首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The distribution in rat brain of angiotensin converting enzyme (EC3.4.15.1) using hippuryl-His-Leu as substrate was identical to a dipeptidyl carboxypeptidase present in membranes assayed with Met-enkephalin as substrate. Highest activity occurred in pituitary, followed by cerebellum, corpus striatum, midbrain, pons-medulla, hypothalamus, cerebral cortex and spinal cord. The ratio of products His-Leu/Tyr-Gly-Gly was identical for all regions but differed from His-Leu/Tyr. Angiotensin converting enzyme purified by immunoaffinity chromatography gave a Km for hippuryl-His-Leu of 0.5mM and for Met-enkephalin of 0.1 mM. In the presence of the specific inhibitor of angiotensin converting enzyme, SQ 14,225, the Ki value was 10?7M. Present data point to the co-identity of brain angiotensin converting enzyme with the dipeptidyl carboxypeptidase inactivating enkephalin.  相似文献   

2.
A Fitz  S Wyatt  D Boaz  B Fox 《Life sciences》1977,21(8):1179-1185
Human plasma and atypical lung converting enzyme, and porcine plasma converting enzyme are substantially inhibited by other components of the renin-angiotensin system, and by angiotensin II and its analogues. Des-Asp1 angiotensin II (angiotensin III) 0.1 mM and tridecapeptide renin substrate 0.1 mM are both effective inhibitors of human lung, plasma and porcine plasma converting enzymes. Des-Asp1-Arg2 angiotensin II also was an effective inhibitor of plasma enzymes. Bradykininase activity (kininase II) of the converting enzymes was also inhibited by angiotensin I, angiotensin III, tetradecapeptide renin substrate and tridecapeptide renin substrate. The substantial kininase and converting enzyme inhibitory effects of components of the renin-angiotensin system, suggest a potential close physiologic relationship between the kallikrein-kinin system and the renin-angiotensin system.  相似文献   

3.
Pyroglutamylhistidylproline and histidylproline, reported metabolites of thyrotropin releasing hormone, were found to competitively inhibit purified rabbit lung angiotensin converting enzyme with KI values of 0.76 μM and 1.7 mM, respectively. Native thyrotropin releasing hormone and histidylprolinediketopiperazine at concentrations of 10 mM and 5 mM, respectively, had no effect on angiotensin converting enzyme activity. Neither the native hormone nor its deamidated derivative served as substrate for angiotensin converting enzyme.  相似文献   

4.
Characteristics of the Angiotensin I Converting Enzyme from Dog Lung   总被引:2,自引:0,他引:2  
AFTER the demonstration of two forms of angiotensin by Skeggs et al.1 and their preparation of an enzyme capable of catalysing the conversion of angiotensin I to angiotensin II (converting enzyme) from horse plasma2, attention centred round the blood as the physiologically significant site of converting enzyme. But when Ng and Vane3 showed that angiotensin I was converted to angiotensin II in the lungs and that the rate of conversion was sufficient to account for most of the conversion during a single passage through the circulation, attention was directed towards the lung. Bakhle4 partially purified the converting enzyme from dog lung but this preparation contained too much angiotensinase activity for extensive analysis of the converting enzyme to be possible. There have been several further studies of the conversion of angiotensin I to angiotensin II by extracts from various animal sources5–8, including the purification of converting enzyme from hog plasma9. We have now obtained a preparation of the enzyme from dog lung with only slight contamination by angiotensinase and have studied its characteristics with particular emphasis on its ionic requirements.  相似文献   

5.
THE rapidity with which angiotensin I is converted to angiotensin II1–5 suggests that the subcellular localization of the converting enzyme is important. Bakhle6 and Cushman and Cheung7 have demonstrated the particulate nature of this enzyme. Subcellular distribution studies and marker enzyme analysis indicate that converting enzyme activity in rabbit lung is most concentrated in the pellet sedimenting at between 1,000 and 25,000g (P2), subsequently characterized as the light and heavy mitochondrial fraction. To identify this fraction more fully, we have resuspended P2 and centrifuged it through a discontinuous density gradient, a procedure which separates converting enzyme activity from the mitochondria. Marker enzyme analysis and electron microscopy suggest plasma membrane as the major constituent of that fraction displaying highest specific activity of converting enzyme.  相似文献   

