首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Six deep-sea proteolytic bacteria taken from Aleutian margin sediments were screened; one of them produced a cold-adapted neutral halophilic protease. These bacteria belong to Pseudoalteromonas spp., which were identified by the 16S rDNA sequence. Of the six proteases produced, two were neutral cold-adapted proteases that showed their optimal activity at pH 7–8 and at temperature close to 35°C, and the other four were alkaline proteases that showed their optimal activity at pH 9 and at temperature of 40–45°C. The neutral cold-adapted protease E1 showed its optimal activity at a sodium chloride concentration of 2 M, whereas the activity of the other five proteases decreased at elevated sodium chloride concentrations. Protease E1 was purified to electrophoretic homogeneity and its molecular mass was 34 kDa, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of protease E1 was determined to be 32,411 Da by mass spectrometric analysis. Phenylmethyl sulfonylfluoride (PMSF) did not inhibit the activity of this protease, whereas it was partially inhibited by ethylenediaminetetra-acetic acid sodium salt (EDTA-Na). De novo amino acid sequencing proved protease E1 to be a novel protein.  相似文献   

2.
Chloroflexus aurantiacus J-10-fl was found to contain two types (protease I and protease II) of thermostable proteases which were separated by Butyl-Toyopearl 650M chromatography. Protease I was purified to electrophoretic homogeneity from the culture broth of C. aurantiacus J-10-fl. The molecular mass of protease I was estimated to be approximately 66 kDa by SDS-PAGE, and the value of approximately 66kDa was also obtained by the Hedrick-Smith method, indicating that protease I was a monomer. The isoelectric point was 6.2. Protease I activity was inhibited by metalloprotease inhibitors such as EDTA, EGTA, and o-phenanthroline. The optimum pH for the activity of protease I was around 8.0. Addition of Ca2+ increased the pH and heat stabilities of protease I. The activity was stable between pH 4.0–11.0 and up to 75°C, and the maximum activity was observed at 70°C in the presence of 2mM CaCl2. Protease I was resistant to the treatment by denaturing reagents (8 M urea or 1% SDS) at pH 8.0 and 20°C for 24 h. The sites of cleavage. in oxidized insulin B chain by protease I were similar to those by other microbial neutral metalloproteases. Elastase activity of protease I was not detected.  相似文献   

3.
An extracellular alkaline serine protease has been purified from a strain of Aspergillus clavatus, to apparent homogeneity, by ammonium sulfate precipitation and chromatography on Sephadex G-75. Its molar mass, estimated by SDS-PAGE, was 35 kDa. Maximum protease activity was observed at pH 9.5 and 40°C. The enzyme was active between pH 6.0 and 11.0 and was found to be unstable up to 50°C. Calcium at 5 mM increased its thermal stability. The protease was strongly inhibited by PMSF and chymostatin as well as by SDS, Tween 80 and carbonate ion. Substrate specificity was observed with N-p-Tos-Gly-Pro-Arg-p-nitroanilide and N-Suc-Ala-Ala-Ala-p-nitroanilide being active substates. Parts of the amino acid sequence were up to 81% homologous with those of several fungal alkaline serine proteases.  相似文献   

4.
Three alkaline protease‐producing strains designated as ANFLR1, NPLR1, and PROLR15 were isolated from Labeo rohita fish gut. These strains are able to produce alkaline protease using tannery fleshing (TF) as the sole carbon and nitrogen source and were identified as Bacillus megaterium, Serratia marcescens, and novel Pontibacter sps. Proteases from these organisms were purified to electrophoretic homogeneity following ammonium sulphate precipitation, ion exchange, and column chromatography. SDS‐PAGE revealed molecular weights of the proteases to be 46 kDa (ANFLR1), 52 kDa (NPLR1), and 58 kDa (PROLR15). The optimum pH and temperature for the protease activity of ANFLR1, NPLR1, and PROLR15 were found to be 10.5, 11.5, 9, and 70°C, 60°C, and 50°C, respectively. The maximum protease activities at the optimum conditions were 420 U/mL (ANFLR1), 550 U/mL (NPLR1), and 530 U/mL (PROLR15). Inhibition of the NPLR1 protease by pepstatin confirmed aspartate‐type enzymatic activity. Fe3+ enhanced the activity of PROLR15 protease. Unlike all other microbial proteases known so far, the PROLR15 enzyme did not require Ca2+ for activity and thermal stability. SDS‐PAGE and scanning electron microscopy analyses confirmed the conversion of high molecular weight substrate (TF) to low molecular weight peptides by these proteases. The alkaline metalloprotease production by novel Pontibacter sps. and aspartate protease production by S. marcescens remain unexplored. Hence, TF with its relatively abundant availability can be beneficially utilized for alkaline protease production through the fish gut microbial fermentation processes.  相似文献   

