首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction between dietary lectins, especially wheat germ agglutinin (WGA), and intestinal cells has been implicated in the pathogenesis of celiac disease. The present study was undertaken to investigate the immediate effects following such an interaction. Direct WGA-stimulation of Intestine 407 cells leads to an immediate rise in the cytosolic-free calcium concentration. The major part of this lectin-induced rise is due to an influx of calcium across the plasma membrane into the cytosol. However, WGA-exposure also results in an immediate mobilization of calcium from intracellular stores, most likely mediated via the simultaneous increase of inositol trisphosphate formation in these cells. The transduction mechanism described for WGA in these intestinal cells is not very sensitive towards pertussis toxin, indicating that if a G-protein is involved, it differs from those of most other systems. The suggested role for WGA in changing the functional and structural properties of intestinal cells might involve increases of inositol phosphate and cytosolic-free calcium levels.  相似文献   

2.
Abstract The effects of Vibrio parahaemolyticus thermostable direct hemolysin on Intestine 407, a cell line derived from the intestine of human embryo, were investigated. The hemolysin was shown to be cytotoxic to Intestine 407. This cytotoxicity is accompanied by the damage of plasma membrane and lysosomes, as well as cellular degeneration in the form of large transparent blebs. Although an increase in cytosolic free Ca2+ due to the influx of extracellular Ca2+ was observed in cells treated with thermostable direct hemolysin, it was found to be irrelevant to any of the above effects. These results suggest that the effects of thermostable direct hemolysin observed in this study on Intestine 407 are not mediated by Ca2+-dependent pathways.  相似文献   

3.
Hypo-osmotic stimulation of human Intestine 407 cells rapidly activated compensatory CL- and K+ conductances that limited excessive cell swelling and, finally, restored the original cell volume. Osmotic cell swelling was accompanied by a rapid and transient reorganization of the F-actin cytoskeleton, affecting both stress fibers as well as apical ruffles. In addition, an increase in total cellular F-actin was observed. Pretreatment of the cells with recombinant Clostridium botulinum C3 exoenzyme, but not with mutant enzyme (C3-E173Q) devoid of ADP-ribosyltransferase activity, greatly reduced the activation of the osmo-sensitive anion efflux, suggesting a role for the ras-related GTPase p21rho. In contrast, introducing dominant negative N17-p21rac into the cells did not affect the volume-sensitive efflux. Cell swelling-induced reorganization of F-actin coincided with a transient, C3 exoenzyme-sensitive tyrosine phosphorylation of p125 focal adhesion kinase (p125FAK) as well as with an increase in phosphatidylinositol-3-kinase (PtdIns-3-kinase) activity. Pretreatment of the cells with wortmannin, a specific inhibitor of PtdIns-3-kinase, largely inhibited the volume-sensitive ion efflux. Taken together, our results indicate the involvement of a p21rho signaling cascade and actin filaments in the activation of volume-sensitive chloride channels.  相似文献   

4.
Summary In order to examine the possibility of parathyroid hormone-mediated ultrastructural rearrangements in target epithelium, isolated canine renal proximal tubular cells were grown on a collagen-coated semipermeable membrane in a defined medium. Scanning and transmission electron microscopy of these monolayers revealed abundant microvilli. Exposure of the proximal tubular cells to parathyroid hormone resulted in a biphasic changes involving: (1) dramatic shortening and rarefaction of microvilli within 1 min; and (2) recovery of microvillar topography after 5 min. A similar shortening of microvilli was observed following exposure to ionomycin, whereas incubation with cyclic AMP resulted in an elongation of microvilli. Parathyroid hormone stimulated cyclic AMP production and increased cytoplasmic free calcium concentration in cultured proximal tubular cells. Pretreatment of cells with a calmodulin inhibitor abolished the effect of parathyroid hormone on brush border topography. Shortening of microvilli was associated with a disappearance of microvillar core filaments. Staining of F-actin with fluoresceinphalloidin showed that parathyroid hormone resulted in fragmentation of stress fibers. It is concluded that parathyroid hormoneinduced cell activation involves cytoplasmic-free calcium, calmodulin, and the cytoskeleton.  相似文献   

