首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer's disease: Abeta, tau and synaptic dysfunction   总被引:8,自引:0,他引:8  
Alzheimer's disease is a progressive neurodegenerative disorder that is characterized by two hallmark lesions: extracellular amyloid plaques and neurofibrillary tangles. The role that these lesions have in the pathogenesis of AD has proven difficult to unravel, in part because of unanticipated challenges of reproducing both pathologic hallmarks in transgenic mice. Recent advances in recapitulating both plaques and tangles in the brains of transgenic mice are leading to novel insights into their role in the degenerative process, including their impact on synaptic activity and plasticity. Transgenic mice that harbor both neuropathological lesions are also facilitating the elucidation of the relationship of these proteinaceous aggregates to one another and providing a crucial in vivo system for developing and evaluating therapies.  相似文献   

2.
Aggregation of amyloid beta peptide into senile plaques and hyperphosphorylated tau protein into neurofibrillary tangles in the brain are the pathological hallmarks of Alzheimer's disease. Despite over a century of research into these lesions, the exact relationship between pathology and neurotoxicity has yet to be fully elucidated. In order to study the formation of plaques and tangles and their effects on the brain, we have applied multiphoton in vivo imaging of transgenic mouse models of Alzheimer's disease. This technique allows longitudinal imaging of pathological aggregation of proteins and the subsequent changes in surrounding neuropil neurodegeneration and recovery after therapeutic interventions.  相似文献   

3.
Presence of neuritic plaques and neurofibrillary tangles in the brain are two neuropathological hallmarks of Alzheimer's disease (AD), although the molecular basis of their coexistence remains elusive. The neurofibrillary tangles are composed of microtubule binding protein Tau, whereas neuritic plaques consist of amyloid-beta peptides derived from amyloid precursor protein (APP). Recently, the peptidyl-prolyl cis/trans isomerase Pin1 has been identified to regulate the function of certain proteins after phosphorylation and to play an important role in cell cycle regulation and cancer development. New data indicate that Pin1 also regulates the function and processing of Tau and APP, respectively, and is important for protecting against age-dependent neurodegeneration. Furthermore, Pin1 is the only gene known so far that, when deleted in mice, can cause both Tau and Abeta-related pathologies in an age-dependent manner, resembling many aspects of human Alzheimer's disease. Moreover, in the human AD brain Pin1 is downregulated or inhibited by oxidative modifications and/or genetic changes. These results suggest that Pin1 deregulation may provide a link between formation of tangles and plaques in AD.  相似文献   

4.
Previous studies have shown that inducing autophagy ameliorates early cognitive deficits associated with the build-up of soluble amyloid-β (Aβ). However, the effects of inducing autophagy on plaques and tangles are yet to be determined. While soluble Aβ and tau represent toxic species in Alzheimer's disease (AD) pathogenesis, there is well documented evidence that plaques and tangles also are detrimental to normal brain function. Thus, it is critical to assess the effects of inducing autophagy in an animal model with established plaques and tangles. Here we show that rapamycin, when given prophylactically to 2-month-old 3xTg-AD mice throughout their life, induces autophagy and significantly reduces plaques, tangles and cognitive deficits. In contrast, inducing autophagy in 15-month-old 3xTg-AD mice, which have established plaques and tangles, has no effects on AD-like pathology and cognitive deficits. In conclusion, we show that autophagy induction via rapamycin may represent a valid therapeutic strategy in AD when administered early in the disease progression.  相似文献   

5.
Alzheimer's disease is the most common form of dementia that occurs in later years. The diagnosis is confirmed by the pathological findings of βA4-amyloid-containing neuritic plaques and neurofibrillary tangles, the former being present in sufficient quantity commensurate with age. Other forms of dementia are more difficult to diagnose clinically; their pathology is noted for the lack of plaques and tangles. A patient with a family history of dementia presented with the clinical signs of Alzheimer's disease which lasted for 13 years. At autopsy the brain tissue had βA4-amyloid-containing neuritic plaques, but no neurofibrillary tangles (i.e., the tissue was negative for staining with the tau antibody). Genetic analysis of DNA from family members revealed no linkage with chromosome 17 markers, indicating that this was not frontotemporal dementia. However, there was linkage with chromosome 3 markers. Thus, this form of Alzheimer's disease with a pathology of plaques only is linked with markers on chromosome 3. Electronic Publication  相似文献   

6.
Tau蛋白是神经元中含量最高的微管相关蛋白,其经典生物学功能是促进微管组装和维持微管的稳定性.在阿尔茨海默病(Alzheimer's disease,AD)患者,异常过度磷酸化的Tau蛋白以配对螺旋丝结构形成神经原纤维缠结并在神经元内聚积.大量研究提示,Tau蛋白异常在AD患者神经变性和学习记忆障碍的发生发展中起重要作用.本课题组对Tau蛋白异常磷酸化的机制及其对细胞的影响进行了系列研究,发现Tau蛋白表达和磷酸化具有调节细胞生存命运的新功能,并由此对AD神经细胞变性的本质提出了新见解.本文主要综述作者实验室有关Tau蛋白的部分研究结果.  相似文献   

