首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycosaminoglycans were extracted from normal, inflamed and phenytoin induced overgrowth of human gingival tissue by proteolysis and alcohol precipitation. Extracts were run in a Dowex-1 column and the fractions were treated with mucopolysaccharidases. Cellulose acetate electrophoresis was carried out with or without enzyme digestion for identification of individual glycosaminoglycans. Glycosaminoglycans were found to be decreased in inflammation but were observed to increase in the overgrowth. Hyaluronic acid was found to be increased in both the pathological conditions. Dermatan sulphate, chondroitin sulphate and heparan sulphate were observed to be decreased in inflammation. In overgrowth, dermatan sulphate and chondroitin sulphate were found to increase while the presence of heparan sulphate was not significant. The changes in the pattern of individual glycosaminoglycan in the two varied conditions are discussed.Abbreviations GAG glycosaminoglycan - MPS mucopolysaccharide - DS dermatan sulphate - HS heparan sulphate - CS chondroitin sulphate - HA hyaluronic acid - KS keratan sulphate  相似文献   

2.
Arterial basement membrane-like material was prepared by a sonication-differential centrifugation technique from cultures of rabbit aortic myomedial cells after metabolic labelling with [35S]sulphate and [3H]glucosamine. Labelled glycosaminoglycans were obtained from isolated basement membrane-like material by proteinase digestion and gel filtration. Glycosaminoglycans were identified by a combination of Sephadex G-50 chromatography and sequential degradation with nitrous acid, Streptomyces hyaluronidase, testicular hyaluronidase and chondroitinase ABC. The data showed that heparan sulphate and chondroitin sulphate were the predominant glycosaminoglycans of myomedial basement membrane-like material. Heparan sulphate accounted for about 55% of [3H]glucosamine-labelled glycosaminoglycans. In addition small amounts of hyaluronic acid was present. Only trace amounts of dermatan sulphate was found. The glycosaminoglycans were analysed by DEAE-cellulose chromatography. Two major peaks were found in the chromatogram consistent with the predominance of heparan sulphate and chondroitin sulphate.  相似文献   

3.
Glycosaminoglycans synthesized in polymorphonuclear (PMN) leucocytes isolated from blood (peripheral PMN leucocytes) and in those induced intraperitoneally by the injection of caseinate (peritoneal PMN leucocytes) were compared. Both peripheral and peritoneal PMN leucocytes were incubated in medium containing [35S]sulphate and [3H]glucosamine. Each sample obtained after incubation was separated into cell, cell-surface and medium fractions by trypsin digestion and centrifugation. The glycosaminoglycans secreted from peripheral and peritoneal PMN leucocytes were decreased in size by alkali treatment, indicating that they existed in the form of proteoglycans. Descending paper chromatography of the unsaturated disaccharides obtained by the digestion of glycosaminoglycans with chondroitinase AC and chondroitinase ABC identified the labelled glycosaminoglycans of both the cell and the medium fractions in peripheral PMN leucocytes as 55-58% chondroitin 4-sulphate, 16-19% chondroitin 6-sulphate, 16-19% dermatan sulphate and 6-8% heparan sulphate. Oversulphated chondroitin sulphate and oversulphated dermatan sulphate were found only in the medium fraction. In peritoneal PMN leucocytes there is a difference in the composition of glycosaminoglycans between the cell and the medium fractions; the cell fraction was composed of 60% chondroitin 4-sulphate, 5.5% chondroitin 6-sulphate, 16.8% dermatan sulphate and 13.9% heparan sulphate, whereas the medium fraction consisted of 24.5% chondroitin 4-sulphate, 28.2% chondroitin 6-sulphate, 33.7% dermatan sulphate and 10% heparan sulphate. Oversulphated chondroitin sulphate and oversulphated dermatan sulphate were found in the cell, cell-surface and medium fractions. On the basis of enzymic assays with chondro-4-sulphatase and chondro-6-sulphatase, the positions of sulphation in the disulphated disaccharides were identified as 4- and 6-positions of N-acetylgalactosamine. Most of the 35S-labelled glycosaminoglycans synthesized in peripheral PMN leucocytes were retained within cells, whereas those in peritoneal PMN leucocytes were secreted into the culture medium. Moreover, the amount of glycosaminoglycans in peritoneal PMN leucocytes was significantly less than that in peripheral PMN leucocytes. Assay of lysosomal enzymes showed that these activities in peritoneal PMN leucocytes were 2-fold higher than those in peripheral PMN leucocytes.  相似文献   

