首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intrinsic fluorescence of the colicin A thermolytic fragment does not change after insertion into normal phospholipid vesicles and is thus an unsuitable probe for monitoring the membrane insertion process. In this paper, we report the results of studies on the quenching of this fluorescence by brominated dioleoylphosphatidylglycerol (Br-DOPG) vesicles. Bromine atoms located at the midpoint of the phospholipid acyl chain quench the tryptophan fluorescence, indicating contact between fluorophores of the protein and the bilayer's hydrophobic core. Addition of Br-DOPG vesicles to a protein solution quenches the tryptophan fluorescence in a time-dependent manner. This quenching can be fitted to a single-exponential function, and thus interpreted as a one-step process. This allows calculation of an apparent rate constant of protein insertion into the membrane. Parameters known to affect the insertion of the thermolytic fragment into phospholipid monolayers or vesicles (pH and negative charge density) also affect the rate constant in comparable ways. In addition to the information gained concerning membrane exposure in the steady state, this approach provides the first real-time method for measuring the insertion of colicin into membranes. It is highly quantitative and can be used on all versions of the protein, e.g., full size, proteolytic fragments, and mutants. Brominated lipids provide experimental conditions identical to normal lipids and allow for great flexibility in protein/lipid ratios and concentrations. The kinetic analysis shows clearly the existence of a two-step process involving a rapid adsorption of the protein to the lipid surface followed by a slow insertion.  相似文献   

2.
The structure of the membrane bound state of the 178-residue thermolytic COOH-terminal channel forming peptide of colicin E1 was studied by polarized Fourier transform infrared (FTIR) spectroscopy. This fragment was reconstituted into DMPC liposomes at varying peptide/lipid ratios ranging from 1/25-1/500. The amide I band frequency of the protein indicated a dominant alpha-helical secondary structure with limited beta- and random structures. The amide I and II frequencies are at 1,656 and 1,546 cm-1, close to the frequency of the amide I and II bands of rhodopsin, bacteriorhodopsin and other alpha-helical proteins. Polarized FTIR of oriented membranes revealed that the alpha-helices have an average orientation less than the magic angle, 54.6 degrees, relative to the membrane normal. Almost all of the peptide groups in the membrane-bound channel protein undergo rapid hydrogen/deuterium (H/D) exchange. These results are contrasted to the alpha-helical membrane proteins, bacteriorhodopsin, and rhodopsin.  相似文献   

3.
The molecular aggregate size of the closed state of the colicin E1 channel was determined by fluorescence resonance energy transfer experiments involving a fluorescence donor (three tryptophans, wild-type protein) and a fluorescence acceptor (5-(((acetyl)amino)ethyl)aminonaphthalene-1-sulfonic acid (AEDANS), Trp-deficient protein). There was no evidence of energy transfer between the donor and acceptor species when bound to membrane large unilamellar vesicles. These experiments led to the conclusion that the colicin E1 channel is monomeric in the membrane-bound closed channel state. Experiments were also conducted to study the membrane topology of the closed colicin channel in membrane large unilamellar vesicles using acrylamide as the membrane-impermeant, nonionic quencher of tryptophan fluorescence in a battery of single tryptophan mutant proteins. Furthermore, additional fluorescence parameters, including fluorescence emission maximum, fluorescence quantum yield, and fluorescence decay times, were used to assist in mapping the topology of the closed channel. Results suggest that the closed channel comprises most of the polypeptide of the channel domain and that the hydrophobic anchor domain does not transverse the membrane bilayer but nonetheless is deeply embedded within the hydrocarbon core of the membrane. Finally, a model is proposed which features at least two states that are in rapid equilibrium with each other and in which one state is more heavily populated than the other.  相似文献   