5.
The role of cytoskeletal elements in volume regulation was studied in trout hepatocytes by investigating changes in F-actin distribution during anisotonic exposure and assessing the impact of cytoskeleton disruption on volume regulatory responses. Hypotonic challenge caused a significant decrease in the ratio of cortical to cytoplasmic F-actin, whereas this ratio was unaffected in hypertonic saline. Disruption of microfilaments with cytochalasin B (CB) or cytochalasin D significantly slowed volume recovery following hypo- and hypertonic exposure in both attached and suspended cells. The decrease of net proton release and the intracellular acidification elicited by hypotonicity were unaltered by CB, whereas the increase of proton release in hypertonic saline was dramatically reduced. Because amiloride almost completely blocked the hypertonic increase of proton release and cytoskeleton disruption diminished the associated increase of intracellular pH (pH(i)), we suggest that F-actin disruption affected Na(+)/H(+) exchanger activity. In line with this, pH(i) recovery after an ammonium prepulse was significantly inhibited in CB-treated cells. The increase of cytosolic Na(+) under hypertonic conditions was not diminished but, rather, enhanced by F-actin disruption, presumably due to inhibited Na(+)-K(+)-ATPase activity and stimulated Na(+) channel activity. The elevation of cytosolic Ca(2+) in hypertonic medium was significantly reduced by CB. Altogether, our results indicate that the F-actin network is of crucial importance in the cellular responses to anisotonic conditions, possibly via interaction with the activity of ion transporters and with signalling cascades responsible for their activation. Disruption of microtubules with colchicine had no effect on any of the parameters investigated.  相似文献   

6.
This paper reports on potential cellular targets of azaspiracid-1 (AZ-1), a new phycotoxin that causes diarrhoeic and neurotoxic symptoms and whose mechanism of action is unknown. In excitable neuroblastoma cells, the systems studied were membrane potential, F-actin levels and mitochondrial membrane potential. AZ-1 does not modify mitochondrial activity but decreases F-actin concentration. These results indicate that the toxin does not have an apoptotic effect but uses actin for some of its effects. Therefore, cytoskeleton seems to be an important cellular target for AZ-1 effect. AZ-1 does not induce any modification in membrane potential, which does not support for neurotoxic effects. In human lymphocytes, cAMP, cytosolic calcium and cytosolic pH (pHi) levels were also studied. AZ-1 increases cytosolic calcium and cAMP levels and does not affect pHi (alkalinization). Cytosolic calcium increase seems to be dependent on both the release of calcium from intracellular Ca(2+) pools and the influx from extracellular media through Ni(2+)-blockable channels. AZ-1-induced Ca(2+) increase is negatively modulated by protein kinase C (PKC) activation, protein phosphatases 1 and 2A (PP1 and PP2A) inhibition and cAMP increasing agents. The effect of AZ-1 in cAMP is not extracellularly Ca(2+) dependent and insensitive to okadaic acid (OA).  相似文献   

7.
Summary A human intestinal epithelial cell line (Intestine 407) is known to retain receptors for intestinal secretagogues such as acetylcholine (ACh), histamine, serotonin (5-HT) and vasoactive intestinal peptide (VIP). The cells were also found to possess separate receptors for secretin and ATP, the stimulation of which elicited transient hyperpolarizations coupled to decreased membrane resistances. These responses were reversed in polarity at the K+ equilibrium potential. The hyperpolarizing responses to six agonists were reversibly inhibited by quinine or quinidine. By means of Ca2+-selective microelectrodes, increases in the cytosolic free Ca2+ concentration were observed in response to individual secretagogues. The time course of Ca2+ responses coincided with that of hyperpolarizing responses. The responses to ACh and 5-HT were abolished by a reduction in the extracellular Ca2+ concentration down to pCa 7 or by application of Co2+. Thus, in Intestine 407 cells, not only the intestinal secretagogues, which are believed to act via increased cytosolic Ca2+ (ACh, 5-HT and histamine), but also those which elevate cyclic AMP (VIP, secretin and ATP) induce increases in cytosolic Ca2+, thereby activating the K+ conductance. It is likely that the origin of increased cytosolic Ca2+ is mainly extracellular for ACh- and 5-HT-induced responses, whereas histamine, VIP, secretin and ATP mobilize Ca2+ from the internal compartment.  相似文献   