4.
Confluent monolayer cultures of rabbit corneal endothelial and stromal cells were incubated independently with [35S]sulphate and [3H]glucosamine for 3 days. AFter incubation, labelled glycosaminoglycans were isolated from the growth medium and from a cellular fraction. These glycosaminoglycans were further characterized by DEAE-cellulose column chromatography and by sequential treatment with various glycosamino-glycan-degrading enzymes. Both endothelial and stromal cultures synthesized hyaluronic acid as the principal product. The cell fraction from the stromal cultures, however, had significantly less hyaluronic acid than that from the endothelial cultures. In addition, both types of cells synthesized a variety of sulphated glycosaminoglycans. The relative amounts of each sulphated glycosaminoglycan in the two cell lines were similar, with chondroitin 4-sulphate, chondroitin 6-sulphate and dermatan sulphate as the major components. Heparan sulphate was present in smaller amounts. Keratan sulphate was also identified, but only in very small amounts (1-3%). The presence of dermatan sulphate and the high content of hyaluronic acid are similar to the pattern of glycosaminoglycans seen in regenerating or developing tissues, including cornea.  相似文献   

5.
Summary The type and distribution of mineral binding and collagenous matrix-associated chondroitin sulphate and dermatan sulphate proteoglycans in rabbit alveolar bone were studied biochemically and immunocytochemically, using three monoclonal antibodies (mAb 2B6, 3B3, and 1B5). The antibodies specifically recognize oligosaccharide stubs that remain attached to the core protein after enzymatic digestion of proteoglycans and identify epitopes in chondroitin 4-sulphate and dermatan sulphate; chondroitin 6-sulphate and unsulphated chondroitin; and unsulphated chondroitin, respectively. In addition, mAb 2B6 detects chondroitin 4-sulphate with chondroitinase ACII pre-treatment, and dermatan sulphate with chondroitinase B pre-treatment. Bone proteins were extracted from fresh specimens with a three-step extraction procedure: 4m guanidine HCl (G-1 extract), 0.4m EDTA (E-extract), followed by guanidine HCl (G-2 extract), to characterize mineral binding and collagenous matrix associated proteoglycans in E- and G2-extracts, respectively. Biochemical results using Western blot analysis of SDS-polyacrylamide gel electrophoresis of E- and G2-extracts demonstrated that mineral binding proteoglycans contain chondroitin 4-sulphate, chondroitin 6-sulphate, and dermatan sulphate, whereas collagenous matrix associated proteoglycans showed a predominance of dermatan sulphate with a trace of chondroitin 4-sulphate and no detectable chondroitin 6-sulphate or unsulphated chondroitin. Immunocytochemistry showed that staining associated with the mineral phase was limited to the walls of osteocytic lacunae and bone canaliculi, whereas staining associated with the matrix phase was seen on and between collagen fibrils in the remainder of the bone matrix. These results indicate that mineral binding proteoglycans having chondroitin 4-sulphate, dermatan sulphate, and chondroitin 6-sulphate were localized preferentially in the walls of the lacunocanalicular system, whereas collagenous associated dermatan sulphate proteoglycans were distributed over the remainder of the bone matrix.  相似文献   

6.
Glycosaminoglycans were isolated from the urine of three patients with Hurler's, Hunter's and Morquio's syndromes and also from the liver and spleen of the case of Hurler's syndrome by a procedure avoiding further degradation. A method of determining the proportions of dermatan sulphate, heparan sulphate and chondroitin sulphate in each preparation is described. The relative proportions of these glycosaminoglycans in the urine and organs of the case of Hurler's syndrome were very similar. Glycosaminoglycans from the organs were of much lower molecular weight than normal, consisting of single chains of molecular weight about 5000 together with multiples of up to four such chains attached to peptide moieties. The linkage region normally attaching glycosaminoglycan chains to protein in whole protein–polysaccharides of connective tissue was degraded progressively towards serine. The total output and relative proportions of abnormal glycosaminoglycans in the urine were compared in two brothers with Hunter's syndrome examined on two occasions 4 years apart. At comparable ages they excreted about the same amount, and the relative proportions of each glycosaminoglycan remained essentially constant. The composition and chromatographic behaviour of the glycosaminoglycan in the urine from the case of Morquio's syndrome indicated that it consisted of material containing about one-third keratan sulphate and two-thirds chondroitin sulphate as part of the same molecule, as in proteoglycans of cartilage. The total output of glycosaminoglycans, although higher than normal, was considerably less than in other types of Mucopolysaccharidoses.  相似文献   

