首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments on the introduction of the regulatory subunit of cAMP-dependent protein kinase type II (RII) into NIH 3T3 cells clearly demonstrated its translocation into the nucleus. The labelled protein was incorporated into erythrocyte ghosts and their fusion with the cells was carried out. The dynamics of distribution of the labelled RII in NIH 3T3 cells was studied by the method of historadiography. It was found that during the next few hours after its penetration into the cytoplasm, the protein translocates into the nucleus and concentrates in the immediate proximity to the nucleoli.  相似文献   

2.
The activity of cAMP-dependent protein kinase was found to increase continuously in the NIH 3T3 cells, deepening into the resting state. The increase correlated with intracellular level of heat-stable protein inhibitor of the protein kinase rather than with the cAMP content. The elevation of 2',5'-oligo(A) synthetase activity and the decrease in 2'-phosphodiesterase activity were also observed in the cells sinking into the resting state. The variations in enzyme activities were similar to those caused by the increase in the intracellular cAMP content described elsewhere. These results agree with the idea that the cAMP-dependent protein kinase is involved in the regulation of the enzymes of 2',5'-oligo(A) metabolism.  相似文献   

3.
2'-Phosphodiesterase from NIH 3T3 cells was purified about 530-fold. Treatment of the cell lysate with the cAMP-dependent protein kinase causing the 2'-phosphodiesterase inhibition did not result in phosphorylation of the enzyme itself. The kinase was found to phosphorylate a specific 18-kDa protein, the phosphorylated form of this protein being the inhibitor of 2'-phosphodiesterase.  相似文献   

4.
Transfection of the cDNA encoding the activated c-raf-1 protein or addition of 12-O-tetradecanoylphorbol-13-acetate (TPA) or dibutyryl cAMP to NIH/3T3 cells activated the c-fos gene enhancer linked to the chloramphenicol acetyltransferase or luciferase reporter gene. Prolonged treatment of NIH/3T3 cells with phorbol 12,13-dibutyrate caused down-regulation of protein kinase C. In these cells, addition of TPA did not stimulate the c-fos gene enhancer any more, but transfection of the c-raf-1 cDNA or addition of dibutyryl cAMP still stimulated the c-fos gene enhancer to the same extent as those induced in the control cells. Transfection of the c-raf-1 cDNA or addition of TPA to NIH/3T3 cells stimulated the serum response element and TPA response element but not the cAMP response element. In contrast, addition of dibutyryl cAMP to NIH/3T3 cells stimulated the cAMP response element but not the serum response element or TPA response element. These results indicate that the activated c-raf-1 protein stimulates the serum response element and TPA response element in a manner independent of protein kinase C and cAMP-dependent protein kinase. Since the c-fos gene enhancer has been shown to contain the serum response element and cAMP response element, it is most likely that the c-raf-1 protein is involved in the regulation of c-fos gene expression through the serum response element.  相似文献   

5.
Microinjection of Onconase or RNase A into NIH/3T3 cells was used to study the intracellular actions of these two proteins. Onconase preferentially killed actively growing cells in both microinjection and cell culture experiments. Moreover, agents that increased the number of cells in S phase such as serum or microinjected signal transduction mediators (Ras, protein kinase C, and mitogen-activated protein kinase) enhanced Onconase cytotoxicity. Conversely, agents that decreased these proliferative pathways (dibutyryl cAMP and protein kinase A) correspondingly diminished Onconase cytotoxicity in microinjection experiments. These results were also mimicked in cell culture experiments since log-phase v-ras-transformed NIH/3T3 cells were more sensitive to Onconase (IC50 of 7 microg/ml) than parental NIH/3T3 fibroblasts (IC50 of 40 microg/ml). Based on those data we postulated that Onconase-mediated cell death in NIH/3T3 cells was related to events occurring at two or more points in the cell cycle preferentially associated with late G1/S and S phases. In contrast, quiescent NIH/3T3 cells were more sensitive to microinjected RNase A than log phase cells and positive mediators of proliferative signal transduction did not enhance RNase A-mediated cytotoxicity. Taken together, these results demonstrate that these two RNases use different pathways and/or mechanisms to elicit cytotoxic responses in NIH/3T3 cells. Predictions formulated from these studies can be tested for relevance to RNase actions in different target tumor cells.  相似文献   