7.
Alzheimer's disease (AD) is the leading cause of senile dementia, and is a complex disorder. The pathological hallmarks of AD were discovered by Dr. Alois Alzheimer in 1907, and include deposits of amyloid or senile plaques and neurofibrillar tangles. Plaques are composed of a peptide, termed the Abeta peptide, that is derived by proteolytic processing of the amyloid precursor protein (APP), while neurofibrillar tangles result from a hyperphosphorylation of the tau protein. Mechanisms associated with the formation of plaques and neurofibrillar tangles and their respective contributions to the disease process have been intensely investigated. Proteolytic processing of APP that results in the generation of the Abeta peptide is now well understood and is influenced by several proteins. Recent evidence suggests that the Abeta levels are carefully regulated, and several proteases play an important role in removing the Abeta peptide. Finally, it is becoming apparent that several members of the LDL receptor family play important roles in the brain, and may modulate the course of AD.  相似文献   

8.
A number of recent findings have demonstrated re-expression of cell cycle-related proteins in vulnerable neurones in Alzheimer's disease. We hypothesize that this attempt by neurones to re-enter mitosis is a response to external growth stimuli that leads to an abortive re-entry into the cell cycle and, ultimately, neuronal degeneration. In this study, to further delineate the role of mitotic processes in the pathogenesis of Alzheimer's disease, we investigated p27, a cyclin-dependent kinase inhibitor that plays a negatively regulatory role in cell cycle progression that, once phosphorylated at Thr187, is degraded via an ubiquitin-proteasome pathway. Here we report that both p27 and phosphorylated p27 (Thr187) show increases in the cytoplasm of vulnerable neuronal populations in Alzheimer's disease vs. age-matched control subjects. Importantly, phosphorylated p27 (Thr187) shows considerable overlap with tau-positive neurofibrillary pathology, including neurofibrillary tangles, dystrophic neurites and neuropil threads. The findings presented here suggest that dysregulation of the cell cycle plays a crucial role in the pathogenesis of Alzheimer's disease that may provide a novel mechanistic basis for therapeutic intervention.  相似文献   

9.
Fibrillogenesis is a major feature of Alzheimer's disease (AD) and other neurodegenerative diseases. Fibers are correlated with disease severity and they have been implicated as playing a direct role in disease pathophysiology. In studies of tau, instead of finding causality with tau fibrils, we found that tau is associated with reduction of oxidative stress. Biochemical findings show that tau oxidative modifications are regulated by phosphorylation and that tau found in neurofibrillary tangles is oxidatively modified, suggesting that tau is closely linked to the biology, not toxicity, of AD.  相似文献   

10.
Summary Cytochemical and biochemical techniques have been used to assess the relationship of epitopes on the microtubuleassociated protein, tau, to the cytoskeletal pathology of Alzheimer's disease. The main probes were Tau-1 and Alz-50, two monoclonal antibodies which recognize tau and a potentially related 68kDa protein. Sequential treatment of tissue slices with combinations of the antibodies showed that each blocked the binding of the other to neurofibrillary tangles and neuritic plaques but not to normal axons. Western blot analysis of tau proteins isolated from Alzheimer's disease brains did not reveal such blocking patterns. The issue of steric hindrance affecting antibody binding in tissue sections was addressed by using Alz-50 in combination with Tau-2, another monoclonal antibody recognizing tau on blots and in Alzheimer's disease pathology. Neither antibody blocked the binding of the other to neurofibrillary tangles and neuritic plaques. These data suggest that the Alz-50 and Tau-1 epitopes are selectively organized in the tangles and plaques to be in close proximity which supports the hypothesis that in Alzheimer's disease pathology, tau is modified.  相似文献   