7.
R Kapoor  S Bourier  P Prehm 《FEBS letters》1983,152(2):183-186
Glycosaminoglycans were analysed from skin fibroblasts with osteogenesis imperfecta (OI) IIA and IIB. The content of sulphated glycosaminoglycans was greatly increased over age-matched controls and to a lesser extent with respect to older age control. Dermatan sulphate in comparison with older control was unaltered in the cells of OI IIA and IIB. The concentration of heparan sulphate was higher in the cells than in the medium, whereas hyaluronic acid, chondroitin sulphate and dermatan sulphate content was higher in the medium. The level of hyaluronic acid was greatly elevated in the medium of OI IIB with respect to both controls.  相似文献   

8.
1. Corneas of mouse, rat, guinea pig, rabbit, sheep, cat, dog, pig and cow were quantitatively analysed for water, hydroxyproline, nucleic acid, total sulphated polyanion, chondroitin sulphate/dermatan sulphate and keratan sulphate, several samples or pools of tissue from each species being used. Ferret cornea was similarly analysed for water and hydroxyproline on one pool of eight corneas. Pooled frog (38) and ferret (eight) corneas and a single sample of human cornea were qualitatively examined for keratan sulphate and chondroitin sulphate/dermatan sulphate by electrophoresis on cellulose acetate membranes. Nine species (mouse, frog, rat, guinea pig, rabbit, sheep, cat, pig and cow) were examined by light microscopy and six (mouse, frog, rat, guinea pig, rabbit and cow) by electron microscopy, with the use of Alcian Blue or Cupromeronic Blue in critical-electrolyte-concentration (CEC) methods to stain proteoglycans. 2. Water (% of wet weight), hydroxyproline (mg/g dry wt.) and chondroitin sulphate (mg/g of hydroxyproline) contents were approximately constant across the species, except for mouse. 3. Keratan sulphate contents (mg/g of hydroxyproline) increased with corneal thickness, whereas dermatan sulphate contents decreased. The oversulphated domain of keratan sulphate was absent from mouse and frog corneas, increasing as percentage of total keratan sulphate with increasing corneal thickness. Sulphation of dermatan sulphate was essentially complete (i.e. one sulphate group per disaccharide unit). 4. Chondroitin sulphate/dermatan sulphate proteoglycans were present at the d bands of the collagen fibrils of all species examined, orthogonally arrayed, with high frequency, and occasionally at the e bands. Keratan sulphate proteoglycans were present at the a and c bands of all species examined, but with far higher frequency in the thicker corneas, where keratan sulphate contents were high. 5. Alcian Blue CEC staining showed much higher sulphation of keratan sulphate in thick corneas, e.g. that of cow, than in thin corneas, e.g. that of mouse, in keeping with biochemical analyses. 6. It is suggested that the constancy of interfibrillar volumes is regulated via the swelling and osmotic pressure of the interfibrillar polyanions, by adjustment of the extent of sulphation in two independent proteoglycan populations, to achieve an 'average sulphation' of the total polyanion similar to that of fully sulphated chondroitin sulphate/dermatan sulphate. 7. The balance of synthesis of the two kinds of proteoglycans may be determined by the O2 supply to the avascular cornea. O2 supply may also determine the conversion of chondroitin sulphate into dermatan sulphate.  相似文献   

9.
Administration of (D+) catechin (100 mg/kg body wt) to rats resulted in an increase in the amount of total sulphated glycosaminoglycans (GAG) in liver. The increase was more pronounced in the case of heparan sulphate than chondroitin sulphate and dermatan sulphate. The liver slices prepared from catechin-treated rats showed a significant increase in the rate of incorporation of 35S-sulphate into GAG. Similarly there was a concentration-dependent increase in the rate of 35S-sulphate incorporation into GAG by normal liver slices in presence of catechin in vitro. Susceptibility to nitrous acid degradation and chondroitinase ABC digestion showed that more than 80% of the GAG labelled in vivo with 35S-sulphate, was heparan sulphate and about 10% chondroitin sulphate and dermatan sulphate. Gel filtration of the 35S-labelled material isolated from livers of normal and catechin-treated animals over sephacryl S-300 did not show any difference probably excluding the possibility of free GAG chains initiated on catechin or any of its metabolites in vivo. These results indicate that catechin stimulates the synthesis of sulphated GAG, particularly heparan sulphate in liver.  相似文献   