6.
The HMG-CoA reductase inhibitor, lovastatin, blocks targeting of the Rho and Ras families of small GTPases to their active sites by inhibiting protein prenylation. Control NIH3T3 cells, and those overexpressing human cyclin E protein were treated with lovastatin for 24 h to determine the effects of cyclin E overexpression on lovastatin-induced growth arrest and cell rounding. Lovastatin treatment (10 microM) of control 3T3 cells resulted in growth arrest at G1 accompanied by actin stress fiber disassembly, cell rounding, and decreased active RhoA from the membranous protein fraction. By contrast, in NIH3T3 cells overexpressing cyclin E, lovastatin did not cause loss of RhoA from the membrane (active) protein fraction, actin stress fiber disassembly, cell rounding or growth arrest within 24 h. Analysis of cell cycle proteins showed that 24 h of lovastatin treatment in the control cells caused an elevation in the levels of the cyclin-dependent kinase inhibitor p27(kip1), inhibition of both cyclin E- and cyclin A-dependent kinase activity, and decreased levels of hyperphosphorylated retinoblastoma protein (pRb). By contrast, lovastatin treatment of the cyclin E overexpressors did not suppress either cyclin E- or cyclin A-dependent kinase activity, nor did it alter the level of maximally phosphorylated pRb, despite increased levels of p27(kip1). However, by 72 h, the cyclin E overexpressors rounded up but remained attached to the substratum, indicating a delayed response to lovastatin. In contrast with lovastatin, inactivation of membrane-bound Rho proteins (i.e., GTP-bound RhoA, RhoB, RhoC) with botulinum C3 transferase caused cell rounding and G1 growth arrest in both cell types but did not inhibit cyclin E-dependent histone kinase activity in the cyclin E overexpressors. In addition, 24 h of cycloheximide treatment caused depletion of RhoA from the membrane (active) fraction in neo cells, but in the cells overexpressing cyclin E, RhoA remained in the active (membrane-associated) fraction. Our observations suggest that (1) RhoA activation occurs downstream of cyclin E-dependent kinase activation, and (2) overexpression of cyclin E decreased the turnover rate of active RhoA.  相似文献   

7.
8.
9.
Platelet release products and purified platelet-derived growth factor stimulated the phosphorylation of ribosomal protein S6 in cultured mouse Balb/c 3T3 fibroblasts. The post-nuclear fraction of the stimulated cells was enriched in S6 kinase activity specific for sites resembling those phosphorylated within intact cells in response to PDGF as determined by tryptic peptide mapping. 3T3-S6 sites closely resembled those phosphorylated in S6 of rat hepatocytes stimulated with insulin and included sites for both cAMP-dependent and independent kinases.  相似文献   

10.
11.
Cyclic AMP-dependent protein kinase and 3H-cAMP-binding activities were determined in normal Balb 3T3 cells and compared with the same preparations from SV40, chemical, and spontaneous transformants of 3T3 cells. The cytosolic protein kinase activities and protein kinase activity ratios were similar in all cell lines, although when the normal 3T3 cytosol was prepared by homogenization it contained less 3H-cAMP binding activity than the transformed 3T3 cytosols. The Triton X-100 treated particulate fractions from the normal and transformed 3T3 cells contained similar protein kinase and binding activities. The isozymic profile of cAMP-dependent protein kinases was examined by DEAE-chromatography. The 3T3 cells contained only type II isozyme in either cytosolic or membrane fractions. All transformants of the 3T3 cells contained both type I and type II isozymes. Other cell cultures, including chicken embryo fibroblasts, rat kidney cells, and human or calf endothelial cells contained type I and type II isozymes. Binding of the photoaffinity analogue of cAMP, 8-N3 cAMP, to the regulatory subunits of protein kinases in sonicates obtained from Balb 3T3 and SV 3T3 cells followed by separation on SDS polyacrylamide electrophoresis showed that the amount of RII subunit was approximately equal in the two cell lines. RI in Balb 3T3 cells was detectable but in a much lower quantity than in SV 3T3 cells. The cyclic AMP dependent-protein kinases from Balb 3T3 cells appears to be different from SV 3T3 cells by three criteria: 3H-cAMP binding in homogenates, DEAE chromatographic separation of isozymes, and 8-N3 cAMP binding.  相似文献   