4.
The ion-channel-forming C-terminal fragment of colicin A binds to negatively charged lipid vesicles and provides an example of insertion of a soluble protein into a lipid bilayer. The soluble structure is known from X-ray crystallography and consists of a ten-helix bundle containing a hydrophobic helical hairpin. In this work fluorescence spectroscopy was used to study the membrane-bound structure. An extrinsic probe, N'-(iodoacetyl)-N'-(5-sulfol-naphthyl)ethylenediamine (IAEDANS) was attached to mutant proteins each of which bears a unique cysteine residue. Three mutants K39C (helix 2), T127C (between helices 6 and 7) and S16Crpt (helix 1, which bears a decapeptide repeat before the mutation) gave useful derivatives. In the soluble protein they showed emission wavelengths decreasing in the order K39C greater than T127C greater than S16Crpt and although all showed blue shifts on addition of dimyristoylphosphatidylglycerol (DMPG) this order was maintained in the membrane-bound state. These shifts were not indicative of deep membrane insertion. Polarization of IAEDANS revealed differences in mobility between mutants. The three tryptophan residues were used as a compound donor to IAEDANS in resonance energy transfer distance determinations. The values obtained for the soluble form were 1.2 A to 3.2 A longer than in the crystal structure. On addition of lipids the indicated distances increased: S16Crpt-I(AEDANS) 6.45 A (22%), K39C-I 5.45 A (18%) and T127C-I 2.4 A (14%). N-bromosuccinimide (NBS) completely abolishes the tryptophan emission from the thermolytic fragment. When lipids were added to a mixture containing ten NBS-treated channel-forming fragments to one IAEDANS labelled fragment the indicated distances increased rather more: S16Crpt-I 9.7 A (38%), K39C-I 8.1 A (36%) and T127C-I 2.5 A (16%). This showed that intermolecular transfer reduces the distance estimated in samples containing only labelled protein. The ensemble of results shows that the amphipathic helices of the C-terminal fragment open out on the surface of the lipid bilayer during the initial phase of membrane insertion.  相似文献   

5.
2H and 31P NMR techniques were used to study the effects on acyl chain order and lipid organization of the well-characterized pore-forming domain of colicin A (20-kDa thermolytic fragment of colicin A) upon insertion in model membrane systems derived from the Escherichia coli fatty acid auxotrophic strain K 1059, which was grown in the presence of [11,11-2H2]-labeled oleic acid. Addition of the protein to dispersions of the E. coli total lipid extract, in a 1/70 molar ratio of peptide to lipids, resulted in a large pH-dependent decrease in quadrupolar splitting of the 2H NMR spectra. The decrease of the quadrupolar splitting obtained at the various pH values was correlated with the pH dependence of the insertion of the protein in monolayer films using the same E. coli lipid extracts. The pK governing the perturbing effects on the order of the fatty acyl chains was around 5, in agreement with the values of the pH-dependent conformational changes of the pore-forming domain of colicin A required for membrane insertion as reported by van der Goot et al. [(1991) Nature 354, 408-410]. 31P NMR measurements show that the bilayer organization remains intact upon addition of the protein to dispersions of lipid extract. Surprisingly, 31P NMR measurements as a function of temperature indicate that the pore-forming domain of colicin A even stabilizes bilayer lipid structure at pH 4. Both the large effect of the protein on acyl chain order and its bilayer-stabilizing activity are indicative of a surface localization of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We have investigated the effect of the presence of 25 mol percent cholesterol on the interactions of the antimicrobial peptide gramicidin S (GS) with phosphatidylcholine and phosphatidylethanolamine model membrane systems using a variety of methods. Our circular dichroism spectroscopic measurements indicate that the incorporation of cholesterol into egg phosphatidylcholine vesicles has no significant effect on the conformation of the GS molecule but that this peptide resides in a range of intermediate polarity as compared to aqueous solution or an organic solvent. Our Fourier transform infrared spectroscopic measurements confirm these findings and demonstrate that in both cholesterol-containing and cholesterol-free dimyristoylphosphatidylcholine liquid-crystalline bilayers, GS is located in a region of intermediate polarity at the polar--nonpolar interfacial region of the lipid bilayer. However, GS appears to be located in a more polar environment nearer the bilayer surface when cholesterol is present. Our (31)P-nuclear magnetic resonance studies demonstrate that the presence of cholesterol markedly reduces the tendency of GS to induce the formation of inverted nonlamellar phases in model membranes composed of an unsaturated phosphatidylethanolamine. Finally, fluorescence dye leakage experiments indicate that cholesterol inhibits the GS-induced permeabilization of phosphatidylcholine vesicles. Thus in all respects the presence of cholesterol attenuates but does not abolish the interactions of GS with, and the characteristic effects of GS on, phospholipid bilayers. These findings may explain why it is more potent at disrupting cholesterol-free bacterial than cholesterol-containing eukaryotic membranes while nevertheless disrupting the integrity of the latter at higher peptide concentrations. This additional example of the lipid specificity of GS may aid in the rational design of GS analogs with increased antibacterial but reduced hemolytic activities.  相似文献   

