首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The merozoite surface protein-1 (MSP-1) of Plasmodium falciparum comprises two major targets of antibody-mediated immunity: the polymorphic block 2 and the 19-kDa C-terminal domain MSP-1(19). Here, we measured antibodies to three block 2 variants and MSP-1(19) among Amazonian gold miners and examined the repertoire of block 2 variants in local parasites. Main findings were as follows: (1) Only seven different block 2 variants were found in 18 DNA sequences analyzed. (2) No major difference was observed in IgG subclass distribution of antibodies from symptomatic P. falciparum-infected patients, asymptomatic parasite carriers, and non-infected subjects. (3) Antibodies to all block 2 antigens, but not to MSP-1(19), were biased towards IgG3 across different strata of cumulative malaria exposure. (4) Similar proportions of symptomatic and asymptomatic subjects failed to recognize the block 2 variant expressed by infecting parasites. These negative results underscore the limits of conventional antibody assays to evaluate clinical immunity to malaria.  相似文献   

2.
We examined patterns and putative mechanisms of sequence diversification in the merozoite surface protein-2 (MSP-2) of Plasmodium falciparum, a major dimorphic malaria vaccine candidate antigen, by analyzing 448 msp-2 alleles from all continents. We describe several nucleotide replacements, insertion and deletion events, frameshift mutations, and proliferations of repeat units that generate the extraordinary diversity found in msp-2 alleles. We discuss the role of positive selection exerted by naturally acquired type- and variant-specific immunity in maintaining the observed levels of polymorphism and suggest that this is the most likely explanation for the significant excess of nonsynonymous nucleotide replacements found in dimorphic msp-2 domains. Hybrid sequences created by meiotic recombination between alleles of different dimorphic types were observed in few (3.1%) isolates, mostly from Africa. We found no evidence for an extremely ancient origin of allelic dimorphism at the msp-2 locus, predating P. falciparum speciation, in contrast with recent findings for other surface malarial antigens.  相似文献   

3.
Infants born in areas of stable malaria transmission are relatively protected against severe morbidity and high density Plasmodium falciparum blood-stage infection. This protection may involve prenatal sensitization and immunologic reactivity to malaria surface ligands that participate in invasion of red cells. We examined cord blood T and B cell immunity to P. falciparum merozoite surface protein-1 (MSP-1) in infants born in an area of stable malaria transmission in Kenya. T cell cytokine responses to the C-terminal 19-kDa fragment of MSP-1 (MSP-1(19)) were detected in 24 of 92 (26%) newborns (4-192 IFN-gamma and 3-88 IL-4-secreting cells per 10(6)/cord blood lymphocytes). Peptide epitopes in the N-terminal block 3 region of MSP-1 also drove IFN-gamma and/or IL-13 production. There was no evidence of prenatal T cell sensitization to liver-stage Ag-1. A total of 5 of 86 (6%) newborns had cord blood anti-MSP-1(19) IgM Abs, an Ig isotype that does not cross the placenta and is therefore of fetal origin. The frequency of neonatal B cell sensitization was higher than that indicated by serology alone, as 5 of 27 (18%) cord blood samples contained B cells that produced IgG when stimulated with MSP-1(19) in vitro. Neonatal B cell IgG responses were restricted to the Q-KNG allele of MSP-1(19), the major variant in this endemic area, whereas T cells responded to all four MSP-1(19) alleles evaluated. In utero sensitization to MSP-1 correlated with the presence of malaria parasites in cord blood (chi(2) = 20, p < 0.0001). These data indicate that prenatal sensitization to blood-stage Ags occurs in infants born in malaria endemic areas.  相似文献   

4.
The genetic polymorphism of the surface merozoite protein 2 (MSP-2) was evaluated in Plasmodium falciparum isolates from individuals with uncomplicated malaria living in a Brazilian endemic area of Peixoto de Azevedo. The frequency of MSP-2 alleles and the survival of genetically different populations clones in 104 isolates were verified by Southern blot and SSCP-PCR. Single and mixed infections were observed in similar frequencies and the rate of detection of FC27 and 3D7 allelic families was equivalent. Eight alleles were identified and among them, the sequence polymorphism was mainly attributed to variations in the repetitive region. Interestingly, in three alleles nucleotide polymorphism was identical to that detected in a previous study, conducted in 1992, in a near Brazilian endemic area. This finding demonstrated the genetic similarity between two isolate groups, besides the certain temporal stability in the allelic patterns. The implications of these data for studies on the genetic diversity are also discussed.  相似文献   

