首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have isolated the recently identified Drosophila caspase DRONC through its interaction with the effector caspase drICE. Ectopic expression of DRONC induces cell death in Schizosaccharomyces pombe, mammalian fibroblasts and the developing Drosophila eye. The caspase inhibitor p35 fails to rescue DRONC-induced cell death in vivo and is not cleaved by DRONC in vitro, making DRONC the first identified p35-resistant caspase. The DRONC pro-domain interacts with Drosphila inhibitor of apoptosis protein 1 (DIAP1), and co-expression of DIAP1 in the developing Drosophila eye completely reverts the eye ablation phenotype induced by pro-DRONC expression. In contrast, DIAP1 fails to rescue eye ablation induced by DRONC lacking the pro-domain, indicating that interaction of DIAP1 with the pro-domain of DRONC is required for suppression of DRONC-mediated cell death. Heterozygosity at the diap1 locus enhances the pro-DRONC eye phenotype, consistent with a role for endogenous DIAP1 in suppression of DRONC activation. Both heterozygosity at the dronc locus and expression of dominant-negative DRONC mutants suppress the eye phenotype caused by reaper (RPR) and head involution defective (HID), consistent with the idea that DRONC functions in the RPR and HID pathway.  相似文献   

2.
The molecular mechanisms of apoptosis are highly conserved throughout evolution. The homologs of genes essential for apoptosis in Caenorhabditis elegans and Drosophila melanogaster have been shown to be important for apoptosis in mammalian systems. Although a homologue for CED-4/apoptotic protease-activating factor (Apaf)-1 has been described in Drosophila, its exact function and the role of the mitochondrial pathway in its activation remain unclear. Here, we used the technique of RNA interference to dissect apoptotic signaling pathways in Drosophila cells. Inhibition of the Drosophila CED-4/Apaf-1-related killer (ARK) homologue resulted in pronounced inhibition of stress-induced apoptosis, whereas loss of ARK did not protect the cells from Reaper- or Grim-induced cell death. Reduction of DIAP1 induced rapid apoptosis in these cells, whereas the inhibition of DIAP2 expression did not but resulted in increased sensitivity to stress-induced apoptosis; apoptosis in both cases was prevented by inhibition of ARK expression. Cells in which cytochrome c expression was decreased underwent apoptosis induced by stress stimuli, Reaper or Grim. These results demonstrate the central role of ARK in stress-induced apoptosis, which appears to act independently of cytochrome c. Apoptosis induced by Reaper or Grim can proceed via a distinct pathway, independent of ARK.  相似文献   

3.
Caspase activation has been extensively studied in the context of apoptosis. However, caspases also control other cellular functions, although the mechanisms regulating caspases in nonapoptotic contexts remain obscure. Drosophila IAP1 (DIAP1) is an endogenous caspase inhibitor that is crucial for regulating cell death during development. Here we describe Drosophila IKK-related kinase (DmIKKvarepsilon) as a regulator of caspase activation in a nonapoptotic context. We show that DmIKKvarepsilon promotes degradation of DIAP1 through direct phosphorylation. Knockdown of DmIKKvarepsilon in the proneural clusters of the wing imaginal disc, in which nonapoptotic caspase activity is required for proper sensory organ precursor (SOP) development, stabilizes endogenous DIAP1 and affects Drosophila SOP development. Our results demonstrate that DmIKKvarepsilon is a determinant of DIAP1 protein levels and that it establishes the threshold of activity required for the execution of nonapoptotic caspase functions.  相似文献   

4.
5.
In Drosophila, the APAF-1 homolog ARK is required for the activation of the initiator caspase DRONC, which in turn cleaves the effector caspases DRICE and DCP-1. While the function of ARK is important in stress-induced apoptosis in Drosophila S2 cells, as its removal completely suppresses cell death, the decision to undergo apoptosis appears to be regulated at the level of caspase activation, which is controlled by the IAP proteins, particularly DIAP1. Here, we further dissect the apoptotic pathways induced in Drosophila S2 cells in response to stressors and in response to knock-down of DIAP1. We found that the induction of apoptosis was dependent in each case on expression of ARK and DRONC and surviving cells continued to proliferate. We noted a difference in the effects of silencing the executioner caspases DCP-1 and DRICE; knock-down of either or both of these had dramatic effects to sustain cell survival following depletion of DIAP1, but had only minor effects following cellular stress. Our results suggest that the executioner caspases are essential for death following DIAP1 knock-down, indicating that the initiator caspase DRONC may lack executioner functions. The apparent absence of mitochondrial outer membrane permeabilization (MOMP) in Drosophila apoptosis may permit the cell to thrive when caspase activation is disrupted.  相似文献   