7.
The interaction of tumor promoters differing in molecular structure, namely, 12-O-tetradecanoylphorbol 13-acetate (TPA) and teleocidin, with dipalmitoylphosphatidylcholine (DPPC) vesicles was studied. Investigation by Fourier transform infrared spectroscopy clarified the differences between the tumor promoters in the mode of interaction with lipid bilayer membranes. The temperature dependence of the bandwidth of the C-H or C = O stretching absorption of lipid molecules in the presence of tumor promoters relative to that in pure DPPC vesicles indicated that TPA is incorporated into the hydrophobic core of the lipid bilayer membrane whilst teleocidin binds predominantly to the membrane surface. However, both tumor promoters tend to restrict the motion of lipid molecules in membranes. The same conclusion was derived from measurements of steady-state fluorescence polarization, which showed that tumor promoters decreased the membrane fluidity. On the other hand, carboxyfluorescein (CF) leakage from vesicles was enhanced by the addition of TPA below the phase-transition temperature, whereas the effect of teleocidin on steady-state CF leakage was not as significant. It is considered that the difference in the profile of the TPA-induced increase in CF leakage compared to that of teleocidin might be ascribable to a different binding site for each tumor promoter in the membranes.  相似文献   

8.
Chemical modification and photodynamic treatment of the colicin E1 channel-forming domain (P178) in vesicular and planar bilayer lipid membranes (BLMs) was used to elucidate the role of tryptophan residues in colicin E1 channel activity. Modification of colicin tryptophan residues by N-bromosuccinimide (NBS), as judged by the loss of tryptophan fluorescence, resulted in complete suppression of wild-type P178 channel activity in BLMs formed from fully saturated (diphytanoyl) phospholipids, both at the macroscopic-current and single-channel levels. The similar effect on both the tryptophan fluorescence and the electric current across BLM was observed also after NBS treatment of gramicidin channels. Of the single-tryptophan P178 mutants studied, W460 showed the highest sensitivity to NBS treatment, pointing to the importance of the water-exposed Trp460 in colicin channel activity. In line with previous work, the photodynamic treatment (illumination with visible light in the presence of a photosensitizer) led to suppression of P178 channel activity in diphytanoyl-phospholipid membranes concomitant with the damage to tryptophan residues detected here by a decrease in tryptophan fluorescence. The present work revealed novel effects: activation of P178 channels as a result of both NBS and photodynamic treatments was observed with BLMs formed from unsaturated (dioleoyl) phospholipids. These phenomena are ascribed to the effect of oxidative modification of double-bond-containing lipids on P178 channel formation. The pronounced stimulation of the colicin-mediated ionic current observed after both pretreatment with NBS and sensitized photomodification of the BLMs support the idea that distortion of membrane structure can facilitate channel formation.Abbreviations: AlPcS3, almininum trisulfophthalocyanine; BLM, bilayer lipid membrane; DOPC, dioleoylphosphatidylcholine; DOPG, dioleoylphosphatidyl-glycerol; DPhPG, diphytanoylphos-phatidylglycerol; DPhPg, diphytanoylphosphatidylcholine; gA, gramicidin A; NBS, N-bromosuccinimideThis revised version was published online in August 2005 with a corrected cover date.  相似文献   