5.
Peptide 1585 (EVLYLKPLAGVYRSLKKQLE) has a highly conserved amino-acid sequence located in the Plasmodium falciparum main merozoite surface protein (MSP-1) C-terminal region, required for merozoite entry into human erythrocytes and therefore represents a vaccine candidate for P. falciparum malaria. Original sequence-specific binding to five HLA DRB1* alleles (0101, 0102, 0401, 0701, and 1101) revealed this peptide's specific HLA DRB1*0102 allele binding. This peptide's allele-specific binding to HLA DRB1*0102 took on broader specificity for the DRB1*0101, -0401, and -1101 alleles when lysine was replaced by glycine in position 17 (peptide 5198: EVLYLKPLAGVYRSLKG(17)QLE). Binding of the identified G(10)VYRSLKGQLE(20) C-terminal register to these alleles suggests that peptide promiscuous binding relied on fitting Y(12), L(15), and G(17) into P-1, P-4, and P-6, respectively. The implications of the findings and the future of this synthetic vaccine candidate are discussed.  相似文献   

6.
Malaysia has a national goal to eliminate malaria by 2020. Understanding the genetic diversity of malaria parasites in residual transmission foci can provide invaluable information which may inform the intervention strategies used to reach elimination targets. This study was conducted to determine the genetic diversity level of P. falciparum isolates in malaria residual foci areas of Sabah. Malaria active case detection was conducted in Kalabakan and Kota Marudu. All individuals in the study sites were screened for malaria infection by rapid diagnostic test. Blood from P. falciparum-infected individuals were collected on filter paper prior to DNA extraction. Genotyping was performed using merozoite surface protein-1 (MSP-1), merozoite surface protein-2 (MSP-2), glutamate rich protein (GLURP) and 10 neutral microsatellite loci markers. The size of alleles, multiplicity of infection (MOI), mean number of alleles (Na), expected heterozygosity (He), linkage disequilibrium (LD) and genetic differentiation (FST) were determined. In Kalabakan, the MSP-1 and MSP-2 alleles were predominantly K1 and FC27 family types, respectively. The GLURP genotype VI (751–800 bp) was predominant. The MOI for MSP-1 and MSP-2 were 1.65 and 1.20, respectively. The Na per microsatellite locus was 1.70. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.17, 0.37, 0.70 and 0.33, respectively. In Kota Marudu, the MSP-1 and MSP-2 alleles were predominantly MAD20 and 3D7 family types, respectively. The GLURP genotype IV (651–700 bp) was predominant. The MOI for both MSP-1 and MSP-2 was 1.05. The Na per microsatellite locus was 3.60. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.24, 0.25, 0.69 and 0.30, respectively. A significant LD was observed in Kalabakan (0.495, p<0.01) and Kota Marudu P. falciparum populations (0.601, p<0.01). High genetic differentiation between Kalabakan and Kota Marudu P. falciparum populations was observed (FST = 0.532). The genetic data from the present study highlighted the limited diversity and contrasting genetic pattern of P. falciparum populations in the malaria declining areas of Sabah.  相似文献   