5.
A novel nonionic surfactant- and hydrophilic solvent-stable alkaline serine protease was purified from the culture supernatant of Serratia sp. SYBC H with duckweed as nitrogen source. The molecular mass of the purified protease is about 59 kDa as assayed via SDS-PAGE. The protease is highly active over the pH range between 5.0 and 11.0, with the maximum activity at pH 8.0. It is also fairly active over the temperature range between 30 and 80°C, with the maximum activity at 40°C. The protease activity was substantially stimulated by Mn2+ and Na+ (5 mM), up to 837.9 and 134.5% at 40°C, respectively. In addition, Mn2+ enhanced the thermostability of the protease significantly at 60°C. Over 90% of its initial activity remained even after incubating for 60 min at 40°C in 50% (v/v) hydrophilic organic solvents such as DMF, DMSO, acetone and MeOH. The protease retained 81.7, 83.6 and 76.2% of its initial activity in the presence of nonionic surfactants 20% (v/v) Tween 80, 25% (v/v) glycerol and Triton X-100, respectively. The protease is strongly inhibited by PMSF, suggesting that it is a serine protease. Washing experiments revealed that the protease has an excellent ability to remove blood stains.  相似文献   

6.
An extremely halophilic archaeon Haloferax lucentensis VKMM 007, isolated from a solar saltern, was found to produce a protease. This extracellular enzyme consisted of a single polypeptide chain of 57.8 kDa as determined by SDS–PAGE and was purified by a combination of ultrafiltration, bacitracin–Sepharose affinity chromatography and Sephadex G-100 gel filtration. The purified protein was stable in a wide range of temperatures (20–70°C), NaCl concentrations (0.85–5.13 M) and pH (5.0–9.0) with maximal activity observed at 60°C, 4.3 M NaCl and pH 8.0. Proteolytic activity was enhanced by Ca2+, K+, Mg2+, Na+, and Fe2+ ions and the protein was classified as a trypsin-like serine protease. Further assays indicated highest degree of specificity when hemoglobin was used as an enzyme substrate. Most importantly, the proteolytic activity remained stable or only marginally inhibited in the presence of various polar and non-polar solvents, surfactants and reducing agents thus emphasizing the biotechnological potential of this novel halophilic protease.  相似文献   

7.
Glucose oxidase from Penicillium amagasakiense was purified to homogeneity by ion-exchange chromatography and deglycosylated with endoglycosidase H. On the basis of gas chromatography and sodium dodecyl sulphate/polyacrylamide gel electrophoretic (SDS-PAGE) analyses, the protein-bound high-mannose-type carbohydrate moiety corresponded to 13% of the molecular mass of glycosylated glucose oxidase. A total of six N-glycosylation sites per dimer were determined from the N-acetylglucosamine content. The enzymatically deglycosylated enzyme contained less than 5% of the original carbohydrate moiety. A molecular mass of 130 kDa (gel filtration) and 133 kDa (native PAGE) was determined for the dimer and 67 kDa (SDS-PAGE) for the monomer of the deglycosylated enzyme. The N-terminal sequence, which has not been published for glucose oxidase from P. amagasakiense to date and which showed less than 50% homology to the N terminus of glucose oxidase from Aspergillus niger, and the amino acid composition were not altered by the deglycosylation. Deglycosylation also did not affect the kinetics of glucose oxidation or the pH and temperature optima. It also did not increase the susceptibility of the enzyme to proteolytic degradation. However, deglycosylated glucose oxidase exhibited decreased pH and thermal stability. The thermal stability of both enzymes was shown to be dependent on the buffer concentration and was enhanced by certain additives, particularly 1 M (NH4)2SO4, which stabilised glucose oxidase 100- to 300-fold at 50 °C and pH 7–8, and 2 M KF, which stabilised the enzyme up to 36-fold at 60 °C and pH 6. In sodium acetate buffer, changes in pH (4–6) affected the affinity for glucose but had no effect on the V max of the reaction. In contrast, in TRIS buffer, pH 8, a 10-fold decrease in V max and a 2-fold decrease in K m were observed. Received: 8 October 1996 / Received revision: 14 January 1997 / Accepted: 17 January 1997  相似文献   