9.
L A Chung  J D Lear  W F DeGrado 《Biochemistry》1992,31(28):6608-6616
A 21-residue peptide of the sequence (LSSLLSL)3 forms ion channels when incorporated into planar lipid bilayer membranes of diphytanoylphosphatidylcholine (diPhy-PC). The frequency of channel openings increases with the applied voltage gradient. We investigated the molecular and structural mechanisms underlying this voltage dependence. A series of seven peptides, each containing a tryptophan substituted for a single residue in the middle heptad, was synthesized, purified, and incorporated into small, unilamellar, diPhy-PC vesicles. We measured circular dichroism, maximum fluorescence emission wave-lengths, and fluorescence quenching by both aqueous and lipid hydrocarbon-associated quenchers. Circular dichroism spectra and the observed sequence periodicity of all fluorescence and fluorescence quenching data are consistent with an alpha-helical peptide secondary structure. Energy transfer quenching measurements using N-terminally labeled (LSSLLSL)3 co-incorporated at lipid/peptide ratios greater than 100 into vesicles with one of the Trp-substituted peptides showed that the vesicle-associated peptide, in the absence of a voltage gradient across the bilayer, exists as an equilibrium mixture of monomers and dimers. Static fluorescence quenching measurements using different lipid-bound quenchers indicate that the helical axis of a representative lipid-associated peptide is, on average, oriented parallel to the surface of the membrane and located a few angstroms below the polar head group/hydrocarbon boundary. This surface orientation for the peptide is confirmed by the complementary sequence periodicity observed for Trp fluorescence emission wavelength shifts and collisional quenching by aqueous CsCl.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
 丙酮酸氧化酶既能被两性脂类激活,也能被蛋白酶从羧基端切下一个23肽(称α-肽)激活,而且这两种激活方式相互排斥。本文用分离纯化的α-肽,通过测定色氨酸荧光能量转移的方法,证明α-肽能与磷脂囊(vesicle)结合。我们选用两种不同类型的荧光探针,发现α-肽对它们表现不同的色氨酸能量转移效率。α-肽对Dan-syl-DPPE为7.4±1.0%对Dansyl-UAPC为12.5±2.0%。由此推测α-肽的色氨酸残基易与磷脂双层内部疏水区结合,说明α-肽是一种较为疏水的肽。我们推测α-肽在这种外膜酶的激活过程中,提供了与膜结合的部位,在生理过程中起着重要作用。  相似文献   

11.
The purpose of this study was to characterize in detail the binding of pediocin PA-1 and its fragments to target membranes by using tryptophan fluorescence as a probe. Based on a three-dimensional model (Y. Chen, R. Shapira, M. Eisenstein, and T. J. Montville, Appl. Environ. Microbiol. 63:524-531, 1997), four synthetic N-terminal pediocin fragments were selected to study the mechanism of the initial step by which the bacteriocin associates with membranes. Binding of pediocin PA-1 to vesicles of phosphatidylglycerol, the major component of Listeria membranes, caused an increase in the intrinsic tryptophan fluorescence intensity with a blue shift of the emission maximum. The Stern-Volmer constants for acrylamide quenching of the fluorescence of pediocin PA-1 in buffer and in the lipid vesicles were 8.83 +/- 0.42 and 3.53 +/- 0.67 M-1, respectively, suggesting that the tryptophan residues inserted into the hydrophobic core of the lipid bilayer. The synthetic pediocin fragments bound strongly to the lipid vesicles when a patch of positively charged amino acid residues (K-11 and H-12) was present but bound weakly when this patch was mutated out. Quantitative comparison of changes in tryptophan fluorescence parameters, as well as the dissociation constants for pediocin PA-1 and its fragments, revealed that the relative affinity to the lipid vesicles paralleled the net positive charge in the peptide. The relative affinity for the fragment containing the YGNGV consensus motif was 10-fold lower than that for the fragment containing the positive patch. Furthermore, changing the pH from 6.0 to 8.0 decreased binding of the fragments containing the positive patch, probably due to deprotonation of His residues. These results demonstrate that electrostatic interactions, but not the YGNGV motif, govern pediocin binding to the target membrane.  相似文献   