7.
The merozoite surface protein-2 (MSP-2) is a major vaccine candidate for the asexual blood stage of Plasmodium falciparum. MSP-2 is essentially dimorphic, and allelic families are named after the representative isolates FC27 and IC1. The polymorphic central region contains immunodominant repeats, which vary in number, length, and sequence within and between allelic families. We have examined the antibody recognition of repeat regions from both MSP-2 allelic families expressed as recombinant fusion peptides. The results are summarized as follows. (1) Immunization of mice with the fusion peptides elicited IgG antibodies that cross-reacted with the native MSP-2 molecule in an allelic family-specific manner. (2) These mouse antibodies recognized the recombinant proteins in both a variant-specific and a family-specific manner, as shown in inhibition immunoassays. Antibodies raised against the peptide FC27 seemed to be essentially variant-specific, since the soluble form of the S20 antigen (a member of FC27 family) had relatively little inhibitory effect on them. (3) The overall pattern of human IgG antibody responses to MSP-2 in Karitiana Indians, a population continuously exposed to hypoendemic malaria in the Brazilian Amazon Region, differs from that described in hyperendemic areas in Africa and Papua New Guinea in two important features: there was no clear age-dependent increase in the prevalence and mean concentration of specific IgG antibodies, and there was no skewing towards the IgG3 subclass in antibody responses. (4) The relatively poor correlation between concentrations of IgG antibodies that are specific for members of the same allelic family suggests that recognition of MSP-2 peptides by naturally acquired antibodies was largely variant-specific in this population. The potential role of naturally acquired variant-specific antibodies in immune evasion, by selecting mutant parasites carrying insertions or deletions of repeat sequences, is briefly discussed.  相似文献   

8.
The population structure of Plasmodium falciparum has been widely studied in diverse epidemiological contexts, but emphasis has been made in regions with high and stable transmission. In order to establish the genetic structure of P. falciparum in areas of Colombia with different degree of endemicity, we studied 100 samples from malaria patients of two different municipalities. The frequency of multiclonal infection in these areas and the correlation with the endemicity were carried out by comparison of the amplified products from polymorphic segments of MSP-1, MSP-2, and GLURP genes. We found low size polymorphism of the studied genes: 1 MSP-1 allele, 3 MSP-2 alleles, and 4 GLURP alleles. We conclude that the P. falciparum population in the regions studied is genetically homogeneous.  相似文献   

9.
Malaria parasites exhibit sequence diversity for a number of stage specific antigens. Several studies have proved that merozoite surface protein-1 (MSP-1) is an effective target eliciting a protective immune response. The MSP-1(42) region comprising two EGF-like domains is involved in generating protective immune response in humans and other experimental animals. Searching for point mutations in this region is essential in view of vaccine development. We have investigated the sequence variations in Plasmodium falciparum MSP-1 carboxy terminal region in field isolates from different regions in India. Our study reveals the presence of eight variant types of MSP-1(19) in the Indian sub-continent, which comprise of E-TSR-L, Q-TSR-L, E-TSG-L, Q-KNG-L, Q-KNG-F, E-KNG-L, E-KNG-F, and E-KYG-F. The last named allele is a novel variant being reported for the first time.  相似文献   

10.
The present study determined and compared the genetic diversity of Plasmodium falciparum strains infecting children living in 2 areas from Gabon with different malaria endemicity. Blood samples were collected from febrile children from 2008 to 2009 in 2 health centres from rural (Oyem) and urban (Owendo) areas. Genetic diversity was determined in P. falciparum isolates by analyzing the merozoite surface protein-1 (msp1) gene polymorphism using nested-PCR. Overall, 168 children with mild falciparum malaria were included. K1, Ro33, and Mad20 alleles were found in 110 (65.5%), 94 (55.9%), and 35 (20.8%) isolates, respectively, without difference according to the site (P>0.05). Allelic families’ frequencies were comparable between children less than 5 years old from the 2 sites; while among the older children the proportions of Ro33 and Mad20 alleles were 1.7 to 2.0 fold higher at Oyem. Thirty-three different alleles were detected, 16 (48.5%) were common to both sites, and 10 out of the 17 specific alleles were found at Oyem. Furthermore, multiple infection carriers were frequent at Oyem (57.7% vs 42.2% at Owendo; P=0.04) where the complexity of infection was of 1.88 (±0.95) higher compared to that found at Owendo (1.55±0.75). Extended genetic diversity of P. falciparum strains infecting Gabonese symptomatic children and high multiplicity of infections were observed in rural area. Alleles common to the 2 sites were frequent; the site-specific alleles predominated in the rural area. Such distribution of the alleles should be taken into accounts when designing MSP1 or MSP2 malaria vaccine.  相似文献   

