首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteins from adrenal medullary cytosol that bind to chromaffin granule membranes in the presence of Ca2+ were isolated by affinity chromatography on granule membranes coupled to Sepharose 4B. Cytosol was applied to the affinity column in the presence of 2 mM free Ca2+. One group of proteins was eluted at 50 μM Ca2+ and had molecular weights of 60,000, 46,000, 36,000, 34,000, 32,000 and 26,000. At 0.1 μM Ca2+ additional proteins of molecular weights 70,000, 44,000 and 33,000 were eluted. Both groups of proteins aggregated isolated chromaffin granules in the presence of Ca2+. Since exocytosis involves cytosol-membrane interactions regulated by Ca2+, these proteins may have functional roles in this process. The term “chromobindins” is introduced to describe these proteins.  相似文献   

2.
A Le Cam  P Auberger  M Samson  G Le Cam 《Biochimie》1985,67(10-11):1125-1132
The effects of amiloride and of natural aliphatic polyamines on basal and hormone-stimulated protein phosphorylations in hepatocytes were studied. Cells isolated from adult rats were incubated in suspension with (32P)-orthophosphate, in the absence or presence of the effectors at varying concentrations and for different times; hepatocytes were then exposed to various hormones for 10 min. Phosphoproteins contained in total cell lysates were analyzed by one- and two-dimensional gel electrophoresis and autoradiography. Amiloride and spermine (the most effective amine) decreased the basal level of phosphorylation of proteins of 46, 34 and 22 kDal, and increased that of 18 kDal and 93 kDal proteins. These effects were maximal with external concentrations of 1 mM and 7.5-10 mM amiloride and spermine, respectively. They were detectable after a lag period of about 10 min and reached a plateau after 45 min. Pretreatment of cells with these effectors almost completely prevented stimulation of the phosphorylation of the 46 and 34 kDal proteins by insulin. In contrast, the effects of vasopressin on the same proteins were only partly inhibited, whereas those of glucagon appeared largely unaffected. The major effect observed in intact cells (i.e., decreased phosphorylation) could be reproduced in a cell-free system where no kinase activity persisted. Amiloride or spermine added directly to cell extracts strongly accelerated the dephosphorylation of 46 kDal protein and also of the 61 kDal protein identified as pyruvate kinase. Furthermore, restoration of the activity of this enzyme occurred concomitantly with dephosphorylation of the 61 kDal protein, an observation supporting the notion that amiloride and spermine could activate a phosphoprotein phosphatase.  相似文献   

3.
The polypeptide and glycoprotein compositions of the mouse mammary tumor virus virion from primary monolayer cultures of BALB/cfC3H mouse mammary tumor cells were studied by polyacrylamide gel electrophoresis by using internal and external labeling and Coomassie blue and periodic acid Schiff (PAS) staining. Twelve polypeptides were reproducibly resolved by the combined methods. Five major polypeptides were demonstrable with estimated molecular weights of 52,000, 36,000, 28,000, 14,000, and 10,000. Seven minor polypeptides were also consistently detected and had estimated molecular weights of 70,000, 60,000, 46,000, 38,000, 30,000, 22,000, and 17,000. Carbohydrate was associated with five of these polypeptides as measured by PAS stain or [(3)H] glucosamine labeling, or both. These glycoproteins had estimated molecular weights of 70,000, 60,000, 52,000, 36,000 and 10,000. The majority of the PAS stain and glucosamine was found in the 52,000 and 36,000 dalton peaks.  相似文献   