12.
The transmembrane orientation of the human erythrocyte glucose transporter was assessed based on polarized Fourier transform infrared and ultraviolet circular dichroism spectroscopic data obtained from oriented multilamellar films of the reconstituted transporter vesicles. Infrared spectra revealed that there are distinct vibrations for alpha-helical structure while the vibrational frequencies specific to beta-structure are characteristically absent. Analysis of linear dichroism of the infrared spectra further indicated that these alpha-helices in the transporter are preferentially oriented perpendicular to the lipid bilayer plane forming an effective tilt of less than 38 degrees from the membrane normal. Such a preferential orientation was further supported by ultraviolet circular dichroism spectra which reveal that the 208 nm Moffit band found in the detergent-solubilized preparation is absent in the film preparation. Linear dichroism data further indicated that D-glucose, a typical substrate, further reduces this effective tilt angle slightly.  相似文献   

13.
The chemical and spectroscopic properties of the new fluorescent acids all(E)-8, 10, 12, 14, 16-octadecapentaenoic acid (t-COPA) and its (8Z)-isomer (c-COPA) have been characterized in solvents of different polarity, synthetic lipid bilayers, and lipid/protein systems. These compounds are reasonably photostable in solution, present an intense UV absorption band (epsilon(350 nm) approximately 10(5) M(-1) cm(-1)) strongly overlapped by tryptophan fluorescence and their emission, centered at 470 nm, is strongly polarized (r(O) = 0.385 +/- 0.005) and decays with a major component (85%) of lifetime 23 ns and a faster minor one of lifetime 2 ns (D,L-alpha-dimyristoylphosphatidylcholine (DMPC), 15 degrees C). Both COPA isomers incorporate readily into vesicles and membranes (K(p) approximately 10(6)) and align parallel to the lipids. t-COPA distributes homogeneously between gel and fluid lipid domains and the changes in polarization accurately reflect the lipid T(m) values. From the decay of the fluorescence anisotropy in spherical bilayers of DMPC and POPC it is shown that t-COPA also correctly reflects the lipid order parameters, determined by 2H NMR techniques. Resonance energy transfer from tryptophan to the bound pentaenoic acid in serum albumin in solution, and from the tryptophan residues of gramicidin in lipid bilayers also containing the pentaenoic acid, show that this probe is a useful acceptor of protein tryptophan excitation, with R(O) values of 30-34 A.  相似文献   

14.
Lipopeptides derived from protein kinase C (PKC) pseudosubstrates have the ability to cross the plasma membrane in cells and modulate the activity of PKC in the cytoplasm. Myristoylation or palmitoylation appears to promote translocation across membranes, as the non-acylated peptides are membrane impermeant. We have investigated, by fluorescence spectroscopy, how myristoylation modulates the interaction of the PKC pseudosubstrate peptide KSIYRRGARRWRKL with lipid vesicles and translocation across the lipid bilayer. Our results indicate that myristoylated peptides are intimately associated with lipid vesicles and are not peripherally bound. When visualized under a microscope, myristoylation does appear to facilitate translocation across the lipid bilayer in multilamellar lipid vesicles. Translocation does not involve large-scale destabilization of the bilayer structure. Myristoylation promotes translocation into the hydrophobic interior of the lipid bilayer even when the non-acylated peptide has only weak affinity for membranes and is also only peripherally associated with lipid vesicles.  相似文献   

