首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rat myelin vacuolation mutation at the Attractin locus (Atrn(mv)) is a genomic deletion including the whole exon 1 of the Atrn gene. The precise size and location of the deleted region has not yet been identified because of poor information on genomic organization of the rat Atrn gene. Here, we identified the breakpoints of the Atrn(mv) mutation, using a draft sequence of the rat genome. In the Atrn(mv/mv) rat, a 6,914-bp genomic region was deleted. Primers flanked 5'- and 3'- breakpoints amplified the Atrn(mv) allele but not the wild-type allele. This primer set enables us to distinguish Atrn(mv/+) heterozygous rats from Atrn(+/+) rats, and will contribute to the efficient production of Atrn(mv/mv) rats.  相似文献   

2.
Attractin (ATRN) and Attractin-like 1 (ATRNL1) are highly similar type I transmembrane proteins. Atrn null mutant mice have a pleiotropic phenotype including dark fur, juvenile-onset spongiform neurodegeneration, hypomyelination, tremor, and reduced body weight and adiposity, implicating ATRN in numerous biological processes. Bioinformatic analysis indicated that Atrn and Atrnl1 arose from a common ancestral gene early in vertebrate evolution. To investigate the genetics of the ATRN system and explore potential redundancy between Atrn and Atrnl1, we generated and characterized Atrnl1 loss- and gain-of-function mutations in mice. Atrnl1 mutant mice were grossly normal with no alterations of pigmentation, central nervous system pathology or body weight. Atrn null mutant mice carrying a beta-actin promoter-driven Atrnl1 transgene had normal, agouti-banded hairs and significantly delayed onset of spongiform neurodegeneration, indicating that over-expression of ATRNL1 compensates for loss of ATRN. Thus, the two genes are redundant from the perspective of gain-of-function but not loss-of-function mutations.  相似文献   

3.
A black coat-color mutant with tremor was discovered in babies of 61 generations of an inbred strain APG of Syrian hamster which had been maintained in the Nippon Institute for Biological Science, Laboratory Animal Research Station. The genetical analysis by matings between four inbred strains which had different genes in the E and B loci and four mutant strains which were introduced the mutant gene into the four inbred strains and characterization were carried out on the mutant. The results obtained are summarized as follows: 1) The mutation occurred in a different locus with E and B loci. 2) The mutant was controlled by an autosomal recessive gene designated as "bt", and it was thought that both tremor and black coat-color were the pleiotropic effect of bt gene. 3) At least one E gene in the E locus was necessary for the appearance of black coat color. Therefore, the coat-color remained cream in ee (cream) hamsters showing only trembling. 4) The degree of blackness of the coat-color of EE hamsters differed from Ee ones. The former was darker than the latter. 5) The mutant may be a useful animal model for studying abnormal myelogenesis and biosynthesis of melanin.  相似文献   

4.
Pleiotropic effects of melanocortin signaling were first described nearly 100 years ago when mice carrying the lethal yellow (A(y)) allele of the Agouti coat color gene were recognized to develop increased growth and adiposity. Work from our laboratory and others over the last several years has demonstrated that the non-pigmentary effects of A(y) are caused by ectopic expression of Agouti protein, a paracrine signaling molecule whose normal function is to inhibit signaling through the melanocortin 1 receptor (Mc1r), but which can mimic the effects of Agouti-related protein (Agrp), a homologous neuropeptide produced in the medial portion of the arcuate nucleus that acts as a potent antagonist of the Mc3r and Mc4r. Recently we have used the genetics of pigmentation as an in vivo screening system to analyze other mutations in the Agouti-melanocortin pathway, leading to the identification of Attractin (Atrn), a widely expressed type I transmembrane protein that serves as an accessory receptor for Agouti protein. Surprisingly, homologs of Atrn are found in fruitflies and nematodes, even though Agouti and/or Agouti-related protein are found only in vertebrates. Insight into this apparent paradox now comes from studies of different Atrn alleles, in which we find hyperactivity, abnormal myelination, and widespread CNS vacuolation. We suggest that the neurodegenerative phenotype reflects the ancestral function of Atrn to facilitate and/or maintain cell-cell interactions in the nervous system. Expression in neurectodermal cells during vertebrate evolution may have allowed Atrn to be recruited by the Agouti-melanocortin system to control coat color.  相似文献   