4.
Serum and three mitogens for mouse embryo 3T3 cells—fibroblast growth factor from brain, fibroblast growth factor from pituitary, and epidermal growth factor—specifically stimulate the synthesis and release into the medium by these cells of a group of proteins that travel together on SDS gel electrophoresis and that are detected by 35S-methionine labeling. These proteins, designated mitogen-releasable proteins (MRPs), have a median, monomer molecular weight on SDS polyacrylamide gel electrophoresis of 34,000 daltons (30,000–38,000 daltons). Our evidence indicates that these proteins comprise a family of glycoproteins, probably with a common polypeptide backbone. The observations supporting this conclusion are that MRPs give a diffuse pattern of bands upon SDS gel electrophoresis; travel as a single, diffuse band when resolved by electrophoresis in the absence of SDS; adsorb to a pea-lectin-sepharose column and can be eluted with α-methyl mannose; and can be labeled metabolically with 3H-mannose. In addition, in the presence of tunicamycin, MRPs are not made—instead, a smaller molecular weight (22,000 dalton), and apparently homogeneous, protein appears. We believe this 22,000 dalton protein to be the unglycosylated form of MRP. Further support for this idea comes from our observation that treatment of MRPs with endoglycosidase H produces a protein with a molecular weight slightly greater than 22,000 daltons. The effect of mitogens on DNA synthesis and MRP release are correlated in the following ways. First, serum factors are required for both responses. Second, in 3T3 cells transformed by SV40, Moloney and Kirsten viruses that do not synthesize DNA in response to FGF, MRPs are not released in response to FGF. Third, in untransformed 3T3 cells, the dose-response curves for fibroblast growth factor on MRP release and thymidine incorporation are closely correlated. Fourth, insulin, a poor mitogen for 3T3 cells, does not enhance MRP release. Fifth, stimulation of MRP release by epidermal growth factor or fibroblast growth factor is inhibited by hydroxyurea and butyrate, both inhibitors of DNA synthesis in these cells. Sixth, if the mitogen is removed at any time during the 20 hr preincubation period, the effect on MRP release observed between 20 and 24 hr is severely diminished.  相似文献   

5.
Summary

We have previously reported that NADH ferricyanide reductase in human erythrocytes is stimulated by insulin. Hormone-stimulated activities are attenuated in the presence of glycolytic inhibitors like vanadate, indicating the involvement of glycolysis in the mechanism by which insulin stimulates ferricyanide reduction. Activation of erythrocyte metabolism in response to insulin could be a result of hormone binding to its receptor, inducing phosphorylation of band 3 (at a site for reversible association of glycolytic enzymes) and/or other membrane proteins like the Na+/H+ antiport. Activation of the antiporter protein by insulin can stimulate glycolysis by an increase in intracellular pH, an effect which is prevented by amiloride. Evidence for a role for tyrosine phosphorylation in triggering the reductase activation came from studies with protein kinase inhibitors. Genistein, sphingosine and acridine orange have been shown to prevent insulin-stimulated ferricyanide reduction, implicating tyrosine phosphorylation as an important signal for activation of the enzyme by insulin. To evaluate activation of the enzyme by insulin stimulated phosphorylation, a comparative study was done using erythrocytes from healthy and diabetic humans. We measured ferricyanide reductase activities in basal and insulin stimulated states. Basal activities were lower in diabetics than in normal humans. Nevertheless, hormone stimulated activities were similar, despite earlier reports of decreased receptor phosphorylation of exogenous substrates in type 2 diabetics. These observations, together with previous ones, suggest that insulin-receptor kinase interaction may mediate the action of insulin on human erythrocytes by phosphorylation of cellular proteins like band 3 and/or the Na+/H+ antiport.  相似文献   

6.
Amino groups of cell envelope proteins, lipids, and lipopolysaccharides cannot be labeled in intact cells of Salmonella typhimurium G 30 by using 5-dimethylaminonaphthalene-1-sulfonylchloride incorporated in lecithin-cholesterol vesicles. However, application of membrane-interacting agents like tris(hydroxymethyl)aminomethane (Tris)-hydrochloride, ethylenediaminetetraacetate (Na salt) (EDTA), divalent cations, and sublethal doses of the cationic antibacterial agents polymyxin B and chlorhexidine induced specific fluorescent labeling of envelope proteins and lipids but not of cytoplasmic compounds, with the exception of a soluble protein with a molecular weight of 46,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Treatment with Tris-hydrochloride buffer produced labeling of the heat-modifiable protein B/B(+) and of proteins with molecular weights of 26,000, 22,000, and below 17,000. A combination of Tris-hydrochloride and EDTA induced additional dansylation of the major protein A and of proteins of molecular weights 80,000, 60,000, and 44,000. Polymyxin B and chlorhexidine caused similar labeling patterns. In every case, except with divalent cation treatment, protein B/B(+) was the most prominently labeled species. Phosphatidylethanolamine was dansylated up to 30%. Lipopolysaccharide was not reactive under any condition or treatment. In addition, the peptidoglycan-bound lipoprotein did not react with dansylchloride in either intact or Tris-hydrochloride-treated cells. The results are discussed with regard to a possible localization of labeled and unlabeled compounds of the cell envelope on the basis of a model placing cell envelope amino groups into ion-ion interactions with anionic components of other envelope compounds like phosphate and carboxyl groups.  相似文献   