6.
Tissue growth during animal development is tightly controlled so that the organism can develop harmoniously. The salvador (sav) gene, which encodes a scaffold protein, has been shown to restrict cell number by coordinating cell-cycle exit and apoptosis during Drosophila development. Here we identify Hippo (Hpo), the Drosophila orthologue of the mammalian MST1 and MST2 serine/threonine kinases, as a partner of Sav. Loss of hpo function leads to sav-like phenotypes, whereas gain of hpo function results in the opposite phenotype. Whereas Sav and Hpo normally restrict cellular quantities of the Drosophila inhibitor of apoptosis protein DIAP1, overexpression of Hpo destabilizes DIAP1 in cell culture. We show that DIAP1 is phosphorylated in a Hpo-dependent manner in S2 cells and that Hpo can phosphorylate DIAP1 in vitro. Thus, Hpo may promote apoptosis by reducing cellular amounts of DIAP1. In addition, we show that Sav is an unstable protein that is stabilized by Hpo. We propose that Hpo and Sav function together to restrict tissue growth in vivo.  相似文献   

7.
Proper activation of the Ras/MAPK pathway is broadly required during development, and in many cases, signal transduction downstream of the receptor is linear. Thus, different mechanisms exist to properly regulate the large number of specific developmental outputs that are required by the activation of this pathway. Previously, we have reported a regulated cytoplasmic sequestration of phosphorylated MAPK (pMAPK) in developing Drosophila compound eyes and wings “called MAPK Cytoplasmic Hold”. In the developing wing, we have shown that cytoplasmic hold promotes the differentiation of wing vein tissue, while pMAPK nuclear translocation regulates growth and division. We had also suggested that the Ras pathway signals for inducing cell growth and cell division split upstream of the nuclear translocation of MAPK itself. Here, we further refine the role of MAPK in Drosophila. We report evidence that suggests, for the first time, that the phosphorylation of MAPK is itself another step in the regulation of cell growth and division in both Drosophila wing and eye cells. We show that inhibition of MAPK phosphorylation, or pMAPK nuclear translocation, is sufficient to block cell growth, but not cell division. These data suggest that non-phosphorylated MAPK is sufficient to induce cell division, but not cell growth, once inside the nucleus of the cell.Key words: Drosophila, MAPK, growth, division, proliferation, phosphorylation  相似文献   

8.
Members of the inhibitor of apoptosis protein (IAP) family can inhibit caspases and cell death in a variety of insect and vertebrate systems. Drosophila IAP1 (DIAP1) inhibits cell death to facilitate normal embryonic development. Here, using RNA interference, we showed that down-regulation of DIAP1 is sufficient to induce cell death in Drosophila S2 cells. Although this cell death process was accompanied by elevated caspase activity, this activation was not essential for cell death. We found that DIAP1 depletion-induced cell death was strongly suppressed by a reduction in the Drosophila caspase DRONC or the Drosophila apoptotic protease-activating factor-1 (Apaf-1) homolog, Dark. RNA interference studies in Drosophila embryos also demonstrated that the action of Dark is epistatic to that of DIAP1 in this cell death pathway. The cell death caused by down-regulation of DIAP1 was accelerated by overexpression of DRONC and Dark, and a caspase-inactive mutant form of DRONC could functionally substitute the wild-type DRONC in accelerating cell death. These results suggest the existence of a novel mechanism for cell death signaling in Drosophila that is mediated by DRONC and Dark.  相似文献   

9.
10.
Although Jun amino-terminal kinase (JNK) is known to mediate a physiological stress signal that leads to cell death, the exact role of the JNK pathway in the mechanisms underlying intrinsic cell death is largely unknown. Here we show through a genetic screen that a mutant of Drosophila melanogaster tumour-necrosis factor receptor-associated factor 1 (DTRAF1) is a dominant suppressor of Reaper-induced cell death. We show that Reaper modulates the JNK pathway through Drosophila inhibitor-of-apoptosis protein 1 (DIAP1), which negatively regulates DTRAF1 by proteasome-mediated degradation. Reduction of JNK signals rescues the Reaper-induced small eye phenotype, and overexpression of DTRAF1 activates the Drosophila ASK1 (apoptosis signal-regulating kinase 1; a mitogen-activated protein kinase kinase kinase) and JNK pathway, thereby inducing cell death. Overexpresson of DIAP1 facilitates degradation of DTRAF1 in a ubiquitin-dependent manner and simultaneously inhibits activation of JNK. Expression of Reaper leads to a loss of DIAP1 inhibition of DTRAF1-mediated JNK activation in Drosophila cells. Taken together, our results indicate that DIAP1 may modulate cell death by regulating JNK activation through a ubiquitin#150;proteasome pathway.  相似文献   