6.
M. Benuck  M.J. Berg  N. Marks 《Life sciences》1981,28(23):2643-2650
Peptidyl dipeptidase activity distinct from the angiotensin converting enzyme (EC 3.4.15.1) was isolated from membrane fractions of rabbit kidney and lung. The enzyme cleaved Leu-enkephalin at the Gly-Phe bond, releasing Tyr-Gly-Gly and Phe-Leu, and also acted on bradykinin releasing the terminal dipeptide Phe-Arg. In contrast to the converting enzyme, however, this peptidyl dipeptidase did not act on angiotensin I, or on hippuryl His-Leu, nor was it inhibited by captopril (SQ 14225) or by SQ 20881. Kinetic studies indicated a Km for the kidney enzyme of 80 μM with Leu-enkephalin as a substrate. Our findings indicate that more than one enzyme is present in membrane preparations of lung and kidney inactivating enkephalin, and suggest a role for these enzymes in the peripheral actions of opiate and related peptides.  相似文献   

7.
The rat pituitary contains an enzyme which will acetylate certain corticotropin (ACTH) fragments using acetyl coenzyme A (AcCoA). This acetyltransferase activity was found in all three lobes of the rat pituitary. The enzyme was largely particulate in nature. The enzyme sedimenting at 27,000 and 100,000g had specific activities 4–10 times greater than the soluble fraction. The acetyltransferase activity was dependent on substrate concentration (ACTH), was linear with time, and was inactivated at 55 °C. The enzyme would acetylate ACTH (1–24), (1–10), and (4–10), but would not use ACTH (2–10), (3–10), or (1–8) as substrates. The apparent Km values for the substrates were as follows: AcCoA, 2.2 μm ACTH (1–24), 4.2 μm; ACTH (1–10), 96 μm; and ACTH (4–10), 37 μm.  相似文献   

8.
In hamster adipocyte ghosts, ACTH stimulates adenylate cyclase by a GTP-dependent process, whereas prostaglandin E E1, α-adrenergic agonists and nicotinic acid inhibit the enzyme by a mechanism which is both GTP- and sodium-dependent. The influence of the divalent cations Mn2+ and Mg2+, was studied on these two different, apparently receptor-mediated effects on the adipocyte adenylate cyclase. At low Mn2+ concentrations, GTP (1 μM) decreased enzyme activity by about 80%. Under this condition, ACTH (0.1 μM) stimulated the cyclase by 6- to 8-fold, and NaCl (100 mM) caused a similar activation. In the presence of both GTP and NaCl, prostaglandin E1 (1 or 10 μM) and nicotinic acid (30 μM) inhibited the enzyme by about 70–80% and epinephrine (300 μM, added in combination with a β-adrenergic blocking agent) by 40–50%. With increasing concentrations of Mn2+, the GTP-induced decrease and the NaCl-induced increase in activity diminished, with a concomitant decrease in prostaglandin E1?, nicotinic acid- and epinephrine-induced inhibitions as well as in ACTH-induced stimulation. At 1 mM Mn2+, inhibition of the enzyme was almost abolished and stimulation by ACTH was largely reduced, whereas activation of the enzyme by KF (10 mM) was only partially impaired. The uncoupling action of Mn2+ on hormone-induced inhibition was half-maximal at 100–200 μM and appeared not to be due to increased formation of the enzyme substrate, Mn · ATP. It occurred without apparent lag phase and could not be overcome by increasing the concentration of GTP. Similar but not identical findings with regard to adenylate cyclase stimulation and inhibition by hormonal factors were obtained with Mg2+, although about 100-fold higher concentrations of Mg2+ than of Mn2+ were required. The data indicate that Mn2+at low concentrations functionally uncouples inhibitory and stimulatory hormone receptors from adenylate adenylate cyclase in membrane preparations of hamster adipocytes, and they suggest that the mechanism leading to uncoupling involves an action of Mn2+ on the functions of the guanine nucleotide site(s) in the system.  相似文献   