11.
The cardinal lesions of Alzheimer's disease are neurofibrillary tangles, senile neuritic plaques, and vascular amyloid, the latter generally involving cortical arteries and small arterioles. All three lesions are composed of amyloid-like, beta-pleated sheet fibrils. Recently, a 4,200-dalton peptide has been isolated from extraparenchymal meningeal vessels, neuritic plaques, and neurofibrillary tangles. The assumption of N-terminal homogeneity in vascular amyloid has been used as an argument for a neuronal (versus blood) origin of the peptide. However, intracortical microvessels from Alzheimer's disease have not been previously isolated. The present studies describe the isolation of a microvessel fraction from Alzheimer's disease and control fresh autopsy human brain. Alzheimer's disease isolated brain microvessels that were extensively laden with amyloid and control microvessels were solubilized in 90% formic acid and analyzed by urea sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The arteriole fraction from the Alzheimer's subject with extensive amyloid angiopathy contained a unique 4,200-dalton peptide, whereas the arterioles or capillaries isolated from two controls and two Alzheimer's disease subjects without angiopathy did not. This peptide was purified by HPLC and amino acid composition analysis showed the peptide is nearly identical to the 4,200-dalton peptide recently isolated from neuritic plaques or from neurofibrillary tangles. Sequence analysis revealed N-terminal heterogeneity. The N-terminal sequence was: Asp-Ala-Glu-Phe-Arg-His-Asp-Ser-Gly-Tyr, which is identical to the N-terminal sequence of the 4,200-dalton peptide isolated previously from extraparenchymal meningeal vessels and neuritic plaques.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Many genetically altered mice have been designed to help understand the role of specific gene mutations in the pathogenesis of Alzheimer's disease (AD) based on the realization that specific mutations in the genes for amyloid precursor protein--the presenilins and tau--are associated with early-onset familial AD or, in the case of tau mutations, other neurodegenerative diseases with neurofibrillary tangles. However, attempts to reproduce the neuropathology of AD in the mouse have been frustrating. Transgenic designs emphasizing amyloid precursor protein produced mice that develop amyloid plaques, but neurodegeneration and neurofibrillary tangles failed to form. Strategies emphasizing tau resulted in increased phosphorylation of tau and tangle formation, although amyloid plaques were absent. Nevertheless, crossing transgenic animals expressing mutated tau and amyloid precursor protein has produced a mouse that closely recapitulates the neuropathology of AD. A review of the various murine models, their role in understanding the pathogenesis of AD and their use in testing therapeutic regimens, is provided.  相似文献   

13.
14-3-3zeta is an effector of tau protein phosphorylation   总被引:7,自引:0,他引:7  
Neurofibrillary tangles associated with Alzheimer's disease are composed mainly of paired helical filaments that are formed by the aggregation of abnormally phosphorylated microtubule-associated protein tau. 14-3-3, a highly conserved protein family that exists as seven isoforms and regulates diverse cellular processes is present in neurofibrillary tangles (Layfield, R., Fergusson, J., Aitken, A., Lowe, J., Landon, M., Mayer, R. J. (1996) Neurosci. Lett. 209, 57-60). The role of 14-3-3 in Alzheimer's disease pathogenesis is not known. In this study, we found that the 14-3-3zeta isoform is associated with tau in brain extract and profoundly stimulates cAMP-dependent protein kinase catalyzed in vitro phosphorylation on Ser(262)/Ser(356) located within the microtubule-binding region of tau. 14-3-3zeta binds to both phosphorylated and nonphosphorylated tau, and the binding site is located within the microtubule-binding region of tau. From brain extract, 14-3-3zeta co-purifies with microtubules, and tubulin blocks 14-3-3zeta-tau binding. Among four 14-3-3 isoforms tested, beta and zeta but not gamma and epsilon associate with tau. Our data suggest that 14-3-3zeta is a tau protein effector and may be involved in the abnormal tau phosphorylation occurring during Alzheimer's disease ontogeny.  相似文献   

14.
Neurofibrillary tangles are composed of insoluble aggregates of the microtubule-associated protein tau. In Alzheimer's disease the accumulation of neurofibrillary tangles occurs in the absence of tau mutations. Here we present mice that develop pathology from non-mutant human tau, in the absence of other exogenous factors, including beta-amyloid. The pathology in these mice is Alzheimer-like, with hyperphosphorylated tau accumulating as aggregated paired helical filaments. This pathologic tau accumulates in the cell bodies and dendrites of neurons in a spatiotemporally relevant distribution.  相似文献   

15.
Abstract: Alzheimer's disease is characterized neuropathologically by the presence of neuritic and amyloid plaques, vascular amyloid, and neurofibrillary tangles in specific brain areas. The main constituent of amyloid deposits is amyloid β protein, a 40–42 amino acid proteolytic product of the amyloid β-precursor protein. In our search for proteases that can generate the N-terminus of amyloid β protein (β-secretases), we discovered a thiol-dependent metalloprotease that was identified, by peptide sequencing, as metalloendopeptidase EC 3.4.24.15. In vitro, the metalloprotease cleaves the methionine-aspartic acid bond in a 10 amino acid synthetic peptide, indicating that it could generate the N-terminus of amyloid β protein, and generates amyloidogenic fragments from full-length recombinant amyloid β-precursor protein. Mouse monoclonal antibodies produced against a unique synthetic peptide from the metalloprotease labeled various monkey tissues as detected by western blots and immunohistochemistry. Unexpectedly, two monoclonal antibodies, IVD6 and IIIF3, immunolabeled strongly intracellular neurofibrillary tangles, neurites of senile plaques, and neuropil threads, but not "ghost" tangles or amyloid in sections taken from Alzheimer's disease brain. This finding provides further evidence for the metalloprotease's relevance to Alzheimer's disease pathology, although the connection between tangle staining and the formation of amyloid β protein remains to be elucidated.  相似文献   