8.
Multiple proteases were produced and partially purified from an alkali-thermotolerant novel species of Streptomyces (i.e., Streptomyces gulbargensis DAS 131) after 48 h of growth at 45°C. The enzyme preparation exhibited activity over a broad range of pH (4–12) and temperature (27–55°C). Optimum activity was observed at a pH of 9.0 and a temperature of 45°C. Starch and protease peptone was found to be a good source of carbon and nitrogen to enhance the enzyme activity. Two active zones in the range of 19 to 35 kDa were detected on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).  相似文献   

9.
In this study, the production of extracellular thermostable α-amylase by newly isolated thermophilic Alicyclobacillus acidocaldarius was detected on LB agar plates containing 1.0% soluble potato starch and incubated at 60°C. This extracellular α-amylase was purified to homogeneity by ammonium sulphate precipitation followed by Sephadex and ion-exchange chromatography. The α-amylase was purified to 8.138 fold homogeneity with a final recovery of 58% and a specific activity of 3,239 U/mg proteins. The purified α-amylase appeared as a single protein band on SDS-PAGE with a molecular mass of 94.5 kDa. Non-denaturing PAGE analysis showed one major band associated with enzyme activity, indicating the absence of isoenzymes. A TLC analysis showed maltose as major end product of the enzyme. The optimum assay temperature and pH for enzyme activity were 60°C and 6.0 respectively; however, the enzyme activity was stable over a wide range of pH and temperatures. The α-amylase retained its activity in the presence of the denaturing agents — SDS, Triton X-100, Tween-20, Tween-80, and was significantly inhibited by EDTA and urea. Calcium ions increased the enzyme activity, while Hg2+, Zn2+, and Co2+ had inhibitory effects. The K m and V max values were found to be 2.9 mg/mL and 7936 U/mL respectively.  相似文献   

10.
A milk coagulating protease was purified ∼10.2-fold to apparent homogeneity from ginger rhizomes in 34.9% recovery using ammonium sulfate fractionation, together with ion exchange and size exclusion chromatographic techniques. The molecular mass of the purified protease was estimated to be ∼36 kDa by SDS-PAGE, and exhibited a pI of 4.3. It is a glycoprotein with 3% carbohydrate content. The purified enzyme showed maximum activity at pH 5.5 and at a temperature of ∼60 °C. Its protease activity was strongly inhibited by iodoacetamide, E-64, PCMB, Hg2+ and Cu2+. Inhibition studies and N-terminal sequence classified the enzyme as a member of the cysteine proteases. The cleavage capability of the isolated enzyme was higher for αs-casein followed by β- and κ-casein. The purified enzyme differed in molecular mass, pI, carbohydrate content, and N-terminal sequence from previously reported ginger proteases. These results indicate that the purified protease may have potential application as a rennet substitute in the dairy industry.  相似文献   