11.
Members of the Inhibitor of Apoptosis Protein (IAP) family are essential for cell survival in Drosophila and appear to neutralize the cell death machinery by binding to and ubiquitylating pro-apoptotic caspases. Cell death is triggered when "Reaper-like" proteins bind to IAPs and liberate caspases from IAPs. We have identified the thioredoxin peroxidase Jafrac2 as an IAP-interacting protein in Drosophila cells that harbours a conserved N-terminal IAP-binding motif. In healthy cells, Jafrac2 resides in the endoplasmic reticulum but is rapidly released into the cytosol following induction of apoptosis. Mature Jafrac2 interacts genetically and biochemically with DIAP1 and promotes cell death in tissue culture cells and the Drosophila developing eye. In common with Rpr, Jafrac2-mediated cell death is contingent on DIAP1 binding because mutations that abolish the Jafrac2-DIAP1 interaction suppress the eye phenotype caused by Jafrac2 expression. We show that Jafrac2 displaces Dronc from DIAP1 by competing with Dronc for the binding of DIAP1, consistent with the idea that Jafrac2 triggers cell death by liberating Dronc from DIAP1-mediated inhibition.  相似文献   

12.
In Drosophila melanogaster, apoptosis is controlled by the integrated actions of the Grim-Reaper (Grim-Rpr) and Drosophila Inhibitor of Apoptosis (DIAP) proteins (reviewed in refs 1 4). The anti-apoptotic DIAPs bind to caspases and inhibit their proteolytic activities. DIAPs also bind to Grim-Rpr proteins, an interaction that promotes caspase activity and the initiation of apoptosis. Using a genetic modifier screen, we identified four enhancers of grim-reaper-induced apoptosis that all regulate ubiquitination processes: uba-1, skpA, fat facets (faf), and morgue. Strikingly, morgue encodes a unique protein that contains both an F box and a ubiquitin E2 conjugase domain that lacks the active site Cys required for ubiquitin linkage. A reduction of morgue activity suppressed grim-reaper-induced cell death in Drosophila. In cultured cells, Morgue induced apoptosis that was suppressed by DIAP1. Targeted morgue expression downregulated DIAP1 levels in Drosophila tissue, and Morgue and Rpr together downregulated DIAP1 levels in cultured cells. Consistent with potential substrate binding functions in an SCF ubiquitin E3 ligase complex, Morgue exhibited F box-dependent association with SkpA and F box-independent association with DIAP1. Morgue may thus have a key function in apoptosis by targeting DIAP1 for ubiquitination and turnover.  相似文献   

13.
14.
Inhibitor of apoptosis proteins (IAPs) provide a critical barrier to inappropriate apoptotic cell death through direct binding and inhibition of caspases. We demonstrate that degradation of IAPs is an important mechanism for the initiation of apoptosis in vivo. Drosophila Morgue, a ubiquitin conjugase-related protein, promotes DIAP1 down-regulation in the developing retina to permit selective programmed cell death. Morgue complexes with DIAP1 in vitro and mediates DIAP1 degradation in a manner dependent on the Morgue UBC domain. Reaper (Rpr) and Grim, but not Hid, also promote the degradation of DIAP1 in vivo, suggesting that these proteins promote cell death through different mechanisms.  相似文献   

15.
16.
Some members of the inhibitor of apoptosis (IAP) protein family block apoptosis by binding to and neutralizing active caspases. We recently demonstrated that a physical association between IAP and caspases alone is insufficient to regulate caspases in vivo and that an additional level of control is provided by IAP-mediated ubiquitination of both itself and the associated caspases. Here we show that Drosophila IAP 1 (DIAP1) is degraded by the 'N-end rule' pathway and that this process is indispensable for regulating apoptosis. Caspase-mediated cleavage of DIAP1 at position 20 converts the more stable pro-N-degron of DIAP1 into the highly unstable, Asn-bearing, DIAP1 N-degron of the N-end rule degradation pathway. Thus, DIAP1 represents the first known metazoan substrate of the N-end rule pathway that is targeted for degradation through its amino-terminal Asn residue. We demonstrate that the N-end rule pathway is required for regulation of apoptosis induced by Reaper and Hid expression in the Drosophila melanogaster eye. Our data suggest that DIAP1 instability, mediated through caspase activity and subsequent exposure of the N-end rule pathway, is essential for suppression of apoptosis. We suggest that DIAP1 safeguards cell viability through the coordinated mutual destruction of itself and associated active caspases.  相似文献   