8.
Cloned Ca(2+)-activated K(+) channels of intermediate (hIK) or small (rSK3) conductance were expressed in HEK 293 cells, and channel activity was monitored using whole-cell patch clamp. hIK and rSK3 currents already activated by intracellular calcium were further increased by 95% and 125%, respectively, upon exposure of the cells to a 33% decrease in extracellular osmolarity. hIK and rSK3 currents were inhibited by 46% and 32%, respectively, by a 50% increase in extracellular osmolarity. Cell swelling and channel activation were not associated with detectable increases in [Ca(2+)](i), evidenced by population and single-cell measurements. In addition, inhibitors of IK and SK channels significantly reduced the rate of regulatory volume decrease (RVD) in cells expressing these channels. Cell swelling induced a decrease, and cell shrinkage an increase, in net cellular F-actin content. The swelling-induced activation of hIK channels was strongly inhibited by cytochalasin D (CD), in concentrations that caused depolymerization of F-actin filaments, indicating a role for the F-actin cytoskeleton in modulation of hIK by changes in cell volume. In conclusion, hIK and rSK3 channels are activated by cell swelling and inhibited by shrinkage. A role for the F-actin cytoskeleton in the swelling-induced activation of hIK channels is suggested.  相似文献   

9.
反义封闭NGAL基因表达对SHEEC食管癌细胞微丝骨架的影响   总被引:7,自引:3,他引:7  
为了研究反义封闭NGAL基因表达对SHEEC食管癌细胞微丝骨架以及肿瘤细胞生物学行为的影响,以不同长度NGAL基因片段反义表达载体和硫代修饰反义寡核苷酸单链片段转染SHEEC食管癌细胞,通过G418筛选,建立一系列旨在封闭SHEEC食管癌细胞NGAL基因表达的亚细胞克隆.在细胞内F-肌动蛋白(F-actin)及DNA荧光双标记基础上,通过流式细胞术、激光共聚焦显微镜扫描术等技术手段检测封闭反义NGAL基因表达后, SHEEC食管癌细胞中F-actin和DNA含量、F-actin形态结构以及肿瘤细胞生物学行为的变化特征.结果显示,反义封闭NGAL基因表达后,SHEEC食管癌细胞F-actin的含量明显降低,与永生化食管上皮细胞SHEE相近,但细胞分裂增殖指数未见明显变化.表明反义封闭NGAL基因表达对SHEEC食管癌细胞的微丝骨架有明显影响,而对SHEEC食管癌细胞的分裂增殖影响不明显.激光共聚焦显微镜扫描观测显示,反义封闭NGAL基因表达可使SHEEC食管癌细胞F-actin分布均匀,F-actin小体减少,细胞间连接重新建立,结构较紧密,主要形态结构特征与SHEE细胞趋于一致.提示反义封闭NGAL基因表达可对SHEEC食管癌细胞的微丝骨架F-actin产生明显影响,推测癌细胞的微丝骨架F-actin可能是NGAL基因在SHEEC食管癌细胞中发挥功能的一种作用环节.  相似文献   

10.
Signal perception and the integration of signals into networks that effect cellular changes is essential for all cells. The self-incompatibility (SI) response in field poppy pollen triggers a Ca(2+)-dependent signaling cascade that results in the inhibition of incompatible pollen. SI also stimulates dramatic alterations in the actin cytoskeleton. By measuring the amount of filamentous (F-) actin in pollen before and during the SI response, we demonstrate that SI stimulates a rapid and large reduction in F-actin level that is sustained for at least 1 h. This represents quantitative evidence for stimulus-mediated depolymerization of F-actin in plant cells by a defined biological stimulus. Surprisingly, there are remarkably few examples of sustained reductions in F-actin levels stimulated by a biologically relevant ligand. Actin depolymerization also was achieved in pollen by treatments that increase cytosolic free Ca(2+) artificially, providing evidence that actin is a target for the Ca(2+) signals triggered by the SI response. By determining the cellular concentrations and binding constants for native profilin from poppy pollen, we show that profilin has Ca(2+)-dependent monomeric actin-sequestering activity. Although profilin is likely to contribute to stimulus-mediated actin depolymerization, our data suggest a role for additional actin binding proteins. We propose that Ca(2+)-mediated depolymerization of F-actin may be a mechanism whereby SI-induced tip growth inhibition is achieved.  相似文献   