10.
The developmental profile of glycosaminoglycans (GAGs) were examined by cellulose acetate electrophoresis and high performance liquid chromatography in the early chick embryo from late blastula (stage XIII+) to early somite developmental stages (stage HH7-9). Sulphated GAGs were present from the earliest stages. They were more abundant than the non-sulphated forms and showed stage-related changes. Chondroitin sulphate and especially dermatan sulphate appeared to be the predominant GAGs in embryos at stage XIII+. Dermatan sulphate was about three times as abundant as chondroitin sulphate at stage XII+. In contrast, embryos at the definitive streak stage (stage HH4) produced about twice as much chondroitin sulphate as dermatan sulphate. At the head process stage (stage HH5), the level of chondroitin sulphate was reduced and its relative content in the embryo was about the same as dermatan sulphate. Levels of dermatan sulphate were more than five times those of heparan sulphate from stage XIII through to stage HH5 and three times more at stage HH7-9. The 4- and 6- sulphation of chondroitin sulphate increased 14- and 10-fold respectively, from stage XIII+ to stage HH 7-9. The sulphation pattern of chondroitin sulphate had a delta(di)-4S:delta(di)-6S molar ratio ranging from 4 to 8:1 and a delta(di)-4S:delta(di)-OS molar ratio ranging from 9 to 16:1 and was developmentally regulated. Thus, chondroitin sulphate in the early chick embryo was sulphated predominately in the 4-position in all stages studied. The presence of both 4- and 6-sulphated disaccharides in chondroitin sulphate indicated that both 4 and 6 sulfotransferases were active in the early embryo. Hyaluronate and sulphated GAG content increased markedly at gastrulation when the first major cellular migrations and tissue interactions begin.  相似文献   

11.
Glycosaminoglycans isolated from native non-adhesive surfaces of both endothelial and mesothelial origin and from endothelial cells cultured in vitro were analyzed by electrophoresis and characterized by chemical and enzymatic breakdown. All the surfaces examined expose in vivo chondroitin 6-sulphate as the main glycosaminoglycan. Under in vitro culture, the exposure of chondroitin sulphate is reduced. Paper chromatography of hydrolysis products upon degradation by chondroitinase AC shows equal amounts of both 6- and 4-sulphated disaccharides. At the same time, the surfaces lose their non-adhesiveness to leukocytes. The addition of fibroblast growth factor to endothelial monolayers restores both non-adhesiveness to leukocytes and exposure of chondroitin sulphate. These results seem to indicate that the exposure of chondroitin sulphate is important in preventing cellular adhesion.  相似文献   

12.
The acid glycosaminoglycans were extracted from the skins of young rats less than 1 day post partum. The isolated products were fractionated by a cetylpyridinium chloride-cellulose column technique and identified by chemical analysis, electrophoretic mobility and susceptibility to testicular hyaluronidase digestion. Hyaluronic acid (56%) dermatan sulphate (15.6%) and chondroitin 6-sulphate (9.1%) were the major components, but chondroitin 4-sulphate, heparan sulphate and heparin were also present, together with two further fractions tentatively suggested to be a heparan sulphate-like fraction and a dermatan sulphate fraction, both of short chain length or low degree of sulphation.  相似文献   

13.
Colon wall from pig, stripped of most of the mucosal layer to leave material largely composed of muscle, basement membrane, and extracellular matrix, was subjected to procedures for isolation of glycosaminoglycans. A total ethanol precipitate from a papain digest was fractionated by selective ethanol precipitation in the presence of Ca2+. Glycosaminoglycan fractions, freed proteolytically from a high molecular weight glycoprotein component, were further purified by Sepharose CL-6B gel-filtration or DE-52 anion-exchange chromatography. Glycosaminoglycans were identified by chemical composition, 13C-NMR spectroscopy and response to chondroitinase and nitrous acid degradations. The content of glycosaminoglycan in the tissue is low (0.05% dry weight) being comprised of dermatan sulphate (38%), heparin (34%), heparan sulphate (18%) and chondroitin sulphates (10%) as a percentage of total glycosaminoglycan content. Hyaluronic acid and keratan sulphate have not been detected. The composition is generally typical of a high muscle content tissue.  相似文献   