12.
M Satake  T Ibaraki  Y Yamaguchi    Y Ito 《Journal of virology》1989,63(9):3669-3677
The function of the A element (nucleotides 5107 to 5130) of the polyomavirus enhancer is augumented in NIH 3T3 cells by a tumor-promoting phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA). One of its targets is an AP1 consensus sequence motif recognized by a nuclear factor, PEBP1. In Ha-ras-transformed NIH 3T3 cells, however, A element function was not enhanced by TPA treatment, and at the same time PEBP1 was not detected in the nuclear extract by a mobility shift assay. PEBP1 was not detected in either the extract from NIH 3T3 cells treated in vivo with a protein kinase inhibitor, staurosporine, or the extract from NIH 3T3 cells after treatment in vitro with phosphatase. These results suggest that PEBP1 is required to be properly phosphorylated for DNA binding and that it is underphosphorylated, possibly due to the downregulation of protein kinase C in Ha-ras-transformed cells. In addition, we observed that PEBP2, which bound to the A element adjacent to PEBP1, was converted to apparently related PEBP3 when conditions favored underphosphorylation.  相似文献   

13.
14.
Abstract: Increased intracellular adenosine 3':5'-monophosphate (cAMP) levels and activation of cAMP-dependent protein kinases (ATP:protein phosphotransferase, EC 2.7.1.37) in vivo were correlated in mouse neuroblastoma cells grown in the presence of 1 mM-6 N.O 2-dibutyryl 3':5'-monophosphate (Bt2cAMP). The time course for activation showed that cAMP-dependent protein kinases were activated by 30 min. A heat-stable inhibitor protein inhibited a majority of activated cAMP-dependent protein kinase. Activation of cAMP—dependent protein kinase caused additional phosphorylation of proteins when compared with untreated control cells, as demonstrated by endogenous phosphorylation of proteins in vitro using [γ-32P]ATP and analysis by two—dimensional polyacrylamide gel electrophoresis. The phosphorylation data show selective phosphorylation of specific proteins by cAMP-independent and cAMP-dependent protein kinase. Among the proteins in the postmitochondrial supernatant fraction phosphorylated by cAMP-dependent protein kinases, two proteins with a molecular weight of 43,000 were heavily phosphorylated. It is suggested that phosphorylation of cellular proteins by cAMP-dependent protein kinases might be involved in the cAMP-modulated biochemical changes in neuroblastoma cells.  相似文献   

15.
Protein kinase C-epsilon coordinately regulates changes in cell growth and shape. Cells overproducing protein kinase C-epsilon spontaneously acquire a polarized morphology and extend long cellular membrane protrusions that are reminiscent of the morphology observed in ras-transformed fibroblasts. Here we report that the regulatory C1 domain contains an actin binding hexapeptide motif that is essential for the morphogenic effects of protein kinase C-epsilon in cultured NIH3T3 murine fibroblasts. The extension of elongate processes by protein kinase C-epsilon transformed fibroblasts appeared to be driven by a kinase-independent mechanism that required organized networks of both actin and microtubules. Flow cytometry of phalloidin-stained cells demonstrated that protein kinase C-epsilon significantly increased the cellular content of polymerized actin in NIH3T3 cells. Studies with a cell-free system suggest that protein kinase C-epsilon inhibits the in vitro disassembly of actin filaments, is capable of desequestering actin monomers from physiologically relevant concentrations of thymosin beta4, and increases the rate of actin filament elongation by decreasing the critical concentration of actin. Based on these and other observations, it is proposed that protein kinase C-epsilon may function as a terminal downstream effector in at least one of the signaling pathways that mitogens engage to initiate outgrowth of cellular protrusions.  相似文献   

16.
Site-selective cAMP analogs, depending on the position of their substituents on the adenine ring, selectively bind to either site 1 or site 2 of the known cAMP binding sites of protein kinase. Treatment of Harvey murine sarcoma virus-transformed NIH/3T3 cells with such site-selective analogs results in growth inhibition and phenotypic reversion, and the combination of a C-8 thio or halogen analog (site 1 selective) with an N6 analog (site 2 selective) produces a synergistic effect. We report here that the growth inhibitory effect of the analogs correlates with the nuclear translocation of the RII cAMP receptor protein, the regulatory subunit of protein kinase type II. The transformed NIH/3T3 cells contained no detectable level of RII in the nucleus, whereas nontransformed NIH/3T3 cells exhibited a high level of nuclear RII. Within 30 min after treatment of the transformed cells with the site-selective analogs, immunofluorescence against the RII protein markedly increased in the cell nucleus. The nuclear translocation of the RII cAMP receptor protein is an early event in the reverse transformation of the fibroblasts treated with site-selective cAMP analogs.  相似文献   