11.
Rotavirus is a major cause of infantile gastroenteritis with a multifactorial pathogenesis. As with many other pathogens, rotavirus infection and replication leads to rearrangement of the cytoskeleton with disorganization of cytoskeletal elements such as actin and cytokeratin through a calcium-dependent process that has not been fully characterized. The rotavirus enterotoxin NSP4, shown previously to elevate intracellular calcium levels when added exogenously as well as when expressed intracellularly, is a key player in intracellular calcium regulation during rotavirus infection. Here, we investigated the role NSP4 may play in actin rearrangement. Expression of NSP4 fused to enhanced green fluorescent protein (NSP4-EGFP), but not expression of EGFP alone, caused stabilization of long cellular projections in fully confluent HEK 293 cells. Cells expressing NSP4-EGFP for 24 h were also resistant to cell rounding induced by cytochalasin D. Quantification of filamentous actin (F-actin) content by using rhodamine-conjugated phalloidin and flow cytometry showed an elevated F-actin content in NSP4-EGFP-expressing and rotavirus-infected cells in comparison with that in nonexpressing and noninfected cells. Normalization of intracellular calcium levels prevented alterations of F-actin content. Observed changes in F-actin amounts correlated with the increased activation of the actin-remodeling protein cofilin. These calcium-dependent actin rearrangements induced by intracellular NSP4 expression may contribute to rotavirus pathogenesis by interfering with cellular processes dependent on subcortical actin remodeling, including ion transport and viral release.  相似文献   

12.
Nanbo A  Yoshiyama H  Takada K 《Journal of virology》2005,79(19):12280-12285
Our recent findings demonstrated that the Epstein-Barr virus-encoding small nonpolyadenylated RNA (EBER) confers resistance to various apoptotic stimuli and contributes to the maintenance of malignant phenotypes in Burkitt's lymphoma. In this study we investigated the role of EBER in the human epithelial Intestine 407 cell line, which is known to be susceptible to Fas (Apo1/CD95)-mediated apoptosis. Fas, a member of the tumor necrosis factor receptor family, transduces extracellular signals to the apoptotic cellular machinery, leading to cell death. Transfection of the EBER gene into Intestine 407 cells significantly protected the cells from Fas-mediated apoptosis, whereas EBER-negative cell lines underwent apoptosis after Fas treatment. EBER bound double-stranded RNA-dependent protein kinase R (PKR), an interferon-inducible serine/threonine kinase, and abrogated its kinase activity. Moreover, expression of the catalytically inactive dominant-negative PKR provided resistance to Fas-induced apoptosis. Expression of EBER or dominant-negative PKR also inhibited the cleavage of poly(ADP-ribose) polymerase, a mediator of the cellular response to DNA damage, downstream of the Fas-mediated apoptotic pathway. These results in combination indicate that EBER confers resistance to Fas-mediated apoptosis by blocking PKR activity in Intestine 407 cells, consistent with the idea that EBER contributes to the maintenance of epithelioid malignancies.  相似文献   

13.
Understanding the ultrastructural response of cells to the freezing process is important for designing cryopreservation strategies for cells and tissues. The cellular structures of attached cells are targets of cryopreservation-induced damage. Specific fluorescence staining was used to assess the status of the actin filaments (F-actin) of murine osteoblasts attached to hydroxyapatite discs and plastic coverslips for a two-step freezing process. The F-actin of dead cells was depolymerized and distorted in the freezing process, whereas that of live cells had little change. The results suggest that the cytoskeleton may support the robustness of cells during cryopreservation. The present study helps to investigate the damage mechanism of attached cells during the freezing process.  相似文献   

14.
Exposure of cultured human epithelial cells (Intestine 407) to a hypotonic solution results in initial osmotic swelling and in a subsequent volume decrease near to the original level. The regulatory volume decrease was inhibited by reduction of the extracellular free Ca2+ concentration to 90 nM. Single epithelial cells responded to a hypotonic challenge with a biphasic increase in the cytosolic free Ca2+ level from about 90 to 200 nM. Both phases of the Ca2+ rise were abolished by reducing the extracellular Ca2+ to 90 nM. In the presence of caffeine (20 mM), the second-phase Ca2+ response to a hypotonic challenge occurred earlier immediately after the first-phase response. The second-phase Ca2+ response was selectively impaired by adenine (10 mM), procaine (1 mM) or ryanodine (5 to 10 microM). These blockers for Ca2(+)-induced Ca2+ release channels inhibited volume regulation after osmotic swelling. It is concluded that Ca2(+)-induced Ca2+ release from a ryanodine-sensitive store is a prerequisite for the volume regulation of human intestinal epithelial cells under hypotonic conditions.  相似文献   