5.
Distribution of Mahogany/Attractin mRNA in the rat central nervous system   总被引:9,自引:0,他引:9  
Lu Xy  Gunn TM  Shieh Kr  Barsh GS  Akil H  Watson SJ 《FEBS letters》1999,462(1-2):101-107
The Mahogany/Attractin gene (Atrn) has been proposed as a downstream mediator of Agouti signaling because yellow hair color and obesity in lethal yellow (A(y)) mice are suppressed by the mahogany (Atrn(mg)) mutation. The present study examined the distribution of Atrn mRNA in the brain and spinal cord by in situ hybridization. Atrn mRNA was found widely distributed throughout the central nervous system, with high levels in regions of the olfactory system, some limbic structures, regions of the brainstem, cerebellum and spinal cord. In the hypothalamus, Atrn mRNA was found in specific nuclei including the suprachiasmatic nucleus, the supraoptic nucleus, the medial preoptic nucleus, the paraventricular hypothalamic nucleus, the ventromedial hypothalamic nucleus, and the arcuate nucleus. These results suggest a broad spectrum of physiological functions for the Atrn gene product.  相似文献   

6.
7.
8.
9.
Melanocortin 1 receptor variation in the domestic dog   总被引:23,自引:0,他引:23  
The melanocortin 1 receptor (Mc1r) is encoded by the Extension locus in many different mammals, where a loss-of-function causes exclusive production of red/yellow pheomelanin, and a constitutively activating mutation causes exclusive production of black/brown eumelanin. In the domestic dog, breeds with a wild-type E allele, e.g., the Doberman, can produce either pigment type, whereas breeds with the e allele, e.g., the Golden Retriever, produce exclusively yellow pigment. However, a black coat color in the Newfoundland and similar breeds is thought to be caused by an unusual allele of Agouti, which encodes the physiologic ligand for the Mc1r. Here we report that the predicted dog Mc1r is 317 residues in length and 96% identical to the fox Mc1r. Comparison of the Doberman, Newfoundland, Black Labrador, Yellow Labrador, Flat-coated Retriever, Irish Setter, and Golden Retriever revealed six sequence variants, of which two, S90G and R306ter, partially correlated with a black/brown coat and red/yellow coat, respectively. R306ter was found in the Yellow Labrador, Golden Retriever, and Irish Setter; the latter two had identical haplotypes but differed from the Yellow Labrador at three positions other than R306ter. In a larger survey of 194 dogs and 19 breeds, R306ter and a red/yellow coat were completely concordant except for the Red Chow. These results indicate that the e allele is caused by a common Mc1r loss-of-function mutation that either reoccurred or was subject to gene conversion during recent evolutionary history, and suggest that the allelic and locus relationships for dog coat color genes may be more analogous to those found in other mammals than previously thought.  相似文献   

10.
The dark-like (dal) mutant mouse has a pleiotropic phenotype that includes dark dorsal hairs and reproductive degeneration. Their pigmentation phenotype is similar to Attractin (Atrn) mutants, which also develop vacuoles throughout the brain. In further characterizing the testicular degeneration of dal mutant males, we found that they had reduced serum testosterone and developed vacuoles in their testes. Genetic crosses placed dal upstream of the melanocortin 1 receptor (Mc1r) and downstream of agouti, although dal suppressed the effect of agouti on pigmentation but not body weight. Atrn(mg-3J) and dal showed additive effects on pigmentation, testicular vacuolation, and spongiform neurodegeneration, but transgenic overexpression of Attractin-like-1 (Atrnl1), which compensates for loss of ATRN, did not rescue dal mutant phenotypes. Our results suggest dal and Atrn function in the same pathway and that identification of the dal gene will provide insight into molecular mechanisms of vacuolation in multiple cell types.  相似文献   