11.
Betaine aldehyde dehydrogenase (BADH; EC 1.2.1.8) is the enzyme that catalyzes the second step in the synthesis of the osmoprotectant, glycine betaine. NAD-dependent BADH was purified from Avena sativa shoots by DEAE Sephacel, hydroxyapatite, 5′-AMP Sepharose 4B, Mono Q and TSK-GEL column chromatographies to homogeneity by the criterion of native PAGE, and the properties of BADH were compared with those of aminoaldehyde dehydrogenase purified to homogeneity from A. sativa. The molecular mass estimated by both gel filtration using TSK-GEL column and Sephacryl S-200 was 120 and 115, kDa, respectively. The enzyme is a homodimer with a subunit molecular mass of 61 kDa as shown by SDS-PAGE. The pI value of the enzyme was found to be 6.3. The purified enzyme catalyzed not only the oxidation of betaine aldehyde (BAL), but also that of aminoaldehydes, 3-aminopropionaldehyde (APAL), 4-aminobutyraldehyde (ABAL), and 4-guanidinobutyraldehyde (GBAL). The K m values for BAL, APAL, ABAL and GBAL were 5×10−6, 5.4×10−7, 2.4×10−5 and 5×10−5 M, respectively. APAL showed substrate inhibition at a concentration of 0.1 mM. A fragment of BADH cleaved by V8 protease shared homology with other plant BADHs. Electronic Publication  相似文献   

12.
Spectroscopic, calorimetric, and proteolytic methods were utilized to evaluate the stability of the kinetically stable, differentially glycosylated, dimeric serine protease milin as a function of pH (1.0–11.0), temperature, urea, and GuHCl denaturation in presence of 8 M urea at pH 2.0. The stability of milin remains equivalent to that of native at pH 1.0–11.0. However, negligible and reversible alteration in structure upon temperature transition has been observed at pH 2.0 and with 1.6 M GuHCl. Irreversible and incomplete calorimetric transition with apparent T m > 100°C was observed at basic pH (9.0 and 10.0). Urea-induced unfolding at pH 4.0, and at pH 2.0 with GuHCl, in presence of 8 M urea also reveals incomplete unfolding. Milin has been found to exhibit proteolytic resistant in either native or denatured state against various commercial proteases. These results imply that the high conformational stability of milin against various denaturating conditions enable its potential use in protease-based industries.  相似文献   

13.
A Psychrotolerant alkaline protease producing bacterium IIIM-ST045 was isolated from a soil sample collected from the Thajiwas glacier of Kashmir, India and identified as Stenotrophomonas sp. on the basis of its biochemical properties and 16S ribosomal gene sequencing. The strain could grow well within a temperature range of 4–37°C however, showed optimum growth at 15°C. The strain was found to over-produce proteases when it was grown in media containing lactose as carbon source (157.50 U mg−1). The maximum specific enzyme activity (398 U mg−1) was obtained using soya oil as nitrogen source, however, the inorganic nitrogen sources urea, ammonium chloride and ammonium sulphate showed the lowest production of 38.9, 62.2 and 57.9 U mg−1. The enzyme was purified to 18.45 folds and the molecular weight of the partially purified protease was estimated to be ~55 kDa by SDS-PAGE analysis. The protease activity increased as the increase in enzyme concentration while as the optimum enzyme activity was found when casein (1% w/v) was used as substrate. The enzyme was highly active over a wide range of pH from 6.5 to 12.0 showing optimum activity at pH 10.0. The optimum temperature for the enzyme was 15°C. Proteolytic activity reduced gradually with higher temperatures with a decrease of 56% at 40°C. The purified enzyme was checked for the removal of protein containing tea stains using a silk cloth within a temperature range of 10–60°C. The best washing efficiency results obtained at low temperatures indicate that the enzyme may be used for cold washing purposes of delicate fabrics that otherwise are vulnerable to high temperatures.  相似文献   

