfalls in applying theoretical fluid dynamics equations to real-world functional anatomy, botanists must ensure that their applications of hydraulic diameter are appropriate in each case.  相似文献   

19.
Rate and equilibrium constants at 25 °C, pH ∼ 1, and ionic strength 0.10 for hydrolysis of the two non-equivalent chlorides of dichloro[S-methyl-l-cysteine(N,S)]platinum(II) isomers, denoted [PtCl2(SmecysH)], and the resultant chloro-aqua species have been determined by NMR, potentiometric, and spectrophotometric methods. Though hydrolysis constants, Kh, for the two chlorides are similar (pKh = 4-5), the rate of hydrolysis of the chloride trans to coordinated S, kh = 3.4 × 10−3 s−1, is 2-3 orders of magnitude faster than the kh for the other chloride, 2.3 × 10−6 s−1, and for the cancer drug cisplatin, cis-[PtCl2(NH3)2], 5.2 × 10−5 s−1. Relative rates of hydrolysis determined under three different experimental conditions (pH ∼ 1 in 0.10 M HNO3, high pH in 0.10 M NaOH, and at low pH with Ag+ assistance) are consistent: the Cl trans to S is 100-1000 times more labile than the Cl cis to S. Potentiometric and NMR methods were also used to estimate pKa values of all aqua species, which are comparable to values reported for corresponding aqua species derived from cisplatin.  相似文献   

20.
The H+/ATP stoichiometry was determined for an anion-sensitive H+-ATPase in membrane vesicles believed to be derived from tonoplast. Initial rates of proton influx were measured by monitoring the alkalinization of a weakly buffered medium (pH 6.13) following the addition of ATP to a suspension of membrane vesicles of Beta vulgaris L. Initial rates of ATP hydrolysis were measured in an assay where ATP hydrolysis is coupled to NADH oxidation and monitored spectrophotometrically (A340) or by monitoring the release of 32P from [γ-32P]ATP. Inasmuch as this anion-sensitive H+-ATPase is strongly inhibited by NO3, initial rates of H+ influx and ATP hydrolysis were measured in the absence and presence of NO3 to account for ATPase activity not involved in H+ transport. The NO3-sensitive activities were calculated and used to estimate the ratio of H+ transported to ATP hydrolyzed. These measurements resulted in an estimate of the H+/ATP stoichiometry of 1.96 ± 0.14 suggesting that the actual stoichiometry is 2 H+ transported per ATP hydrolyzed. When compared with the reported values of the electrochemical potential gradient for H+ across the tonoplast measured in vivo, our result suggests that the H+-ATPase does not operate near equilibrium but is regulated by cellular factors other than energy supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号