9.
β-Phenylethylamine (PEA) was characterized as substrate for both type A and type B monoamine oxidase (MAO) in rat brain mitochondria at different substrate concentrations and at different pHs of the reaction media. The experiments on sensitivity to clorygline and deprenyl showed that the inhibition patterns with PEA as substrate differed markedly at different substrate concentrations: at 10 μM, PEA acted as a specific substrate for type B MAO, but at 50–1000 μM it became a common substrate for both types of MAO. The inhibition patterns were also affected markedly by a small change in pH of the reaction medium, especially when PEA concentrations were 50 and 100 μM: the change in pH from 7.2 to 7.8 resulted in the incresse in the proportion of type A MAO by 20–30 per cent. To investigate the mechanisms of such changes in substrate specificity of PEA, kinetic analyses were carried out at pH 7.2 and 7.8 with the uninhibited, the clorgyline-treated (type B) and the deprenyl-treated (type A) enzyme. The Lineweaver-Burk plots for the uninhibited MAO showed strong substrate inhibition for both pHs, which is more marked at pH 7.8 than at pH 7.2. Pretreatment of the enzyme with 10?7 M clorgyline resulted in generally similar Km values for PEA to those of the uninhibited enzyme, and the substrate inhibition at pH 7.8 was also stronger than that at pH 7.2. After pretreatment with 10?7 M deprenyl, the Km values were higher and the Vmax values were lower than those of the uninhibited or the clorgyline-treated enzyme; there was no or only slight substrate inhibition in these curves. These results suggest that the remarkable changes in substrate specificity observed at different PEA concentrations and at different pHs may be due to the strong substrate inhibition of type B MAO.  相似文献   

10.
Tonin, a rat enzyme capable of cleaving angiotensinogen, the tetradecapeptide renin substrate and angiotensin I directly to antiotensin II is also shown to cleave beta-lipotropin into beta-LPH 1–50, 1–51, 51–60, 52–60, 61–78 and 79–91, thereby selectively releasing the opiate-like segment beta-LPH 61–78. Its action on ACTH was similar, releasing ACTH 1–8, 1–7, 3–8, 3–7 and 9–39. In both situations the cleavages are of a selective tryptic-chymotryptic type at specific arginine, phenylalanine residues. Comparison of the tonin cleavage with those of trypsin, trypsin in combination with citraconylation of the lysine residues of beta-LPH is made. The data presented show that tonin does not cleave Met-enkephalin and can be used as an enzyme to study the presence of endorphin-like sequences in polypeptides.  相似文献   

11.
We studied anionic inhibition of the reaction CO2 + OH?? HCO3? catalyzed by human red cell carbonic anhydrase B (I) and C (II), using iodide and cyanate. In the forward reaction with respect to CO2 as the substrate, inhibition was mixed but favoring noncompetitive; the back reaction, with HCO3? as the substrate, yielded strict competitive kinetics. Mean inhibition constants, KI, in the pH range 7.2–7.5 are: iodide, 0.5 mm for enzyme B and 16 mm for C; cyanate, 0.8 μm for B and 20 μm for C. When OH? was considered as the substrate for the forward reaction, cyanate and chloride behaved as competitive inhibitors. The true inhibition constant (KI0) for cyanate (calculated for infinitely low OH?) is 0.4 μm for enzyme B and 4 μm for C. Apart from the difference in anion affinity and some 10-fold higher activity of C > B, the isozymes showed similar patterns of inhibition. Data agree with generally proposed mechanisms describing the active site as ZnH2O with pKa of about 7.  相似文献   

12.
R B Harris  I B Wilson 《Peptides》1985,6(3):393-396
We are examining the substrate specificity of atrial dipeptidyl carboxyhydrolase, a membrane-bound metallo enzyme that we isolated from bovine atrial tissue homogenates. This enzyme readily removes the dipeptide, Phe-Arg, from Bz-Gly-Ser-Phe-Arg, a stand-in substrate for atriopeptin II, one of several atrial natriuretic factors. We now report that the atrial enzyme cleaves the C-terminal dipeptide, Phe-Arg, from atriopeptin II to form atriopeptin I. The km (pH 7.5) is 25 microM and the ratio of relative Vmax/km as a measure of substrate specificity indicates that atriopeptin II is a 240-fold better substrate than Bz-Gly-His-Leu. Only Phe-Arg was detected as a hydrolysis product, indicating that sequential cleavage of Asn-Ser from atriopeptin II does not occur, and that atriopeptin I is not a substrate. Bz-Gly-Asn-Ser was as good a substrate for the atrial enzyme as Bz-Gly-His-Leu, but Bz-Cys(bzl)-Asn-Ser was not hydrolyzed. This result suggests that the presence of an intact disulfide bond or an S-alkylated residue in the P1 position of a substrate (as in atriopeptin I) prevents hydrolysis by the atrial enzyme. Comparative studies were made with the angiotensin I converting enzyme. Atriopeptin II was not a substrate. The stand-in substrates for atriopeptin I, Bz-Cys(bzl)-Asn-Ser and Bz-Gly-Asn-Ser were barely hydrolyzed, which by itself suggests that atriopeptin I is not a substrate of the angiotensin converting enzyme. Our results strongly suggest that atriopeptin II is converted to atriopeptin I and that hydrolysis is mediated by the atrial enzyme. The angiotensin I converting enzyme plays no role in processing these peptides. We suggest that the atrial enzyme be named atrial peptide convertase.  相似文献   