11.
The C-terminal 19-kDa fragment of Plasmodium falciparum merozoite surface protein-1 (MSP-1(19)) is a target of protective Abs against blood-stage infection and a leading candidate for inclusion in a human malaria vaccine. However, the precise role, relative importance, and mechanism of action of Abs that target this protein remain unclear. To examine the potential protective role of Abs to MSP-1(19) in individuals naturally exposed to malaria, we conducted a treatment time to infection study over a 10-wk period in 76 residents of a highland area of western Kenya during a malaria epidemic. These semi-immune individuals were not all equally susceptible to reinfection with P. falciparum following drug cure. Using a new neutralization assay based on transgenic P. falciparum expressing the P. chabaudi MSP-1(19) orthologue, individuals with high-level MSP-1(19)-specific invasion-inhibitory Abs (>75th percentile) had a 66% reduction in the risk of blood-stage infection relative to others in the population (95% confidence interval, 3-88%). In contrast, high levels of MSP-1(19) IgG or IgG subclass Abs measured by enzyme immunoassay with six different recombinant MSP-1(19) Ags did not correlate with protection from infection. IgG Abs measured by serology and functional invasion-inhibitory activity did not correlate with each other. These findings implicate an important protective role for MSP-1(19)-specific invasion inhibitory Abs in immunity to blood-stage P. falciparum infection, and suggest that the measurement of MSP-1(19) specific inhibitory Abs may serve as an accurate correlate of protection in clinical trials of MSP-1-based vaccines.  相似文献   

12.
We investigated Plasmodium falciparum genetic diversity in isolates collected from school-going residents aged from 5 to 15 years in the village of Pouma (Cameroon, Central Africa). Seventy-six children were grouped according to the clinical status. Asymptomatic status was defined as parasite carriage in the absence of any clinical symptom and malaria symptomatic status with patent parasitemia over 5000 parasites/microliter of blood and an axillary temperature > 37.5 degrees C. Parasite DNA was analysed prior to malaria treatment. Genotyping of the P. falciparum merozoite surface proteins (MSP) 1 and 2 was performed by polymerase chain reaction using allele-specific primers. K1, MAD20, Ro33 and 3D7/CAMP, FC27 allelic families were attributed to MSP-1 and MSP-2 genes, respectively. No association was found between P. falciparum MSP-1 and MSP-2 genotypes and the clinical status of children. Mixed P. falciparum infections were detected in 78% of overall samples and all isolates from symptomatic children contained more than 1 clone. The results obtained in the village of Pouma were compared to those of the village of Dienga in Gabon where a similar study, using the same genotyping methods, had been carried out in the same age group of schoolchildren. Data are interpreted in the context of malaria epidemiology in both settings.  相似文献   

13.
BACKGROUND: The sickle-cell trait protects against severe Plasmodium falciparum malaria and reduces susceptibility to mild malaria but does not prevent infection. The exact mechanism of this protection remains unclear. We have hypothesized that AS individuals are protected by virtue of being less susceptible to a subset of parasite strains; thus we compared some genetic characteristics of parasites infecting AS and AA subjects. MATERIALS AND METHODS: Blood was collected from asymptomatic individuals living in two different regions of Africa. The polymorphic MSP-1 and MSP-2 loci were genotyped using a PCR-based methodology. Individual alleles were identified by size polymorphism, amplification using family-specific primers, and hybridization using family-specific probes. Multivariate logistic regression was used to analyze allele distribution. RESULTS: In Senegalese carriers, age and hemoglobin type influenced differently the distribution of the three MSP-1 families and had an impact on distinct individual alleles, whereas the distribution of MSP-2 alleles was marginally affected. There was no influence of other genetic traits, including the HLA Bw53 genotype, or factors such as place of residence within the village. In a cohort of Gabonese schoolchildren in which the influence of age was abrogated, a similar imbalance in the MSP-1 allelic distribution but not of MSP-2 allelic distribution by hemoglobin type was observed. CONCLUSIONS: The influence of the host's hemoglobin type on P. falciparum genotypes suggests that parasite fitness for a specific host is strain-dependent, which is consistent with our hypothesis that innate resistance might result from reduced fitness of some parasite strains for individuals with sickle-cell traits.  相似文献   