15.
Cryptosporidium parvum first interacts with enterocytes when sporozoites penetrate the host plasma membrane. We have developed a shell vial assay using human embryonic Intestine 407 cells and purified C. parvum sporozoites to study this process. Sporozoites were incubated in culture medium with various carbohydrates and lectins, and the suspensions were then added to the cell monolayers. Following incubation, the monolayers were fixed and stained and the number of schizonts were counted. No decreases in sporozoite motility or Intestine 407 cell viability were observed with carbohydrate or lectin treatment. N-Acetyl-D-glucosamine, chitobiose and chitotriose inhibited C. parvum infection, compared to 5 other tested carbohydrates. Wheat germ agglutinin reduced penetration and concanavalin A enhanced schizont formation, when compared to 8 other lectins. Next, we pretreated sporozoites or Intestine 407 cells with wheat germ agglutinin and concanaval in A prior to sporozoite inoculation. Wheat germ agglutinin treatment of sporozoites or cells equally caused a reduction in C. parvum infection, while enhancement was only observed when Intestine 407 cell were pretreated with concanavalin A. These data suggest that glycoproteins with terminal N-acetyl-D-glucosamine residues may play a role in C. parvum adhesion or penetration of enterocytes. Also, host glycoproteins with concanavalin A-like activity may play a role in these processes.  相似文献   

16.
Laurent VM  Planus E  Fodil R  Isabey D 《Biorheology》2003,40(1-3):235-240
This study aims at quantifying the cellular mechanical properties based on a partitioning of the cytoskeleton in a cortical and a cytosolic compartments. The mechanical response of epithelial cells obtained by magnetocytometry - a micromanipulation technique which uses twisted ferromagnetic beads specifically linked to integrin receptors - was purposely analysed using a series of two Voigt bodies. Results showed that the cortical cytoskeleton has a faster response ( approximately 1 s) than the cytosolic compartment ( approximately 30 s). Moreover, the two cytoskeletal compartments have specific mechanical properties, i.e., the cortical (resp. cytosolic) cytoskeleton has a rigidity in the range: 49-85 Pa (resp.: 74-159 Pa) and a viscosity in the range 5-14 Pa.s (resp.: 593-1534 Pa.s), depending on the level of applied stress. Depolymerising actin-filaments strongly modified these values and especially those of the cytosolic compartment. The structural relevance of this two-compartment partitioning was supported by images of F-actin structure obtained on the same cells.  相似文献   

17.
噪声习服对听觉损伤的保护作用机制探讨   总被引:2,自引:0,他引:2  
目的:探讨噪声习服对听觉损伤的保护作用机制.方法:建立噪声习服实验动物模型.采用免疫组织化学、激光扫描共聚焦显微镜(LSCM)及图像分析等技术,定量研究噪声习服后毛细胞内纤维状肌动蛋白(F-actin)、钙调蛋白(CaM)、热休克蛋白70(HSP70)的表达及游离Ca2 浓度的变化.结果:噪声暴露后毛细胞中F-actin、CaM及HSP70的表达均呈增加趋势.与噪声损伤暴露组(H组)比较,噪声习服后损伤暴露组(CH组)中F-actin和HSP70的表达均明显增多,CaM的表达具有增加趋势.声暴露后毛细胞内游离Ca2 浓度升高,噪声损伤暴露组毛细胞内游离Ca2 浓度明显高于噪声习服组(C组)和习服后损伤暴露组.结论:噪声习服使毛细胞对于其后声刺激的保护性反应增强,毛细胞内细胞骨架系统的加强及胞内钙稳态的维持在噪声习服的保护机制中具有重要意义.  相似文献   