17.
18.
Fibroblast growth factor (FGF) plus insulin induced DNA synthesis in and proliferation of NIH/3T3 cells. The protein kinase C-activating phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), inhibited both the DNA synthesis and cell proliferation induced by FGF plus insulin. The concentration of TPA required for 50% inhibition of the DNA synthesis was about 5 nM. Phorbol-12,13-dibutyrate, another protein kinase C-activating phorbol ester, also inhibited the DNA synthesis but 4 alpha-phorbol-12,13-didecanoate, known to be inactive for this enzyme, was ineffective. DNA synthesis started at about 12 h after the addition of FGF plus insulin. The inhibitory action of TPA on the DNA synthesis was observed when it was added within 12 h after the addition of FGF plus insulin. These results suggest that phorbol esters exhibit an antiproliferative action through protein kinase C activation in NIH/3T3 cells, and that this action of phorbol esters is due to inhibition of the progression from the late G1 to the S phase of the cell cycle.  相似文献   

19.
The effects of cyclic AMP treatment on total cAMP-dependent protein kinase activity in GH3 pituitary tumor cells have been studied. Incubation of cells for 24 h with 1 microM forskolin resulted in a 50% decrease in total cAMP-dependent protein kinase activity which was reversible upon removal of forskolin from culture media. A similar response was observed in GH3 cells treated with 5 ng/ml cholera toxin and 0.5 mM dibutyryl cAMP but not 0.5 mM dibutyryl cGMP. Northern blot analysis demonstrated that the steady-state level of the mRNA for each of the six kinase subunit isoforms studied was not detectably altered after treatment with 1 microM forskolin for 24 h. The concentration of catalytic subunit was also assessed by binding studies using a radiolabeled heat-stable protein kinase inhibitor. Treatment of GH3 cells with 1 microM forskolin for 24 h reduced protein kinase inhibitor binding activity by 50%, consistent with the observed forskolin-induced decrease in total kinase activity. Analysis of endogenous heat-stable protein kinase inhibitor activity in GH3 cell extracts showed no significant difference between forskolin-treated cells and cells maintained under control conditions. To assess possible effects on catalytic subunit degradation, pulse-chase experiments were performed and radiolabeled catalytic subunit was isolated by affinity chromatography. The results demonstrated that treatment of cells with chlorophenylthio-cAMP detectably increased the apparent degradation of radiolabeled catalytic subunit. The increased degradation of the catalytic subunit was sufficient to account for the observed decreases in kinase activity. These results suggest that relatively long term cAMP treatment can alter total cAMP-dependent protein kinase activity through effects to alter the degradation of the catalytic subunit of the enzyme.  相似文献   

20.
A fraction obtained from detergent-extract of sea urchin or starfish spermatozoa using DEAE-cellulose chromatography reactivated Triton X-100 models of the spermatozoa in a cAMP-dependent manner. The DEAE fraction contained cAMP-dependent protein kinase with a high level of specific activity. Rabbit muscle inhibitor protein highly specific for cAMP-dependent protein kinases inhibited the ability of the deae fraction to induce reactivation of Triton X-100 models.l This inhibition paralleled inhibition of cAMP-dependent protein kinase activity of the DEAE fraction, suggesting participation of the enzyme in the cAMP-dependent reactivation of Triton X-100 models. However, cAMP-dependent protein kinase further purified from the DEAE fraction was incapable of reactivating these models by itself. A protein factor which was separated from the protein kinase in the course of purification of the enzyme was found to also be necessary for the reactivation. When cAMP-dependent protein kinase was pretreated with protein kinase inhibitor before addition of the protein factor, the reactivation of Triton X-100 models was no longer detected. However, after the protein factor had been incubated with cAMP and cAMP-dependent protein kinase, protein kinase inhibitor did not repress reactivation of Triton X-100 models. We propose that the reactivation needs phosphorylation of the protein factor by cAMP-dependent protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号