14.
《Process Biochemistry》2007,42(5):791-797
An extracellular bleach stable protease from the fungus Aspergillus clavatus ES1, isolated from wastewater, was purified and characterized. The protease of ES1 strain was purified to homogeneity using acetone precipitation, Sephadex G-100 gel filtration and CM-Sepharose ion exchange chromatography, with a 7.5-fold increase in specific activity and 29% recovery. The molecular mass was estimated to be 32 kDa on SDS-PAGE. The optimum pH and temperature for the proteolytic activity were pH 8.5 and 50 °C, respectively. The enzyme was stable in the pH range of 7.0–9.0. The protease was activated by divalent cations such as Ca2+ and Mg2+.The alkaline protease showed extreme stability towards non-ionic surfactants (5% Tween 80 and 5% Triton X-100). In addition, the enzyme was relatively stable towards oxidizing agents, retaining more than 71 and 53% of its initial activity after 1 h incubation in the presence of 1 and 2% (w/v) sodium perborate, respectively.The N-terminal sequence of the first 15 amino acids of the purified alkaline protease of A. clavatus ES1 showed high similarity with other fungal alkaline proteases. The activity was totally lost in the presence of PMSF, suggesting that the purified enzyme is a serine-protease.  相似文献   

15.
An a-L-rhamnosidase secreting fungal strain has been isolated and identified as Aspergillus clavato-nanicus MTCC-9611. The enzyme was purified to homogeneity from the culture filtrate of the fungus using concentration by ultrafiltration membrane and ion-exchange chromatography on CM-cellulose. The native PAGE analysis confirmed the homogeneity of the purified enzyme. The SDS-PAGE analysis of the purified enzyme revealed a single protein band corresponding to the molecular weight 82 kDa. The α-L-rhamnosidase activity of Aspergillus clavato-nanicus MTCC-9611 had optimum at pH 10.0 and 50°C. The K m values of the enzyme were 0.65 mM and 0.95 mM using p-nitrophenyl α-L-rhamnopyranoside and naringin as a substrates respectively. The enzyme transforms naringin to prunin at pH 10.0 and further hydrolysis of prunin to naringenin does not occur under these reaction conditions that makes α-L-rhamnosidase activity of Aspergillus clavato-nanicus MTCC-9611 promising enzyme to get prunin for pharmaceutical purposes.  相似文献   

16.
A chitosanase and a protease were purified from the culture supernatant of Serratia sp. TKU016 with shrimp shell as the sole carbon/nitrogen source. The molecular masses of the chitosanase and protease determined by SDS–PAGE were approximately 65 and 53 kDa, respectively. The chitosanase was inhibited completely by Mn2+, but the protease was enhanced by all of tested divalent metals. The optimum pH, optimum temperature, pH stability, and thermal stability of the chitosanase and protease were (pH 7, 50°C, pH 6–7, <50°C) and (pH 8–10, 40°C, pH 5–10, <50°C), respectively. SDS (2 mM) had stimulatory effect on TKU016 protease activity. The result demonstrates that TKU016 protease is SDS-resistant protease and probably has a rigid structure. Besides, TKU016 culture supernatant (2% SPP) incubated for 2 days has the highest antioxidant activity, the DPPH scavenging ability was about 76%. With this method, we have shown that shrimp shell wastes can be utilized and it’s effective in the production of enzymes, antioxidants, peptide and reducing sugar, facilitating its potential use in biological applications and functional foods.  相似文献   

17.
The gene coding for a thermophilic neutral protease from Bacillus stearothermophilus was expressed in Bacillus subtilis DB104, under the control of the sacB gene promoter. This was followed by either the native signal peptide sequence of this protease or the signal peptide sequence of the sacB gene. The protease was purified 3.8-fold, with a specific activity of 16530 U mg-1. As analyzed by SDS-PAGE, the molecular mass of the expressed protease was about 35 kDa, and the optimal temperature and pH of the protease were 65℃ and 7.5, respectively. Moreover, it still had about 80% activity after 1 h reaction at 65 ℃ .  相似文献   