7.
Protein composition of L-cell messenger ribonucleoproteins   总被引:1,自引:0,他引:1  
The comparative protein composition of L-cell messenger ribonucleo-proteins (mRNPs) was studied as a function of mRNP isolation methodology. Proteins with approximate molecular weights of 75,000, 50,000, 46,000 and 34,000 were common to mRNPs prepared by three methods: (1) isopycnic gradient centrifugation in Cs2SO4, (2) binding to poly(U)-glass fiber filters, or (3) oligo-deoxythmidylate cellulose chromatography.  相似文献   

8.
Using the polyacrylamide gel electrophoresis (PAGE) of the synaptic membranes of proteins isolated from the rat brain cortex it is shown that on phosphorylation in the presence of [gamma-33P] GTP (5 and 10 microM) and 10-20-fold excess of unlabelled ATP the phosphorylation of protein with molecular weights of 41,000 and 49,000 Dalton greatly increased but the labelling of proteins with molecular weights of 54000 and 30,000 Dalton strongly decreased or was completely abolished. The addition of unlabelled ATP practically does not change the phosphorylation of the bands (proteins) with molecular weights of 86,000, 82,000, 46,000 Dalton and weakly decreased when labelling proteins with molecular weight of 59,000. The results obtained permit suggesting the existence of proteins--substrates of specific phosphorylation with GTP in synaptic membranes.  相似文献   

9.
The effects of natural aliphatic polyamines on basal and hormone-stimulated protein phosphorylations in hepatocytes were studied. Cells isolated from adult rats were incubated in suspension with [32P]orthophosphate, in the absence or presence of polyamines at varying concentrations and for different times; hepatocytes were then exposed to various hormones for 10 min. Phosphoproteins contained in total cell lysates were analyzed by one- and two-dimensional gel electrophoresis and autoradiography. Spermine, the most effective amine, decreased the basal level of phosphorylation of proteins with 46, 34 and 22 kDa, and increased that of a 18 kDa protein. These effects, maximal with an external concentration of 7.5–10 mM, were detectable after a lag period of about 10 min and reached a plateau after 45 min. Prereatment of cells with the polyamine almost completely prevented stimulation of the phosphorylation of the 46 and 34 kDa proteins by insulin; in contrast, the effects of phenylephrine on the same proteins were only partly inhibited, whereas those of glucagon appeared largely unaffected. The major polyamine effect observed in intact cells (i.e., decreased phophorylation) could be reproduced in a cell-free system where no kinase activity persisted. Indeed, spermine added directly to cell extracts strongly accelerated dephosphorylation of the 46 kDa protein and also of the 61 kDa protein identified as pyruvate kinase; furthermore, restoration of the activity of this enzyme occurred concomitantly with dephosphorylation of the 61 kDa protein in the presence of spermine.  相似文献   

10.
The molecular mechanism of hepatic cell growth and differentiation is ill defined. In the present study, we examined the putative role of tyrosine phosphorylation in normal rat liver development and in an in vitro model, the α-fetoprotein-producing (AFP+) and AFP-nonproducing (AFP) clones of the McA-RH 7777 rat hepatoma. We demonstrated in vivo and in vitro that the AFP+ phenotype is clearly associated with enhanced tyrosine phosphorylation, as assessed by immunoblotting and flow cytometry. Moreover, immunoprecipitation of proteins with anti-phosphotyrosine antibody showed that normal fetal hepatocytes expressed the same phosphorylation pattern as stable AFP+ clones and likewise for adult hepatocytes and AFP clones. The tyrosine phosphorylation of several proteins, including the β-subunit of the insulin receptor, insulin receptor substrate-1, p85 regulatory subunit of phosphatidylinositol-3-kinase, and ras-guanosine triphosphatase-activating protein, was observed in AFP+ clones, whereas the same proteins were not phosphorylated in AFP clones. We also observed that fetal hepatocytes and the AFP+ clones express 4 times more of the insulin receptor β-subunit compared with adult hepatocytes and AFP clones and, accordingly, that these AFP+ clones were more responsive to exogenous insulin in terms of protein tyrosine phosphorylation. Finally, growth rate in cells of AFP+ clones was higher than that measured in cells of AFP clones, and inhibition of phosphatidylinositol-3-kinase by LY294002 and Wortmannin blocked insulin- and serum-stimulated DNA synthesis only in cells of AFP+ clones. These studies provide evidences in support of the hypothesis that signaling via insulin prevents hepatocyte differentiation by promoting fetal hepatocyte growth.  相似文献   