14.
Glycosaminoglycans (GAGs) such as chondroitin sulphate/dermatan sulphate (CS/DS) are complex molecules that are widely expressed on the cell membrane and extracellular matrix (ECM). They play an important role in wide range of biological activities especially during pathological conditions. Diabetes, a metabolic disorder characterized by sustained hyperglycemia, is known to affect GAGs in different tissues and affect erythrocyte adhesion. The present investigation was aimed at exploring the nature of GAGs present in erythrocytes and its role on adhesion of erythrocytes from control and diabetic rats to major extracellular matrix components. GAGs isolated from erythrocytes were demonstrated to be CS/DS and a 2-fold increase was observed in erythrocytes from diabetic rats. Disaccharide composition analysis by HPLC after depolymerization by the enzyme, chondroitinase ABC showed the presence of 4-O sulphated disaccharide units with small amounts of non-sulphated disaccharides, in both control and diabetic erythrocytes. Erythrocytes from diabetic rats, however, showed significantly increased binding to poly-l-ornithine (P-orn), type IV collagen, laminin and fibronectin, which was abrogated on treatment with chondroitinase ABC to various degrees. This study sheds new light on CS/DS in erythrocytes and its likely biological implications in vivo.  相似文献   

15.
Glycosaminoglycans are important constituents of the extracellular matrix of vertebrates, where distinct changes in their distribution pattern occur during aging. However, little is known about their changes in the nematode Caenorhabditis elegans, which ages extremely rapidly compared to mammals.The presence of glycosaminoglycans was analysed in cross-sections of all organs of the nematode, in three different age groups (60, 144, 228h), using the electron-dense dye Cuprolinic Blue in conjunction with the critical electrolyte concentration method and specific glycosaminoglycan degrading enzymes. The nematodes (strain DH 26) were grown at 25.5°C.The results indicate the presence of an organ-specific distribution pattern.Chondroitin-4-sulphate and/or chondroitin-6-sulphate are present in the epicuticula. Chondroitin-4-sulphate and/or chondroitin-6-sulphate and dermatan sulphate are detected in the mesocuticula. If stained by conventional methods the mesocuticula shows an empty fissure, which is filled by chondroitin sulphates and dermatan sulphate as shown by Cuprolinic Blue staining and enzymes. Heparan sulphate is found in the terminal web of intestinal cells while dermatan sulphate is revealed in the central cores of microvilli. An unknown polyanion staining at high electrolyte concentrations is observed in the gonads. Age-related changes do not impair the composition of the glycosaminoglycan fraction.In conclusion an unexpected highly differentiated pattern of glycosaminoglycans with high stability during aging exists.  相似文献   

16.
D A Theocharis 《Life sciences》1985,36(24):2287-2293
Glycosaminoglycans were isolated from mucus of patients with chronic bronchitis and mucoid impaction of the bronchus, whose contents were approximately 56 mumoles and 80 mumoles of hexosamine per g of dry weight of mucus respectively. Electrophoretic and chemical characterization and enzymatic susceptibility demonstrated that the glycosaminoglycans in mucus from both groups of the patients contained hyaluronic acid as the main constituent, with undersulphated chondroitin as a minor component. In addition, in mucus from the patient with mucoid impaction of the bronchus chondroitin sulphate and heparan sulphate or heparan sulphate-like substance were identified.  相似文献   