11.
12.
13.
Molecular and phenotypic analysis of Attractin mutant mice   总被引:5,自引:0,他引:5  
Gunn TM  Inui T  Kitada K  Ito S  Wakamatsu K  He L  Bouley DM  Serikawa T  Barsh GS 《Genetics》2001,158(4):1683-1695
Mutations of the mouse Attractin (Atrn; formerly mahogany) gene were originally recognized because they suppress Agouti pigment type switching. More recently, effects independent of Agouti have been recognized: mice homozygous for the Atrn(mg-3J) allele are resistant to diet-induced obesity and also develop abnormal myelination and vacuolation in the central nervous system. To better understand the pathophysiology and relationship of these pleiotropic effects, we further characterized the molecular abnormalities responsible for two additional Atrn alleles, Atrn(mg) and Atrn(mg-L), and examined in parallel the phenotypes of homozygous and compound heterozygous animals. We find that the three alleles have similar effects on pigmentation and neurodegeneration, with a relative severity of Atrn(mg-3J) > Atrn(mg) > Atrn(mg-L), which also corresponds to the effects of the three alleles on levels of normal Atrn mRNA. Animals homozygous for Atrn(mg-3J) or Atrn(mg), but not Atrn(mg-L), show reduced body weight, reduced adiposity, and increased locomotor activity, all in the presence of normal food intake. These results confirm that the mechanism responsible for the neuropathological alteration is a loss--rather than gain--of function, indicate that abnormal body weight in Atrn mutant mice is caused by a central process leading to increased energy expenditure, and demonstrate that pigmentation is more sensitive to levels of Atrn mRNA than are nonpigmentary phenotypes.  相似文献   

14.
15.
16.
17.
18.
19.
ABSTRACT

Pleiotropic effects of melanocortin signaling were first described nearly 100 years ago when mice carrying the lethal yellow (Ay) allele of the Agouti coat color gene were recognized to develop increased growth and adiposity. Work from our laboratory and others over the last several years has demonstrated that the non-pigmentary effects of A?y are caused by ectopic expression of Agouti protein, a paracrine signaling molecule whose normal function is to inhibit signaling through the melanocortin 1 receptor (Mc1r), but which can mimic the effects of Agouti-related protein (Agrp), a homologous neuropeptide produced in the medial portion of the arcuate nucleus that acts as a potent antagonist of the Mc3r and Mc4r. Recently we have used the genetics of pigmentation as an in vivo screening system to analyze other mutations in the Agouti–melanocortin pathway, leading to the identification of Attractin (Atrn), a widely expressed type I transmembrane protein that serves as an accessory receptor for Agouti protein. Surprisingly, homologs of Atrn are found in fruitflies and nematodes, even though Agouti and/or Agouti-related protein are found only in vertebrates. Insight into this apparent paradox now comes from studies of different Atrn alleles, in which we find hyperactivity, abnormal myelination, and widespread CNS vacuolation. We suggest that the neurodegenerative phenotype reflects the ancestral function of Atrn to facilitate and/or maintain cell–cell interactions in the nervous system. Expression in neurectodermal cells during vertebrate evolution may have allowed Atrn to be recruited by the Agouti–melanocortin system to control coat color.  相似文献   

20.
R N Roy  N Bigelow  J A Dillon 《Plasmid》1988,19(1):39-45
A variant of the cryptic plasmid of Neisseria gonorrhoeae, 4.4 kb in size, was isolated and characterized at the molecular level. This variant harbored a 156-bp insertion which was located between coordinates 3134 and 3135 within the putative cppB gene using the 4.2-kb cryptic plasmid, pJD1, as a reference. The insertion contained a novel EcoRI site and several elements of symmetry (both direct and inverted repeats). Stop codons present in the insertion interrupted the coding capacity of the cppB gene. Although the insertion was within one of two previously characterized 44-bp repeats purportedly involved in site-specific recombination, it was distinct from a 54-bp segment deleted in some cryptic plasmids. The presence of the insertion suggests a mechanism of modulating the expression of the cppB gene at the translational level through DNA rearrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号