11.
Isolated hepatocytes from adult rats were cultured for 3 days in a serum-free synthetic medium. Supplementation with fibrinogen digests, glucagon and insulin remarkably increased DNA synthesis in hepatocytes. DNA synthesis began to increase at 35 h and reached a maximum at 41 to 54 h after plating. At this time, cells were morphologically identifiable as hepatocytes. Glucagon could be replaced by dibutyryl cyclic AMP or isobutyl-methyl-xanthine. Addition of amiloride (a Na+ influx inhibitor) during the initial 22 h completely inhibited DNA synthesis. These results suggest that influx of Na+ during early prereplicative period and increase in cellular cyclic AMP levels during late prereplicative period are necessary for the induction of DNA synthesis in hepatocytes.  相似文献   

12.
The effects of a mild heat shock were investigated using cultured 15-day-old fetal rat hepatocytes in which an acute glucocorticoid-dependent glycogenic response to insulin was present. After exposure from 15 min to 2 h at 42.5°C, cell surface [125I]insulin binding progressively decreased down to 60% of the value shown in cells kept at 37°C, due to a decrease in the apparent number of insulin binding sites with little change in insulin receptor affinity. In parallel cultures, protein labeling with [35S]methionine exhibited stimulated synthesis of specific proteins, in particular, 73-kDa Hsc (heat shock cognate) and 72-kDa Hsp (heat shock protein). When cells were returned to 37°C after 2 h at 42.5°C, cell surface insulin binding showed a two-third restoration within 3 h (insulin receptor half-life = 13 h), with similar concomitant return of Hsps72,73 synthesis to preinduction levels. The rate of [14C]glucose incorporation into glycogen measured at 37°C after 1- to 2-h heat treatment revealed a striking yet transient increase in basal glycogenesis (up to 5-fold). At the same time, the glycogenesis stimulation by insulin was reduced (from 3.2 to 1.4—fold), whereas that induced by a glucose load was maintained. Induction of thermotolerance after a first heating was obtained for the heat shock-dependent events except for the enhanced basal glycogenesis. In insulin-unresponsive cells grown in the absence of glucocorticoids, heat shock decreased the glycogenic capacity without modifying the glucose load stimulation, supporting the hypothesis that insulin and thermal stimulation of glycogenesis share at least part of the same pathway. Inverse variations were observed between Hsps72,73 synthesis and both cell surface insulin receptor level and insulin glycogenic response in fetal hepatocytes experiencing heat stress. © 1995 Wiley-Liss, Inc.  相似文献   

