首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
It has been proposed that penicillin and other beta-lactam antibiotics are substrate analogs which inactivate certain essential enzymes of bacterial cell wall biosynthesis by acylating a catalytic site amino acid residue (Tipper, D.J., and Strominger, J.L. (1965) Proc. Natl. Acad. Sci. U.S.A. 54, 1133-1141). A key prediction of this hypothesis, that the penicilloyl moiety and an acyl moiety derived from substrate both bind to the same active site residue, has been examined. D-Alanine carboxypeptidase, a penicillin-sensitive membrane enzyme, was purified from Bacillus subtilis and labeled covalently at the antibiotic binding site with [14C]penicillin G or with the cephalosporin [14C]cefoxitin. Alternatively, an acyl moiety derived from the depsipeptide substrate [14C]diacetyl L-Lys-D-Ala-D-lactate was trapped at the catalytic site in near-stoichiometric amounts by rapid denaturation of an acyl-enzyme intermediate. Radiolabeled peptides were purified from a pepsin digest of each of the 14C-labeled D-alanine carboxypeptidases and their amino acid sequences determined. Antibiotic- and substrate-labeled peptic peptides had the same sequence: Tyr-Ser-Lys-Asn-Ala-Asp-Lys-Arg-Leu-Pro-Ile-Ala-Ser-Met. Acyl moieties derived from antibiotic and from substrate were shown to be bound covalently in ester linkage to the identical amino acid residue, a serine at the penultimate position of the peptic peptide. These studies establish that beta-lactam antibiotics are indeed active site-directed acylating agents. Additional amino acid sequence data were obtained by isolating and sequencing [14C]penicilloyl peptides after digestion of [14C]penicilloyl D-alanine carboxypeptidase with either trypsin or cyanogen bromide and by NH2-terminal sequencing of the uncleaved protein. The sequence of the NH2-terminal 64 amino acids was thus determined and the active site serine then identified as residue 36. A computer search for homologous proteins indicated significant sequence homology between the active site of D-alanine carboxypeptidase and the NH2-terminal portion of beta-lactamases. Maximum homology was obtained when the active site serine of D-alanine carboxypeptidase was aligned correctly with a serine likely to be involved in beta-lactamase catalysis. These findings provide strong evidence that penicillin-sensitive D-alanine carboxypeptidases and penicillin-inactivating beta-lactamases are related evolutionarily.  相似文献   

3.
Brain microsomal membranes are capable of sequentially removing Met, Leu and Val from a chemically synthesized COOH-terminal heptapeptide (propionyl-Gly-Ser-Pro-(farnesyl-Cys)-Val-Leu-Met) of mouse N-ras protein. The carboxypeptidase generating Met displays maximum activity at neutral pH and shows high affinity for the farnesylated substrate (Km = 73 microM) as compared to its non farnesylated precursor (Km = 600 microM). The results of inhibitor action suggest that the membrane carboxypeptidase is a novel, probably thiol-dependent, serine type peptidase.  相似文献   

4.
1. A soluble D-alanine carboxypeptidase from Escherichia coli strain B was purified on a p-aminobenzylpenicillin-Sepharose column. This one-step chromatography followed by an (NH4)2SO4 precipitation yielded an enzyme purified 1200-fold and some of its properties are reported. 2. The pure D-alanine carboxypeptidase was devoid of D-alanine carboxypeptidase II activity and migrated as a single protein band on analytical disc gel electrophoresis. 3. Triton X-100 in the purification procedure is an absolute requirement for obtaining a stable enzyme. 4. The enzymic activity of D-alanine carboxypeptidase was greatly affected in solution of high salt concentrations and varied somewhat with the nature of the cation tested.  相似文献   

5.
Membrane-bound D-alanine carboxypeptidase activity from Pseudomonas aeruginosa is very sensitive to inhibition by piperacillin.  相似文献   

6.
7.
Staphylococcus aureus H membranes were found to contain four major binding components: Mr = 115,000; Mr = 100,000 doublet; and Mr = 46,000. The low molecular weight protein bound penicillin reversibly and was purified by prebinding membranes with penicillin prior to affinity chromatography. The purified protein catalyzed transpeptidase and carboxypeptidase reactions using di[14C]acetyl-L-lysyl-D-alanyl-D-alanine as the substrate and glycine and hydroxylamine as the acceptors. In addition, the enzyme catalyzed a penicillinase reaction. Kinetic analysis of these reactions revealed similar Vmax values suggesting that, if there is a single active site, the rate-determining steps (i.e. deacetylation) are similar. Rapid denaturation of the enzyme.substrate complex resulted in the detection of covalent penicilloyl- and diacetyl-L-lysyl-D-alanyl.enzyme complexes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