13.
Furanacryloyl-Phe-Gly-Gly has been shown to be a convenient substrate for angiotensin converting enzyme (dipeptidyl carboxypeptidase, EC 3.4.15.1). A detailed kinetic analysis of the hydrolysis of this substrate indicates normal Michaelis-Menten behavior with kcat = 19000 min-1 and KM = 3.0 x 10(-4) M determined at pH 7.5, 25 degrees C. The enzyme is inhibited by phosphate and activated by chloride; maximal activity is observed with 300 mM NaCl. In the absence of added zinc, activity is lost rapidly below pH 7.5 due to spontaneous dissociation of the metal, but in the presence of zinc, the enzyme remains fully active to about pH 6. The pH-rate profile indicates two groups on the enzyme with apparent pK values of 5.6 and 8.4. The substrate specificity of the enzyme has been examined in terms of the fundamental specificity quantity kcat/KM as well as the separate constants by using a series of furanacryloyl-tripeptides. The activity toward furanacryloyl-Phe-Gly-Gly has been compared with that toward the physiological substrates angiotensin I and bradykinin.  相似文献   

14.
Reported is the preparation of wheat germ (WG) hydrolyzate with potent angiotensin I‐converting enzyme (ACE) inhibitory activity, and the characterization of peptides responsible for ACE inhibition. Successful hydrolyzate with the most potent ACE inhibitory activity was obtained by 0.5 wt.%–8 h Bacillus licheniformis alkaline protease hydrolysis after 3.0 wt.%–3 h α‐amylase treatment of defatted WG (IC50; 0.37 mg protein ml−1). The activity of WG hydrolyzate was markedly increased by ODS and subsequent AG50W purifications (IC50; 0.018 mg protein ml−1). As a result of isolations by high performance liquid chromatographies, 16 peptides with the IC50 value of less than 20 μm , composed of 2–7 amino acid residues were identified from the WG hydrolyzate. Judging from the high content (260 mg in 100 g of AG50W fraction) and powerful ACE inhibitory activity (IC50; 0.48 μm ), Ile‐Val‐Tyr was identified as a main contributor to the ACE inhibition of the hydrolyzate. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
[Glycine-1-14C]hippuryl-l-histidyl-l-leucine was synthesized and evaluated as a substrate for the radiochemical assay of angiotensin converting enzyme. Hydrolysis is measured by quantitation of the liberated [glycine-1-14C]hippuric acid by liquid seintillation counting and is linear up to 30% hydrolysis. The advantages of the radiochemical assay over the spectrophotometric quantitation of the liberated hippuric acid are its increased sensitivity and lack of interference by nonionic detergents or lipids.  相似文献   

16.
The electric organ of Torpedo marmorata contains a membrane-bound, captopril-sensitive metallopeptidase that resembles mammalian angiotensin converting enzyme (peptidyl dipeptidase A; EC 3.4.15.1). The Torpedo enzyme has now been purified to apparent homogeneity from electric organ by a procedure involving affinity chromatography using the selective inhibitor lisinopril immobilised to Sepharose via a 28-A spacer arm. The purified protein, like the mammalian enzyme, acted as a peptidyl dipeptidase in cleaving dipeptides from the C-terminus of a variety of peptide substrates, including angiotensin I, bradykinin, [Met5]enkephalin, [Leu5]enkephalin, and the model substrate hippuryl (benzoylglycyl; BzGly)-His-Leu. The hydrolysis of BzGly-His-Leu was activated by Cl-. Enzyme activity was inhibited by classical angiotensin converting enzyme inhibitors, including captopril, enalaprilat (MK422), and lisinopril (MK521). Torpedo angiotensin converting enzyme, like its mammalian counterpart, was also able to act as an endopeptidase in hydrolysing the amidated neuropeptide substance P. Hydrolysis of substance P occurred primarily at the Phe8-Gly9 bond with release of the C-terminal tripeptide, Gly-Leu-MetNH2, and this hydrolysis was blocked by selective inhibitors. The Torpedo enzyme was recognised by a polyclonal antibody to pig kidney angiotensin converting enzyme on immunoelectrophoretic (Western) blot analysis. Thus, on the basis of substrate specificity, inhibitor sensitivity, and immunological criteria, the Torpedo enzyme closely resembles mammalian angiotensin converting enzyme. However, the Torpedo enzyme appears somewhat larger (Mr = 190,000) than the pig kidney enzyme (Mr = 180,000) on sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The endogenous peptide substrate(s) for Torpedo electric organ angiotensin converting enzyme and the physiological role of the enzyme in this tissue remain to be evaluated.  相似文献   