14.
The antibody response to Plasmodium falciparum parasites of naturally infected population is critical to elucidate the role of polymorphic alleles in malaria. Thus, we evaluated the impact of antigenic diversity of repetitive and family dimorphic domains of the merozoite surface protein 2 (MSP-2) on immune response of 96 individuals living in Peixoto de Azevedo (MT-Brazil), by ELISA using recombinant MSP-2 proteins. The majority of these individuals were carrying FC27-type infections. IgG antibody responses were predominantly directed to FC27 parasites and were correlated to the extension of polymorphism presented by each MSP-2 region. This finding demonstrated the impact of the genetic polymorphism on antibody response and therefore, its importance on malaria vaccine efficacy.  相似文献   

15.
A 57-year old man who was admitted to an emergency room of a tertiary hospital with hemoptysis developed malarial fever 19 days later and then died from severe falciparum malaria 2 days later. He had not traveled outside of Korea for over 30 years. Through intensive interviews and epidemiological surveys, we found that a foreign patient with a recent history of travel to Africa was transferred to the same hospital with severe falciparum malaria. We confirmed through molecular genotyping of the MSP-1 gene that Plasmodium falciparum genotypes of the 2 patients were identical. It is suggested that a breach of standard infection control precautions resulted in this P. falciparum transmission between 2 patients in a hospital environment. This is the first report of a nosocomial transmission of falciparum malaria in Korea.  相似文献   

16.
Receptor-ligand interactions between synthetic peptides and normal human erythrocytes were studied to determine Plasmodium falciparum merozoite surface protein-3 (MSP-3) FC27 strain regions that specifically bind to membrane surface receptors on human erythrocytes. Three MSP-3 protein high activity binding peptides (HABPs) were identified; their binding to erythrocytes became saturable, had nanomolar affinity constants, and became sensitive on being treated with neuraminidase and trypsin but were resistant to chymotrypsin treatment. All of them specifically recognized 45-, 55-, and 72-kDa erythrocyte membrane proteins. They all presented alpha-helix structural elements. All HABPs inhibited in vitro P. falciparum merozoite invasion of erythrocytes by ~55%-85%, suggesting that MSP-3 protein's role in the invasion process probably functions by using mechanisms similar to those described for other MSP family antigens.  相似文献   

17.
African infants are often born of mothers infected with malaria during pregnancy. This can result in fetal exposure to malaria-infected erythrocytes or their soluble products with subsequent fetal immune priming or tolerance in utero. We performed a cohort study of 30 newborns from a malaria holoendemic area of Kenya to determine whether T cell sensitization to Plasmodium falciparum merozoite surface protein-1 (MSP-1) at birth correlates with infant development of anti-MSP-1 Abs acquired as a consequence of natural malaria infection. Abs to the 42- and 19-kDa C-terminal processed fragments of MSP-1 were determined by serology and by a functional assay that quantifies invasion inhibition Abs against the MSP-1(19) merozoite ligand (MSP-1(19) IIA). Infants had detectable IgG and IgM Abs to MSP-1(42) and MSP-1(19) at 6 mo of age with no significant change by age 24-30 mo. In contrast, MSP-1(19) IIA levels increased from 6 to 24-30 mo of age (16-29%, p < 0.01). Infants with evidence of prenatal exposure to malaria (defined by P. falciparum detection in maternal, placental, and/or cord blood compartments) and T cell sensitization at birth (defined by cord blood lymphocyte cytokine responses to MSP-1) showed the greatest age-related increase in MSP-1(19) IIA compared with infants with prenatal exposure to malaria but who lacked detectable T cell MSP-1 sensitization. These data suggest that fetal sensitization or tolerance to MSP-1, associated with maternal malaria infection during pregnancy, affects the development of functional Ab responses to MSP-1 during infancy.  相似文献   