8.
1. Four polypeptide fragments, obtained by cyanogen bromide treatment of the protein flagellin from Salmonella adelaide, were tested for their antigenic activity by using them as inhibitors in three different assays: bacterial immobilization, haemagglutination of sensitized erythrocytes and quantitative micro precipitation. Immunodiffusion studies were also performed on the protein fragments. 2. Cleavage of the flagellin molecule in this way gave no detectable loss of antigenic determinants. Fragment A (mol.wt. 18000), the largest of the polypeptides, contained all the antigenic specificities present on flagellin that were recognized by the antisera used. In one test, fragment B (mol.wt. 12000) also contained antigenic activity to an extent not easily explainable by contamination with fragment A. Fragments C (mol.wt. 5500) and D (mol.wt. 4500) appeared to be antigenically inactive.  相似文献   

9.
Characterization of the bacterial magnetosome membrane.   总被引:25,自引:4,他引:25       下载免费PDF全文
Intact magnetosomes of Aquaspirillum magnetotacticum were purified from broken cells by a magnetic separation technique. Electron microscopic and chemical analyses revealed the magnetite to be enclosed by a lipid bilayer admixed with proteins. Lipids were recovered in fractions expected to contain (i) neutral lipids and free fatty acids, (ii) glycolipids and sulfolipids, and (iii) phospholipids (in a weight ratio of 1:4:6). Phospholipids included phosphatidylserine and phosphatidylethanolamine. Two of the numerous proteins detected in the magnetosome membrane were not found in other cell membranes or soluble fractions.  相似文献   

10.
A carboxypeptidase B-like enzyme which catalyses the hydrolysis of synthetic esters of lysine and arginine has been isolated from the starfish Dermasterias imbricata. This carboxypeptidase B-like enzyme has a molecular weight of approximately 34 000 and shares this and other properties with bovine pancreatic carboxypeptidase B. The existence of zymogen for this activity in the pyloric caeca of the starfish is demonstrated. This zymogen has a molecular weight near 40 000 and appears to be analogous to other monomeric procarboxypeptidases B. The zymogen possesses an intrinsic low-level activity toward synthetic substrates of carboxypeptidase B and is activated by trypsin.  相似文献   

11.
A dipeptidyl carboxypeptidase distinct from the angiotensin converting enzyme (EC 3.4.15.1) was isolated from membrane preparations of rabbit brain. The enzyme cleaved enkephalin at the Gly-Phe bond, releasing either Phe-Leu from Leu-enkephalin or Phe-Met from Met-enkephalin, and also acted on bradykinin, releasing the terminal dipeptide Phe-Arg. In contrast to the converting enzyme, however, this dipeptidyl carboxypeptidase did not act on angiotensin-1, and it did not degrade hippuryl-His-Leu. Chloride ions did not affect its activity, but the enzyme was inhibited by metal chelating agents. The enzyme was not inhibited by captopril (SQ 14225) or by SQ 20881. Kinetic studies indicated a Km for this enzyme of 0.14 mM with Leu-enkephalin and 0.12 mM with bradykinin as substrates. Present data indicate that more than one enzyme is present in brain membrane fractions acting as dipeptidyl carboxypeptidases inactivating enkephalin; these data suggest multiple roles for such enzymes in the regulation of peptide metabolism.  相似文献   

12.
A carboxypeptidase has been identified in Rhodotorula glutinis and partially purified. The enzyme is active on N-substituted dipeptides and tripeptides and also exhibits an esterolytic activity. Both activities are inhibited by (N-benzyloxycarbonyl-L-phenylalanyl)chloromethane and by a thermostable fraction present in extracts. The enzyme shows a pH optimum in the range 7.5 to 8.0 and has a molecular weight of 80000, determined by gel filtration.  相似文献   