18.
The cytoskeleton of eukaryotic cells is continuously remodeled by polymerization and depolymerization of actin. Consequently, the relative content of polymerized filamentous actin (F-actin) and monomeric globular actin (G-actin) is subject to temporal and spatial fluctuations. Since fluorescence correlation spectroscopy (FCS) can measure the diffusion of fluorescently labeled actin it seems likely that FCS allows us to determine the dynamics and hence indirectly the structural properties of the cytoskeleton components with high spatial resolution. To this end we investigate the FCS signal of GFP-actin in living Dictyostelium discoideum cells and explore the inherent spatial and temporal signatures of the actin cytoskeleton. Using the free green fluorescent protein (GFP) as a reference, we find that actin diffusion inside cells is dominated by G-actin and slower than diffusion in diluted cell extract. The FCS signal in the dense cortical F-actin network near the cell membrane is probed using the cytoskeleton protein LIM and is found to be slower than cytosolic G-actin diffusion. Furthermore, we show that polymerization of the cytoskeleton induced by Jasplakinolide leads to a substantial decrease of G-actin diffusion. Pronounced fluctuations in the distribution of the FCS correlation curves can be induced by latrunculin, which is known to induce actin waves. Our work suggests that the FCS signal of GFP-actin in combination with scanning or spatial correlation techniques yield valuable information about the local dynamics and concomitant cytoskeletal properties.  相似文献   

19.
Phagocytosis of IgG-coated particles by macrophages is presumed to involve the actin-based cytoskeleton since F-actin accumulates beneath forming phagosomes, and particle engulfment is blocked by cytochalasins, drugs that inhibit actin filament assembly. However, it is unknown whether Fc receptor ligation affects the rate or extent of F-actin assembly during phagocytosis of IgG-coated particles. To examine this question we have used a quantitative spectrofluorometric method to examine F-actin dynamics during a synchronous wave of phagocytosis of IgG-coated red blood cells by inflammatory mouse macrophages. We observed a biphasic rise in macrophage F-actin content during particle engulfment, with maxima at 1 and 5 min after the initiation of phagocytosis. F-actin declined to resting levels by 30 min, by which time particle engulfment was completed. These quantitative increases in macrophage F-actin were reflected in localized changes in F-actin distribution. Previous work showed that the number of IgG-coated particles engulfed by macrophages is unaffected by buffering extracellular calcium or by clamping cytosolic free calcium concentration ([Ca2+]i) to very low levels (Di Virgilio, F., B. C. Meyer, S. Greenberg, and S. C. Silverstein. 1988. J. Cell Biol. 106: 657-666). To determine whether clamping [Ca2+]i in macrophages affects the rate of particle engulfment, or the assembly or disassembly of F-actin during phagocytosis, we examined these parameters in macrophages whose [Ca2+]i had been clamped to approximately less than 3 nM with fura 2/AM and acetoxymethyl ester of EGTA. We found that the initial rate of phagocytosis, and the quantities of F-actin assembled and disassembled were similar in Ca(2+)-replete and Ca(2+)-depleted macrophages. We conclude that Fc receptor-mediated phagocytosis in mouse macrophages is accompanied by an ordered sequence of assembly and disassembly of F-actin that is insensitive to [Ca2+]i.  相似文献   

20.
The role of the F-actin cytoskeleton in cell volume regulation was studied in Ehrlich ascites tumor cells, using a quantitative rhodamine-phalloidin assay, confocal laser scanning microscopy, and electronic cell sizing. A hypotonic challenge (160 mOsm) was associated with a decrease in cellular F-actin content at 1 and 3 min and a hypertonic challenge (600 mOsm) with an increase in cellular F-actin content at 1, 3, and 5 min, respectively, compared to isotonic (310 mOsm) control cells. Confocal visualization of F-actin in fixed, intact Ehrlich cells demonstrated that osmotic challenges mainly affect the F-actin in the cortical region of the cells, with no visible changes in F-actin in other cell regions. The possible role of the F-actin cytoskeleton in RVD was studied using 0. 5 microM cytochalasin B (CB), cytochalasin D (CD), or chaetoglobosin C (ChtC), a cytochalasin analog with little or no affinity for F-actin. Recovery of cell volume after hypotonic swelling was slower in cells pretreated for 3 min with 0.5 microM CB, but not in CD- and ChtC-treated cells, compared to osmotically swollen control cells. Moreover, the maximal cell volume after swelling was decreased in CB-treated, but not in CD- or Chtc-treated cells. Following a hypertonic challenge imposed using the RVD/RVI protocol, recovery from cell shrinkage was slower in CB-treated, but not in CD- or Chtc-treated cells, whereas the minimal cell volume after shrinkage was unaltered by either of these treatments. It is concluded that osmotic cell swelling and shrinkage elicit a decrease and an increase in the F-actin content in Ehrlich cells, respectively. The RVD and RVI processes are inhibited by 0.5 microM CB, but not by 0.5 microM CD, which is more specific for actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号