18.
The Plasmodium falciparum malaria parasite is the causative agent of malaria tropica. Merozoites, one of the extracellular developmental stages of this parasite, expose at their surface the merozoite surface protein-1 complex (MSP-1), which results from the proteolytic processing of a 190-200 kDa precursor. MSP-1 is highly immunogenic in humans and numerous studies suggest that this protein is an effective target for a protective immune response. Although its function is unknown, there are indications that it may play a role during invasion of erythrocytes by merozoites. The parasite-derived msp-1 gene, which is approximately 5000 bp long, contains 74% AT. This high AT content has prevented stable cloning of the full-size gene in Escherichia coli and consequently its expression in heterologous systems. Here, we describe the synthesis of a 4917 bp gene encoding MSP-1 from the FCB-1 strain of P. falciparum adjusted for human codon preferences. The synthetic msp-1 gene (55% AT) was cloned, maintained and expressed in its entirety in E.coli as well as in CHO and HeLa cells. The purified protein is soluble and appears to possess native conformation because it reacts with a panel of mAbs specific for conformational epitopes. The strategy we used for synthesizing the full-length msp-1 gene was toassemble it from DNA fragments encoding all of the major proteolytic fragments normally generated at the parasite's surface. Thus, after subcloning we also obtained each of these MSP-1 processing products as hexahistidine fusion proteins in E.coli and isolated them by affinity chromatography on Ni2+agarose. The availability of defined preparations of MSP-1 and its major processing products open up new possibilities for in-depth studies at the structural and functional level of this important protein, including the exploration of MSP-1-based experimental vaccines.  相似文献   

19.
Western blot analysis was performed to diagnose vivax malaria using stage-specific recombinant antigens. Genomic DNA from the whole blood of a malaria patient was used as templates to amplify the coding regions for the antigenic domains of circumsporozoite protein (CSP-1), merozoite surface protein (MSP-1), apical merozoite antigen (AMA-1), serine repeat antigen (SERA), and exported antigen (EXP-1) of Plasmodium vivax. Each amplified DNA fragment was inserted into a pGEX-4T plasmid to induce the expression of GST fusion protein in Escherichia coli by IPTG. The bacterial cell extracts were separated on 10% SDS-PAGE followed by western blot analysis with patient sera which was confirmed by blood smear examination. When applied with patient sera, 147 (91.9%) out of 160 vivax malaria, 12 (92.3%) out of 13 falciparum malaria, and all 9 vivax/falciparum mixed malaria reacted with at least one antigen, while no reactions occurred with 20 normal uninfected sera. In the case of vivax malaria, CSP-1 reacted with 128 (80.0%) sera, MSP-1 with 102 (63.8%), AMA-1 with 128 (80.0%), SERA with 115 (71.9%), and EXP-1 with 89 (55.6%), respectively. We obtained higher detection rates when using 5 antigens (91.9%) rather than using each antigen solely (55.6-80%), a combination of 2 (76.3-87.5%), 3 (85.6-90.6%), or 4 antigens (89.4-91.3%). This method can be applied to serological diagnosis, mass screening in endemic regions, or safety test in transfusion of prevalent vivax malaria.  相似文献   

20.
Polymorphic parasite antigens are known targets of protective immunity to malaria, but this antigenic variation poses challenges to vaccine development. A synthetic MSP-1 Block 2 construct, based on all polymorphic variants found in natural Plasmodium falciparum isolates has been designed, combined with the relatively conserved Block 1 sequence of MSP-1 and expressed in E.coli. The MSP-1 Hybrid antigen has been produced with high yield by fed-batch fermentation and purified without the aid of affinity tags resulting in a pure and extremely thermostable antigen preparation. MSP-1 hybrid is immunogenic in experimental animals using adjuvants suitable for human use, eliciting antibodies against epitopes from all three Block 2 serotypes. Human serum antibodies from Africans naturally exposed to malaria reacted to the MSP-1 hybrid as strongly as, or better than the same serum reactivities to individual MSP-1 Block 2 antigens, and these antibody responses showed clear associations with reduced incidence of malaria episodes. The MSP-1 hybrid is designed to induce a protective antibody response to the highly polymorphic Block 2 region of MSP-1, enhancing the repertoire of MSP-1 Block 2 antibody responses found among immune and semi-immune individuals in malaria endemic areas. The target population for such a vaccine is young children and vulnerable adults, to accelerate the acquisition of a full range of malaria protective antibodies against this polymorphic parasite antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号