13.
Y Hino  J E Rothman 《Biochemistry》1985,24(3):800-805
Glucosidase II removes the inner two alpha-linked glucose residues from freshly transferred Asn-linked oligosaccharide chains in the endoplasmic reticulum. This enzyme, whose activity could be measured by the hydrolysis of an artificial substrate (p-nitrophenyl alpha-D-glucopyranoside), was purified 240-fold from a rat liver microsome fraction by DEAE-cellulose, concanavalin A-Sepharose 4B, and hydroxylapatite chromatography. The apparent molecular weight of the active polypeptide was 123 000 as estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Glucosidase II has at least one high-mannose oligosaccharide chain that can be cleaved by endoglycosidase H. Trypsin readily cleaved the 123-kilodalton (kDa) form of glucosidase II into a fully active 73-kDa core. The pattern of this cleavage suggests a domain structure for this enzyme. We demonstrate that trypsin first removes a glycosylated 25-kDa domain to yield an apparently unglycosylated 98-kDa product which is further cleaved to yield the active 73-kDa core.  相似文献   

14.
Penicillin-binding protein 5 in Pseudomonas aeruginosa had moderately penicillin-sensitive D-alanine carboxypeptidase activity. As in Escherichia coli, a defect in this enzyme activity was not lethal.  相似文献   

15.
The N-acyltripeptide 2-aminobenzoylglycyl-p-nitrophenylalanylproline was synthesized and applied as a substrate in the assay of angiotensin-I-converting enzyme from calf lung and human serum, and of the bacterial dipeptidyl carboxypeptidase from Escherichia coli. This compound belongs to a new class of substrates for proteolytic enzymes, having the general structure F--X--Q in which fluorescence of group F is quenched by intramolecular interaction with the group Q. Enzymatic cleavage of the peptide chain (X stands for one or more amino acid residues) generates the unquenched F-containing derivative and the resulting fluorescence is used for quantitative measurement of the hydrolysis rate. Cleavage of the Gly-Phe(NO2) peptide bond in the weakly fluorescent 2-amino-benzoylglycyl-p-nitrophenylalanylproline molecule results in appearance of the 71 times higher fluorescence (lambdamax = 415 nm) of 2-aminobenzoylglycine. Continuous recording of the rising fluorescence allows convenient, sensitive and specific determination of the enzymatic activity, applicable to crude enzyme preparations and human serum. The activity of the mammalian enzyme, measured by this method, is enhanced by Cl- ions and inhibited by low concentrations of EDTA and [Asn1, Val5]angiotensin II. Kinetic measurements showed Michaelis-Menten behavior, Km = 0.21 +/- 0.1 mM and 0.16 +/- 0.1 mM for the calf lung and the bacterial enzyme respectively.  相似文献   

16.
1. Flagellin, isolated from the flagella of Salmonella adelaide, was shown by various criteria to be a pure protein. It had a molecular weight of about 40000 and contained three methionine, six tyrosine, 11 arginine and 25 lysine residues/mol., of which 11 of the lysine residues were present as in-N-methyl-lysine. 2. After treatment of flagellin with cyanogen bromide in formic acid, four main fragments (A, B, C and D) were obtained, with as many as six minor components that represented partial degradation products. The major fragments were estimated by amino acid analysis to have molecular weights of about 18000 for fragment A, 12000 for fragment B, 5500 for fragment C and 4500 for fragment D. Fragments A, B and D, but not fragment C, were recovered pure by gel chromatography as monitored by polyacrylamide-gel electrophoresis. 3. A complex between fragments C and D was also isolated (mol.wt. 10000) after limited oxidation of flagellin by chloramine-t before digestion by cyanogen bromide. After oxidation essentially only two fragments were released from flagellin by cyanogen bromide: the ;C,D' complex and a presumed ;AB' fragment. 4. The sum of the amino acid analyses of fragments A and B and the ;C,D' complex gave residue values that agreed well with the amino acid composition of native flagellin. 5. Fragments A and D contained tyrosine, and ten of the 11 in-N-methyl-lysine residues of the molecule were in fragment A. Reaction with [(125)I]iodide at small extents of substitution showed that, in flagellin, the tyrosine residue of fragment D was more readily substituted than those of fragment A. By contrast, in polymerized flagellin, the tyrosine residues of fragment A were more readily substituted. 6. Treatment of flagellin with carboxypeptidases A and B revealed the C-terminal sequence -Leu-Leu-Leu-Arg. Arginine and leucine were released by carboxypeptidase from the ;C,D' complex but not from fragment D, indicating that fragment C was C-terminal. 7. On the basis of the results from amino acid analysis, carboxypeptidase digestion, N-terminal analysis, iodination studies and polyacrylamide-gel electrophoresis, the sequence of fragments in flagellin was considered to be B-A-D-C; in the polymer, fragment A was exposed. It is suggested that methylation of the lysine residues occurred in the organism after flagellin had polymerized.  相似文献   