13.
Sarcolemmal membranes isolated from guinea pig heart ventricles contained endogenous protein kinase activity and protein substrates for this enzyme. Phosphorylation of sarcolemma was modestly stimulated by cyclic AMP with the half-maximal stimulation at 0.5 μm cyclic AMP. The phosphorylation of sarcolemma due to endogenous kinase was dependent on Mg2+. The apparent affinity for Mg2+ was found to be 1.4 and 0.53 mm in the absence and presence of 1 μm cyclic AMP, respectively. The apparent affinity for ATP was 55 μm. Sarcolemmal membranes were also phosphorylated by exogenous (purified) cyclic AMP-dependent protein kinase(s). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of phosphorylated membranes, followed by slicing and determination of the radioactivity in the gel slices, showed that endogenous protein kinase activity promoted the phosphorylation of specific protein peaks, arbitrarily designated a–g in order of increasing relative mobility (relative molecular weights 125,000, 110,000, 86,000, 58,000, 48,000, 22,000, and 16,000, respectively); peak e (48,000) was the major phosphorylated band. Exogenous protein kinase stimulated the phosphorylation of all peaks. However, the degree of stimulation of the low molecular weight peaks f and g was more marked. Results obtained after treatment of phosphorylated membranes with hydroxylamine at acid pH indicated the absence of any significant amount of acyl phosphate-type incorporation of phosphate. Purified phosphoprotein phosphatase from rabbit liver effected dephosphorylation of previously phosphorylated sarcolemma; this treatment resulted in dephosphorylation of all peaks (a–g). Pretreatment of sarcolemma with trypsin (membrane to trypsin ratio of 100) was found to markedly reduce both the total membrane phosphorylation as well as relative phosphorylation of peaks c, f, and g. On the other hand, pretreatment of sarcolemma with phospholipase c slightly stimulated total membrane phosphorylation with nondiscriminatory enhancement of the phosphorylation of all peaks. Microsomal membrane vesicles (enriched in sarcoplasmic reticulum fragments) isolated from guinea pig heart ventricle also contained endogenous protein kinase activity. Cyclic AMP modestly increased the kinase. Polypeptides of molecular weights 56,000, 22,000, and 16,000 were found to be phosphorylated. Exogenous (purified) cyclic AMP-dependent protein kinase increased the phosphorylation of microsomes and of 22,000 and 16,000 molecular weight polypeptides.  相似文献   

14.
An increase in intracellular pH (pHi) and ribosomal protein S6 phosphorylation during Xenopus oocyte maturation has been reported by several laboratories. In this paper, the question of whether the pHi increase is necessary to induce S6 phosphorylation, an increase in protein synthesis, or germinal vesicle breakdown (GVBD) was assessed using sodium-free medium and the putative Na/H exchange blocker amiloride. Sodium-free medium decreased basal pHi by 0.3 unit and prevented increases in pHi in response to both insulin and progesterone, but S6 phosphorylation occurred normally with both hormones. GVBD occurred normally in sodium-free medium in response to progesterone, but the effect of insulin was reduced by 60%. In sodium-containing medium, amiloride inhibited GVBD and prevented insulin or progesterone-induced increases in pHi but the hormone-induced increase in S6 phosphorylation was unaffected. In the absence of sodium, amiloride inhibited GVBD but did not affect pHi, indicating that amiloride inhibits GVBD by a pHi-independent mechanism. Both progesterone and insulin increased protein synthesis in oocytes by 35%, and amiloride inhibited basal protein synthesis but not the increase with hormone. In the presence of cholera toxin, protein synthesis increases with insulin were inhibited but increased S6 phosphorylation was unaffected. Priming of animals with pregnant mare's serum gonadotropin prior to oocyte isolation reduced the time required for progesterone-induced GVBD, and increased the synchrony of GVBD of the population. Priming also increased oocyte basal pHi and basal protein synthesis as well as the magnitude of the increase in protein synthesis with progesterone but had no effect on S6 phosphorylation. The results indicate that in Xenopus oocytes increased pHi is not necessary for increased S6 phosphorylation, increased protein synthesis, or GVBD in response to insulin or progesterone nor is increased S6 phosphorylation sufficient for GVBD or increased protein synthesis.  相似文献   

15.

Background

Two recent studies demonstrated that bariatric surgery induced remission of type 2 diabetes very soon after surgery and far too early to be attributed to weight loss. In this study, we sought to explore the mechanism/s of this phenomenon by testing the effects of proteins from the duodenum-jejunum conditioned-medium (CM) of db/db or Swiss mice on glucose uptake in vivo in Swiss mice and in vitro in both Swiss mice soleus and L6 cells. We studied the effect of sera and CM proteins from insulin resistant (IR) and insulin-sensitive subjects on insulin signaling in human myoblasts.