15.
Lipopeptides derived from protein kinase C (PKC) pseudosubstrates have the ability to cross the plasma membrane in cells and modulate the activity of PKC in the cytoplasm. Myristoylation or palmitoylation appears to promote translocation across membranes, as the non-acylated peptides are membrane impermeant. We have investigated, by fluorescence spectroscopy, how myristoylation modulates the interaction of the PKC pseudosubstrate peptide KSIYRRGARRWRKL with lipid vesicles and translocation across the lipid bilayer. Our results indicate that myristoylated peptides are intimately associated with lipid vesicles and are not peripherally bound. When visualized under a microscope, myristoylation does appear to facilitate translocation across the lipid bilayer in multilamellar lipid vesicles. Translocation does not involve large-scale destabilization of the bilayer structure. Myristoylation promotes translocation into the hydrophobic interior of the lipid bilayer even when the non-acylated peptide has only weak affinity for membranes and is also only peripherally associated with lipid vesicles.  相似文献   

16.
Complex III (ubiquinol-cytochrome c reductase) was purified from beef heart mitochondria in the form of protein-phospholipid-Triton X-100 mixed micelles (about 1:80:100 molar ratio). Detergent may be totally removed by sucrose density gradient centrifugation, and the resulting lipoprotein complexes retain full enzyme activity. In order to understand the role of surfactant in the mixed micelles, and the interaction of Triton X-100 with integral membrane proteins and phospholipid bilayers, both the protein-lipid-surfactant mixed micelles and the detergent-free lipoprotein system were examined from the point of view of particle size and ultrastructure, enzyme activity, tryptophan fluorescence quenching, 31P NMR, and Fourier transform infrared spectroscopy. The NMR and IR spectroscopic studies show that surfactant withdrawal induces a profound change in phospholipid architecture, from a micellar to a lamellar-like phase. However, electron microscopic observations fail to reveal the existence of lipid bilayers in the absence of detergent. We suggest that, under these conditions, the lipid:protein molar ratio (80:1) is too low to permit the formation of lipid bilayer planes, but the relative orientation and mobility of phospholipids with respect to proteins is similar to that of the lamellar phase. Protein conformational changes are also detected as a consequence of surfactant removal. Fourier transform infrared spectroscopy indicates an increase of peptide beta-structure in the absence of Triton X-100; changes in the amide II/amide I intensity ratio are also detected, although the precise meaning of these observations is unclear. Tryptophanyl fluorescence quenching by acrylamide shows that a significant fraction of the Trp residues sensing the quencher become less readily available to it in the absence of surfactant. The temperature dependence of enzyme activity (expressed in the form of Arrhenius plots) is also different in the presence and absence of detergent. The effects of surfactant removal do not appear to be readily reversible upon readdition of Triton X-100.  相似文献   

17.
To investigate the interaction of the LamB signal sequence with lipid bilayers, we have synthesized three tryptophan-containing analogues of the wild-type signal peptide. The tryptophan residues were used as intrinsic fluorescent probes of the N-terminal (position 5), central (position 18), and C-terminal (position 24) regions of the 25-residue peptide. The tryptophan substitutions did not significantly alter the physical properties of the wild-type signal peptide. In the presence of lipid vesicles which mimic the composition of the Escherichia coli inner membrane, the peptides adopt alpha-helical structure, and the tryptophan fluorescence emission maximum is shifted to shorter wavelength, indicating that the peptides insert into the acyl chain region of the lipid bilayer. Fluorescence quenching by soluble, aqueous-phase (I-), and membrane-resident (nitroxide-labeled lipids) quenchers was used to locate the tryptophans in each peptide within the bilayer. The C-terminus was interfacial while the central region of the signal sequence was deeply buried within the acyl chain region of the bilayer. The tryptophan at position 5 was buried but less deeply than the tryptophan at position 18. This topology is consistent with either a looped or a transmembrane orientation of signal peptide. However, either structure must accommodate the high helical content of the peptides in vesicles. These results indicate that the LamB signal sequence spontaneously inserts into the acyl chain region of lipid membranes in the absence of any of the proteins involved in protein secretion.  相似文献   

18.