18.
《Process Biochemistry》2007,42(8):1229-1236
A protease, producing bacterial culture (isolate ‘C’) was obtained from slaughterhouse waste samples, Hyderabad, India. It was related to Serratia rubidaea on the basis of 16S r RNA gene sequencing and biochemical properties. Cultural characters of S. rubidaea identified it as a psychrophile secreting protease at 10–30 °C. Single step purification of culture supernatant on sephacryl S-100 column revealed two proteases CP-1 and CP-2. The molecular masses of the enzymes determined by SDS-PAGE and zymography were approximately 97 and 45 kDa, respectively. N-terminal sequencing of CP-1 revealed a novel surface protein of S. rubidaea and CP-2 protease has shown 100% homology with protease of Serratia sp. A fold purification of 1.5 with 54% recovery was achieved in CP1 and purification of CP-2 resulted in 88% yield with a fold purification of 2. The optimum pH values of CP-1 and CP-2 were shown to be 10 and 8, respectively. The maximum activities for the enzymes were at 40 °C and 30 °C. Both the proteases are inhibited by EDTA indicating that they are metallo proteases. The activity of CP-1 was enhanced with Cu2+ that of CP-2 was enhanced with Zn2+ and Ca2+. These proteases have stability in presence of detergents, surfactants and solvents. These properties make these proteases an ideal choice for application in detergent formulations, food, leather industries, vaccine and enzyme peptide synthesis.  相似文献   

19.
A protease-producing bacterium was isolated from an alkaline wastewater of the soap industry and identified as Vibrio metschnikovii J1 on the basis of the 16S rRNA gene sequencing and biochemical properties. The strain was found to over-produce proteases when it was grown at 30°C in media containing casein as carbon source (14,000 U ml−1). J1 enzyme, the major protease produced by V. metschnikovii J1, was purified by a three-step procedure, with a 2.1-fold increase in specific activity and 33.3% recovery. The molecular weight of the purified protease was estimated to be 30 kDa by SDS-PAGE and gel filtration. The N-terminal amino acid sequence of the first 20 amino acids of the purified J1 protease was AQQTPYGIRMVQADQLSDVY. The enzyme was highly active over a wide range of pH from 9.0 to 12.0, with an optimum at pH 11.0. The optimum temperature for the purified enzyme was 60°C. The activity of the enzyme was totally lost in the presence of PMSF, suggesting that the purified enzyme is a serine protease. The kinetic constants K m and K cat of the purified enzyme using N-succinyl-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide were 0.158 mM and 1.14 × 105 min−1, respectively. The catalytic efficiency (K cat /K m) was 7.23 × 108 min−1 M−1. The enzyme showed extreme stability toward non-ionic surfactants and oxidizing agents. In addition, it showed high stability and compatibility with some commercial liquid and solid detergents. The aprJ1 gene, which encodes the alkaline protease from V. metschnikovii J1, was isolated, and its DNA sequence was determined. The deduced amino acid sequence of the preproenzyme differs from that of V. metschnikovii RH530 detergent-stable protease by 12 amino acids, 7 located in the propeptide and 5 in the mature enzyme.  相似文献   

20.
Protease activity was detected in the culture medium of Flavobacterium balustinum P104 grown at 10 °C, which was isolated from salmon (Oncorhynchus keta) intestine. The enzyme, designated as CP-70 protease, was purified to homogeneity from the culture broth by ion exchange and gel filtration chromatographyies. The molecular mass of the protease was 70 kDa, and its isoelectric point was close to 3.5. Maximal activity toward azocasein was observed at 40 °C and from pH 7.0 to 9.0. The activity was strongly inhibited by phenylmethylsulfonyl fluoride, suggesting that the enzyme is a serine protease. The n-terminal amino acid sequence was Asp-Thr-Arg-Gln-Leu-Leu-Asn-Ala-Asn-Ser-Asp-Leu-Leu-Asn-Thr-Thr-Gly-Asn-Val-Thr-Gly-Leu-Thr-Gly-Ala-Phe-Asn-Gly-Glu-Asn. A search through the database for sequence homology yielded no significant match. The initial cleavage sites for oxidized insulin B-chain were found to be the Glu13-Ala14 and Phe24-Phe25 bonds. The result of the cleavage pattern of oxidized insulin B-chain suggests that CP-70 protease has a broader specificity than the other cold-active proteases against the peptide substrate. Received: 17 April 1998 / Received last revision: 17 June 1998 / Accepted: 10 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号