Methodology/Principal Findings

db/db proteins induced massive IR either in vivo or in vitro, while Swiss proteins did not. In L6 cells, only db/db proteins produced a noticeable increase in basal 473Ser-Akt phosphorylation, lack of GSK3β inhibition and a reduced basal 389Thr-p70-S6K1 phosphorylation. Human IR serum markedly increased basal 473Ser-Akt phosphorylation in a dose-dependent manner. Human CM IR proteins increased by about twofold both basal and insulin-stimulated 473Ser-Akt. Basal 9Ser-GSK3β phosphorylation was increased by IR subjects serum with a smaller potentiating effect of insulin.

Conclusions

These findings show that jejunal proteins either from db/db mice or from insulin resistant subjects impair muscle insulin signaling, thus inducing insulin resistance.  相似文献   

16.
Summary Dicyclohexylcarbodiimide (DCCD) and the 5-ethylisopropyl-6-bromo-derivative of amiloride (Br-EIPA) have been used as affinity and photoaffinity labels of the Na+/H+ exchanger in rat renal brush-border membranes. Intravesicular acidification by the Na/H+ exchanger was irreversibly inhibited after incubation of vesicles for 30 min with DCCD. The substrate of the antiporter, Na+, and the competitive inhibitor, amiloride, protected from irreversible inhibition. The Na+-dependent transport systems for sulfate, dicarboxylates, and neutral, acidic, and basic amino acids were inhibited by DCCD, but not protected by amiloride. An irreversible inhibition of Na+/H+ exchange was also observed when brush-border membrane vesicles were irradiated in the presence of Br-EIPA. Na+ and Li+ protected. [14C]-DCCD was mostly incorporated into three brush-border membrane polypeptides with apparent molecular weights of 88,000, 65,000 and 51,000. Na+ did not protect but rather enhanced labeling. In contrast, amiloride effectively decreased the labeling of the 65,000 molecular weight polypeptide. In basolateral membrane vesicles one band was highly labeled by [14C]-DCCD that was identified as the -subunit of the Na+, K+-ATPase. [14C]-Br-EIPA was mainly incorporated into a brushborder membrane polypeptide with apparent molecular weight of 65,000. Na+ decreased the labeling of this protein. Similar to the Na+/H+ exchanger this Na+-protectable band was absent in basolateral membrane vesicles. We conclude that a membrane protein with an apparent molecular weight of 65,000 is involved in rat renal Na+/H+ exchange.  相似文献   

17.
Exposure of serum-deprived 3T3-L1 fibroblasts to phorbol 12-myristate 13-acetate (PMA), synthetic diacylglycerols, platelet-derived growth factor (PDGF), or pituitary fibroblast growth factor (FGF) resulted in stimulated phosphorylation of an acidic, multicomponent, soluble protein of Mr 80,000. Phosphorylation of this protein was promoted to a lesser extent by epidermal growth factor; however, neither insulin nor dibutyryl cAMP was effective. Phosphoamino acid analysis and peptide mapping of the Mr 80,000 32P-protein after exposure of fibroblasts to PDGF revealed identical patterns to those obtained with PMA or diacylglycerols. In contrast to the Mr 80,000 protein, proteins of Mr 22,000 (and pI 4.4) and Mr 31,000 were also phosphorylated in response to insulin as well as to PMA, diacylglycerols, epidermal growth factor, PDGF, and FGF in these cells. Similar findings were noted in fully differentiated 3T3-L1 adipocytes. Preincubation of the cells with high concentrations of active phorbol esters abolished specific [3H]phorbol 12,13-dibutyrate binding, protein kinase C activity, and immunoreactivity and also prevented stimulated phosphorylation of the Mr 80,000 protein by PMA, diacylglycerols, PDGF, or FGF, supporting the contention that this effect was mediated through protein kinase C. The stimulated phosphorylation of the Mr 22,000 and 31,000 proteins in response to PMA was also abolished by such pretreatment. In contrast, the ability of insulin, PDGF, and FGF to promote phosphorylation of the Mr 22,000 and 31,000 proteins was unaffected in the protein kinase C-deficient cells. We conclude that PDGF and FGF may exert some of their effects on these cells through at least two distinct pathways of protein phosphorylation, phorbol ester-like (P) activation of protein kinase C, and an insulin-like (I) pathway exemplified by phosphorylation of the Mr 22,000 and 31,000 proteins.  相似文献   