Background

Protein transport across cellular membranes is an important aspect of toxin biology. Escherichia coli cell killing by nuclease colicins occurs through DNA (DNases) or RNA (RNases) hydrolysis and to this end their cytotoxic domains require transportation across two sets of membranes. In order to begin to unravel the molecular mechanisms underlying the membrane translocation of colicin nuclease domains, we have analysed the membrane association of four DNase domains (E9, a charge reduction E9 mutant, E8, and E7) and one ribosomal RNase domain (E3) using a biomembrane model system.

Principal Results

We demonstrate, through the use of large unilamellar vesicles composed of synthetic and E. coli lipids and a membrane surface potential sensor, that the colicin nuclease domains bind anionic membranes only, with micromolar affinity and via a cooperative binding mechanism. The evaluation of the nuclease bilayer insertion depth, through a fluorescence quenching analysis using brominated lipids, indicates that the nucleases locate to differential regions in the bilayer. Colicin DNases target the interfacial region of the lipid bilayer, with the DNase E7 showing the deepest insertion, whereas the ribosomal RNase E3 penetrates into the hydrophobic core region of the bilayer. Furthermore, the membrane association of the DNase E7 and the ribosomal RNase E3 induces vesicle aggregation, lipid mixing and content leakage to a much larger extent than that of the other DNases analysed.

Conclusions/Significance

Our results show, for the first time, that after the initial electrostatically driven membrane association, the pleiotropic membrane effects induced by colicin nuclease domains relate to their bilayer insertion depth and may be linked to their in vivo membrane translocation.  相似文献   

19.
The structure and dynamics of synthetic melittin (MLT) and MLT analogues bound to monomyristoylphosphatidylcholine micelles, dimyristoylphosphatidylcholine vesicles, and diacylphosphatidylcholine films have been investigated by fluorescence, CD, attenuated total reflectance (ATR) FTIR, and 13C NMR spectroscopy. All of these methods provide information about peptide secondary structure and/or about the environment of the single tryptophan side chain in these lipid environments. ATR-FTIR data provide additional information about the orientation of helical peptide segments with respect to the bilayer plane. Steady-state fluorescence anisotropy, fluorescence lifetime, and 13C NMR relaxation data are used in concert to provide quantitative information about the dynamics of a single 13C-labeled tryptophan side chain at position 19 in lipid-bound MLT, and at positions 17, 11, and 9, respectively, in lipid-bound MLT analogues. Peptide chain dynamics are probed by NMR relaxation studies of 13C alpha-labeled glycine incorporated into each of the MLT peptides at position 12. The cumulative structural and dynamic data are consistent with a model wherein the N-terminal alpha-helical segment of these peptides is oriented perpendicular to the bilayer plane. Correlation times for the lysolipid-peptide complexes provide evidence for binding of a single peptide monomer per micelle. A model for the membranolytic action of MLT and MLT-like peptides is proposed.  相似文献   

20.
The membrane insertion of urea-denatured colicin E1 was studied by using fluorescence spectroscopy, circular dichroism and monolayer techniques. The results showed that the denatured colicin E1 taking mainly the 'random coil' conformation may recover its orderliness to a certain extent under the induction of the phospholipid membrane and insert spontaneously into phospholipid membrane, indicating that unfolding of colicin E1 does not inhibit its membrane insertion. Among the four tryptophan residues of the membrane-bound colicin E1 molecules, at least two were accessible by the quenchers, i.e. not inserted into the membranes. Although urea-denatured colicin E1 interacted preferentially with negatively charged phospholipids, it seems less dependent on the negatively charged lipid than colicin A. The addition of urea increased the speed of the adsorption of colicin E1 to the membrane, but did not affect obviously its membrane insertion ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号