17.
1. Developing tail tendons from rats (19-day foetal to 126 days post partum) were examined by electron microscopy after staining for proteoglycan with a cationic copper phthalocyanin dye. Cuprolinic Blue, in a "critical electrolyte concentration" method. Hydroxyproline was measured on papain digests of tendons, from which glycosaminoglycuronans were isolated, characterized and quantified. 2. Mean collagen fibril diameters increased more than 10-fold with age according to a sigmoid curve, the rapid growth phase 2 being during 30-90 days after conception. Fibril periodicities were considerably smaller (50-55 nm) in phases 1 and 2 than in phase 3 (greater than 62 nm). 3. Dermatan sulphate is the main glycosaminoglycuronan in mature tendon. Chondroitin sulphate and hyaluronate preponderate in foetal tissue. 4. Proteoglycan was seen around but not inside collagen fibrils. Proteoglycan and collagen were quantified from electron micrographs. Their ratios behaved similarly to uronic acid/hydroxyproline and hyaluronate/hydroxyproline ratios, which decreased rapidly around birth, and then levelled off to a low plateau coincident with the onset of rapid growth in collagen fibril diameter. 5. Dermatan sulphate/hydroxyproline ratios suggest that the proteoglycan orthogonal array around the fibril is largely dermatan sulphate. In the foetus hyaluronate and chondroitin sulphate exceed that expected to be bound to collagen. 6. An inhibiting action of chondroitin sulphate-rich proteoglycan on fibril diameter growth is suggested. 7. The distributions of hyaluronate, chondroitin sulphate and dermatan sulphate are discussed in the light of secondary structures suggested to be present in hyaluronate and chondroitin sulphate, but not in dermatan sulphate.  相似文献   

18.
A simple procedure for the isolation of heparan sulfates from pig lung using a poly-L-lysine-Sepharose column is described. Glycosaminoglycans are absorbed on poly-L-lysine-Sepharose at pH 7.5 and eluted with an NaCl linear gradient in the following order: hyaluronic acid (0.32 M NaCl), chondroitin (0.36 M NaCl), keratan sulfate (0.80 M NaCl), chondroitin 4-sulfate (0.86 M NaCl), chondroitin 6-sulfate (0.95 M NaCl), dermatan sulfate (0.91 M NaCl), heparan sulfate (1.2 M NaCl), and heparin (1.35 M NaCl). Based on these observations, isolation of heparan sulfate from pig lung crude heparan sulfate fractions which contain chondroitin sulfates and dermatan sulfate was attempted, using this chromatographic technique.  相似文献   

19.
Glycosaminoglycans (GAGs) are present in the oviduct in which the major part of sperm capacitation occurs. In this study we have tested how capacitation of frozen-thawed bull spermatozoa is effected by exposure to different GAGs detectable or possibly present in oviductal fluid; i.e. heparin, hyaluronan, heparan sulphate, dermatan sulphate and chondroitin sulphate. Following exposure of different duration, the spermatozoa were stained with either Chlortetracycline (CTC) or merocyanine-540 and evaluated with epifluorescent light microscopy or flow cytometry, respectively. Heparin elicited a significant increase in the number of alive, capacitated spermatozoa, either expressed as higher merocyanine-540 fluorescence (p < 0.0001) or as B-pattern (p = 0.0021) in the CTC assay, during 4 h of incubation. When comparing the different GAG treatments one by one to the negative control in the flow cytometric study, only heparin and dermatan sulphate were significant (p < 0.0001) higher than the control at 0-30 min of incubation. Duration of incubation did not affect the proportion of capacitated spermatozoa when measured as merocyanine-540 fluorescence or CTC B-pattern, but the length of the incubation did affect the number of dead (Yo-PRO 1 positive) spermatozoa (p < 0.0001). Exposure to zona pellucida proteins significantly increased the proportion of acrosome reacted spermatozoa (p = 0.016). Both heparin and dermatan sulphate induce capacitation of frozen-thawed bull spermatozoa in vitro.  相似文献   

20.
Non-aggregating dermatan sulphate proteoglycans can be extracted from both fetal and adult human articular cartilage. The dermatan sulphate proteoglycans appear to be smaller in the adult, this presumably being due to shorter glycosaminoglycan chains, and these chains contain a greater proportion of their uronic acid residues as iduronate. Both the adult and fetal dermatan sulphate proteoglycans contain a greater amount of 4-sulphation than 6-sulphation of the N-acetylgalactosamine residues, in contrast with the aggregating proteoglycans, which always show more 6-sulphation on their chondroitin sulphate chains. In the fetus the major dermatan sulphate proteoglycan to be synthesized is DS-PGI, though DS-PGII is synthesized in reasonable amounts. In the adult, however, DS-PGI synthesis is barely detectable relative to DS-PGII, which is still synthesized in substantial amounts. Purification of the dermatan sulphate proteoglycans from adult cartilage is hampered by the presence of degradation products derived from the large aggregating proteoglycans, which possess similar charge, size and density properties, but which can be distinguished by their ability to interact with hyaluronic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号