18.
We have identified the structural proteins of phage T4 precursor tails. Complete tails, labeled with 14C-labeled amino acids, were isolated from cells infected with mutants blocked in head assembly. The proteins were characterized by sodium dodecyl sulfate-acrylamide gel electrophoresis and subsequent autoradiography. The complete tails are made up of at least fifteen different species of phage proteins.To identify the genes specifying these proteins we prepared 14C-labeled amino acid lysates made with amber mutants defective in each of the twenty-one genes involved in tail assembly. Comparison of the gel pattern of the amber mutant lysates with wild type lysates enabled us to identify the following gene products, with molecular weights in parentheses: P6 (85,000); P7 (140,000); P8 (46,000); P9 (34,000); P10 (88,000); P11 (26,000); P12 (55,000); P15 (35,000); P18 (80,000); P19 (21,000); P29 (77,000). These eleven species are all structural proteins of the tail. The genetically unidentified tail proteins have molecular weights of 42,000, 41,000, 40,000 and 35,000. They are likely to be the products of known phage genes which were not resolved in the crowded middle region of the whole lysate gel patterns. The major tail proteins are all synthesized during the late part of the phage growth cycle.The mobilities of the proteins derived from tails did not differ from the mobilities of the proteins when derived from the unassembled pools of subunits accumulating in mutant infected cells, or when derived from complete phage particles.The genes for at least seven of the structural proteins are contiguous on the genetic map. Genes for proteins needed in many copies seem to be clustered separ- ately from genes whose products are needed in only a few copies. Consideration of protein sizes and published mapping data on phage T4 also suggest that the phage structural proteins are, on the average, much larger than the non-structural proteins.The requirement that at least fifteen different species of proteins must come together in forming a phage tail emphasizes the complexity of this morphogenetic process.  相似文献   

19.
The glycoproteinic nature of the insulin receptor was indicated using two different approaches: 1. [125I]insulin binding to soluble receptors from mouse liver was inhibited by digestion with β-galactosidase or pretreatment with Ricinus communis I or concanavalin A. An other enzyme (neuraminidase) and lectins (wheat germ agglutinin, Dolichos biflorus) did not affect the binding reaction. These data confirmed that insulin directly interacts with the galactoglycoproteins of liver membranes. 2. The galactose oxidase-sodium boro[3H]hydride technique, previously used for labeling accessible membrane galactoglycoproteins, was again utilized to discern the components that interact with insulin. When liver membranes were equilibrated with 10?7 M insulin prior to labeling, the SDS gel radioactive profiles were specifically modified within two galactoglycoproteins of apparent molecular sizes 195 000 and 145 000, compatible with their participation in the insulin binding interaction. Membrane pretreatment with β-galactosidase or Sophora japonica lectin reduced the labeling in most peaks, thus supporting the argument for labeling sensitivity. Preincubation of membranes with 10?7 M proinsulin slightly hindered labeling while pretreatment with 10?7 M glucagon was ineffective, suggesting a specificity of the insulin effect. These data indicate the glycoprotein nature of the insulin receptor for two reasons: alteration of insulin binding after modification of the galactoglycoproteins, and alteration of galactoglycoprotein labeling after insulin binding. Two galactoglycoproteins, with apparent molecular weights 145 000 and 195 000, respectively, were identified and they are suggested to have insulin binding properties.  相似文献   

20.
Adult Schistosoma mansoni were radiolabeled by direct radioiodination using the Bolton-Hunter reagent or by metabolic labeling using radioactive hexose precursors. Tegumental material was extracted by freeze-thaw or by incubation in the non-ionic detergent Nonidet P-40, then applied to chromatography columns containing the following immobilized lectins: Con A, lentil lectin, wheat germ agglutinin, soybean agglutinin and the agglutinins from Ricinus communis and Helix pomatia. SDS-PAGE analysis of the sugar eluates from these columns revealed the presence of 15 glycoproteins with apparent molecular weights greater than or equal to 300,000, 215,000, 168,000, 152,000, 134,000, 122,000, 108,000, 83,000, 58,000, 53,000, 46,000, 41,000, 34,000, 30,000 and 23,500. Many of the glycoproteins reacted with more than one lectin. Information about carbohydrate content and lectin binding provides a preliminary characterization of the tegumental glycoprotein antigens of adult worms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号