16.
We have identified a novel ubiquitin conjugating enzyme gene, L-UBC, which maps to human Chromosome (Chr) 14q24.3. This is also the location of the major early onset familial Alzheimer's disease gene (FAD3). L-UBC encodes a protein that demonstrates homology to the yeast ubiquitin conjugating enzyme, UBC-4, and human UbcH5. Their functions are to ubiquitinate specific proteins targeted for degradation. The protein also exhibits very strong homology to a rabbit protein, E2-F1, which mediates p53 degradation driven by papilloma virus E6 protein in vitro. The accumulation of specific proteins that have undergone aberrant processing in neurofibrillary tangles and amyloid plaques is the classic pathological feature in brains of Alzheimer's disease patients. Abnormal ubiquitination has previously been suggested to play a role in the etiology of Alzheimer's disease. This gene therefore represents a plausible candidate gene for FAD3.  相似文献   

17.
Five phosphate-dependent monoclonal antibodies to the neurofilament heavy polypeptide bound strongly to a phosphorylated synthetic peptide, which contains a single Lys-Ser-Pro sequence that occurs in human neurofilaments. Three of the antibodies label Alzheimer's disease neurofibrillary tangles and two do not, suggesting that in tangles an epitope similar to the peptide is available to some but not all of the antibodies. In addition, some antibodies were found to be more affected than others by enzymatic dephosphorylation of the antigen, but because all the antibodies bound the same synthetic phosphopeptide they do not bind to mutually exclusive phosphorylation sites. Instead the more phosphate-dependent antibodies might bind the phosphate group more directly, as suggested by their inhibition by inorganic phosphate and free phosphoserine.  相似文献   

18.
The two characteristic neuropathological lesions of Alzheimer's disease are the neurofibrillary tangles and the senile plaques. Neurofibrillary tangles are made of abnormal filaments (PHF) accumulating in neurons and mainly composed of a modified form of the microtubule-associated protein tau (PHF-tau). Senile plaques are composed of a cluster of dystrophic neurites surrounding an extracellular deposit of amyloid fibers made of a 42 amino-acid peptide (beta-amyloid peptide). The abnormal filaments contain the complete sequences of the different tau isoforms. The PHF-tau proteins can be distinguished from the normal tau proteins by the presence of several phosphorylated sites. One of these sites is phosphorylated by a calcium-calmodulin-dependent kinase. The relationship between PHF-tau and the cytoskeletal pathology in Alzheimer's disease is further discussed.  相似文献   

19.
M Hasegawa  T Arai  Y Ihara 《Neuron》1990,4(6):909-918
To test the hypothesis that cortical neurons undergo massive sprouting in Alzheimer's disease brain, we investigated whether neurofibrillary tangles contain fetal antigens. Two monoclonal antibodies to tangles specifically labeled an approximately 300 kd protein in the neonatal brain homogenate, which was subsequently identified as MAP5 (MAP1B). Conversely, two monoclonal antibodies to MAP5 were found to stain tangles. All four reacted with only a phosphorylated species of MAP5. By careful immunochemical analysis, at least three independent phosphorylated epitopes that should have distinct conformations were shown to be shared by tangles and MAP5. However, several monoclonal antibodies to nonphosphorylated MAP5 did not stain tangles. From these observations, we conclude that fragments of phosphorylated MAP5 are bound to tangles. Since MAP5, in particular, a phosphorylated species, is known to be involved in neurite outgrowth, this result supports the sprouting hypothesis.  相似文献   

20.
Earlier neurochemical studies suggested that human brain carboxypeptidase B may play a significant role in the degradation of amyloid-beta1-42 in the brain. Using an immimohistochemical technique we report here on the neuronal expression and distribution of this enzyme in the segments (CA1a, CA1b and CA1c) of the CA1 subfield and in area CA4 of the hippocampus in normal and Alzheimer's disease brain samples. Its distribution was compared with the appearance of neurofibrillary tangles in the same brain sample. For immunohistochemical localization of carboxypeptidase B, a specific C14-module antibody was applied, together with the Gallyas silver impregnation technique for the demonstration of neurofibrillary tangles. The results revealed that, in the control samples, most of the immunoreactivity appeared in segment CA1a in the pyramidal cells, less in segment CA1b and least in segment CA1c. In the Alzheimer's disease samples, there was no particular immunostaining in the neurons, but, a large number of silver-impregnated degenerated neurons appeared. The results support the suggestion that carboxypeptidase B may play a significant role in elimination of the intracellular accumulation and toxicity of amyloid-beta in the human brain and thereby protect the neurons from degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号