17.
Apart from their roles as chaperones, heat shock proteins are involved in other vital activities including apoptosis with mammalian Hsp60 being ascribed proapoptotic as well as antiapoptotic roles. Using conditional RNAi or overexpression of Hsp60D, a member of the Hsp60 family in Drosophila melanogaster, we show that the downregulation of this protein blocks caspase-dependent induced apoptosis. GMR-Gal4-driven RNAi for Hsp60D in developing eyes dominantly suppressed cell death caused by expression of Reaper, Hid, or Grim (RHG), the key activators of canonical cell death pathway. Likewise, Hsp60D-RNAi rescued cell death induced by GMR-Gal4-directed expression of full-length and activated DRONC. Overexpression of Hsp60D enhanced cell death induced either by directed expression of RHG or DRONC. However, the downregulation of Hsp60D failed to suppress apoptosis caused by unguarded caspases in DIAP1-RNAi flies. Furthermore, in DIAP1-RNAi background, Hsp60D-RNAi also failed to inhibit apoptosis induced by RHG expression. The Hsp60 and DIAP1 show diffuse and distinct granular overlapping distributions in the photoreceptor cells with the bulk of both proteins being outside the mitochondria. Depletion of either of these proteins disrupts the granular distribution of the other. We suggest that in the absence of Hsp60D, DIAP1 is unable to dissociate from effecter and executioner caspases, which thus remain inactive.  相似文献   

18.
Although loss of the inhibitor of apoptosis (IAP) protein DIAP1 has been shown to result in caspase activation and spontaneous cell death in Drosophila cells and embryos, the point at which DIAP1 normally functions to inhibit caspase activation is unknown. Depletion of the DIAP1 protein in Drosophila S2 cells or the Sf-IAP protein in Spodoptera frugiperda Sf21 cells by RNA interference (RNAi) or cycloheximide treatment resulted in rapid and widespread caspase-dependent apoptosis. Co-silencing of dronc or dark largely suppressed this apoptosis, indicating that DIAP1 is normally required to inhibit an activity dependent on these proteins. Silencing of dronc also inhibited DRICE processing following stimulation of apoptosis, demonstrating that DRONC functions as an apical caspase in S2 cells. Silencing of diap1 or treatment with UV light induced DRONC processing, which occurred in two steps. The first step appeared to occur continuously even in the absence of an apoptotic signal and to be dependent on DARK, because full-length DRONC accumulated when dark was silenced in non-apoptotic cells. In addition, treatment with the proteasome inhibitor MG132 resulted in accumulation of this initially processed form of DRONC, but not full-length DRONC, in non-apoptotic cells. The second step in DRONC processing was observed only in apoptotic cells. These results indicate that the initial step in DRONC processing occurs continuously via a DARK-dependent mechanism in Drosophila cells and that DIAP1 is required to prevent excess accumulation of this first form of processed DRONC, presumably through its ability to act as a ubiquitin-protein ligase.  相似文献   

19.
The regulated degeneration of axons or dendrites (pruning) and neuronal apoptosis are widely used during development to determine the specificity of neuronal connections. Pruning and apoptosis often share similar mechanisms; for example, developmental dendrite pruning of Drosophila class IV dendritic arborization (da) neurons is induced by local caspase activation triggered by ubiquitin-mediated degradation of the caspase inhibitor DIAP1. Here, we examined the function of Valosin-containing protein (VCP), a ubiquitin-selective AAA chaperone involved in endoplasmic reticulum-associated degradation, autophagy and neurodegenerative disease, in Drosophila da neurons. Strong VCP inhibition is cell lethal, but milder inhibition interferes with dendrite pruning and developmental apoptosis. These defects are associated with impaired caspase activation and high DIAP1 levels. In cultured cells, VCP binds to DIAP1 in a ubiquitin- and BIR domain-dependent manner and facilitates its degradation. Our results establish a new link between ubiquitin, dendrite pruning and the apoptosis machinery.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号