17.
The distribution in rat brain of angiotensin converting enzyme (EC3.4.15.1) using hippuryl-His-Leu as substrate was identical to a dipeptidyl carboxypeptidase present in membranes assayed with Met-enkephalin as substrate. Highest activity occurred in pituitary, followed by cerebellum, corpus striatum, midbrain, pons-medulla, hypothalamus, cerebral cortex and spinal cord. The ratio of products His-Leu/Tyr-Gly-Gly was identical for all regions but differed from His-Leu/Tyr. Angiotensin converting enzyme purified by immunoaffinity chromatography gave a Km for hippuryl-His-Leu of 0.5mM and for Met-enkephalin of 0.1 mM. In the presence of the specific inhibitor of angiotensin converting enzyme, SQ 14,225, the Ki value was 10?7M. Present data point to the co-identity of brain angiotensin converting enzyme with the dipeptidyl carboxypeptidase inactivating enkephalin.  相似文献   

18.
Energy deposited in the bacterial envelope of E. coli B/r induces lesions which are lethally attacked by penicillin in concentration insufficient to affect unirradiated bacteria. The critical lesions are probably in the membrane moiety. Bacteria were irradiated in the presence of 100 per cent oxygen, oxygen-free nitrogen and mixtures of 1.01, 0.59, 0.3, 0.1 and 0.06 per cent oxygen in nitrogen. Changes in sensitivity with pO2 conformed with the Alper and Howard-Flanders equation, for bacteria treated after irradiation by penicillin as well as for the untreated ones. The values of m were respectively 4.8 and 3.3; the values of K were identical, within experimental error, i.e. 4.4 mmHg. Sensitivity to induction of the penicillin-sensitive lesion was calculated from the difference in the reciprocals of D0 values proper to untreated and treated bacteria, for every gas used. The value of m could not be directly calculated because the effect of penicillin on anoxically irradiated bacteria was not detectable. For that reason, a transformation of the oxygen equation was used which allowed estimates to be made of both m and K, provided the results conformed with the equation. Within experimental error they did so conform. The calculated values of m and K for induction of the penicillin-sensitive lesion were respectively 8 and 5.9 mmHg, but it is shown that the oxygen enhancement ratio was probably underestimated and the K value overestimated. On the assumptions that these values of m and K are specific for radiation damage to bacterial membrane, and that radiation-induced killing is attributable to lethal lesions in the membrane as well as the DNA, the results demonstrate that any interaction of oxygen with sites of energy deposition in the DNA must play a very much smaller role in radiosensitization than does interaction with sites of energy deposition in the membrane.  相似文献   

19.
A simple technique for electrophoresis of particles is presented. The technique is based on running charged particles in a vertical tube along a sucrose gradient (20–50%). Purple membrane fragments from Halobacterium halobium were used to demonstrate the method. The migration of the fragments was linear with time in the region of 20 to 40% sucrose. Electrophoresis of purple membrane fragments under illumination, darkness, or darkness interrupted by short periods of illumination showed that at pH 4.5 the dark-adapted form of bacteriorhodopsin is less negative than its light-adapted form. At pH 6.5 and 8.5 no difference between these forms could be detected.  相似文献   

20.
A new type of carboxypeptidase was found in a strain of Pseudomonas sp. M-27 isolated from soil. The cell-free extract, solubilized by colistin sulfate, was purified to homogeneity. This enzyme had a single peak with a molecular weight of 60,000 on a calibrated Superdex column and consisted of four subunits of identical molecular weights (M(r): 15,000). The enzyme hydrolyzed predominantly acidic peptides and N-acyl amino acids with Glu or Asp in the C-termini. This enzyme was not strongly affected by thiol enzyme inhibitors (PCMB, iodoacetic acid) or serine protease inhibitors (DFP, PMSF), but was inhibited by metal chelators. The enzyme resembles carboxypeptidase G1 or G2 in its glutamate-releasing activity. However, it acts not only on the L-form but also on the D-form of acidic amino acids and shows affinity for the long-chain fatty acyl group but not the benzoyl group. Thus, as this enzyme differs from carboxypeptidase G1 or G2, it was named carboxypeptidase G3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号