17.
To develop means of measuring angiotensin converting enzyme of endothelial cells in culture, we have synthesized benzoyl-Phe-Ala-Pro-OH (I), benzoyl-Pro-Phe-Arg-OH (II) and benzoyl-Gly-His-Leu-OH (III), each bearing a 3H-atom on the para-position of its benzoyl moiety. All three of the acylated tripeptides are substrates for the enzyme. Substrate I exhibits the lowest Km (12.5 micrometer) and yields the most sensitive assay: the enzyme of 10(6) cells can be measured in a 30 min incubation at 37 degrees C. Radiolabelled reaction product is separated from substrate by extraction of acidified reaction mixture with an organic solvent, and the rate of formation of product can be quantified by liquid scintillation counting of the organic phase. Substrate III can also be used to measure angiotensin converting enzyme of cells but requires longer incubations (180--240 min) and high salt concentrations (0.75 M Na2SO4). Substrate II is not specific: it is hydrolyzed by more than one enzyme of endothelial cells.  相似文献   

18.
We recently found and partially purified a new membrane-bound metallo dipeptidyl dipeptidase from bovine atrial tissue homogenates (Harris, R.B. & Wilson, I.B. (1984) Arch. Biochem. Biophys. 233, 667-675). We suggested that this enzyme was capable of cleaving the dipeptide, phenylalanyl-arginine from the C-terminus of atriopeptin II to give atriopeptin I. The atriopeptins are two atrial natriuretic peptides and the existence of the atrial peptide system has implicated the mammalian heart as an endocrine organ. The tetrapeptide benzoyl-glycyl-seryl-phenylalanyl-arginine was synthesized because it contains the C-terminal tripeptide sequence of atriopeptin II and should be useful to test the roles of the atrial enzyme and angiotensin I-converting enzyme in processing the atrial peptides. We found that for the atrial enzyme, Vmax was 13-fold higher and Km 7-fold-lower for this stand-in substrate than for benzoyl-glycyl-histidyl-leucine, a standard substrate used to measure converting enzyme activity. The ratio of Vmax/Km as a measure of substrate specificity indicates that the stand-in substrate is 86-fold better than benzoyl-glycyl-histidyl-leucine. In contrast, the stand-in substrate is a 20-fold poorer substrate for the converting enzyme than benzoyl-glycyl-histidyl-leucine. With the stand-in substrate, the converting enzyme showed pronounced substrate inhibition. An effective Vmax and Km were calculated using only concentrations of S below the optimum substrate concentration. These results confirm that the atrial enzyme is distinct from the converting enzyme. They also suggest that the conversion of atriopeptin II to atriopeptin I is a physiological process that is mediated by this enzyme.  相似文献   

19.
(Des-Asp1)-angiotensin I, angiotensin II and III were evaluated for pressor activities in conscious nephrectomized rats and for steroidogenic actions in rat adrenal zona glomerulosa. The pressor effect of this angiotensin nonapeptide was similar to that found with mole-equivalent doses of angiotensin III (one-third as active as angiotensin II) and was significantly attenuated by pretreatment with the 0. jararaca nonapeptide converting enzyme inhibitor. Hence, (des-Asp1)-angiotensin I is a substrate for converting enzyme in vivo, and the rapid conversion indicates that an alternate pathway for the formation of angiotensin III could exist. (Des-Asp1)-angiotensin I possessed only 0.1% of the activity of angiotensin III as a steroidogenic agent in cell suspensions of rat adrenal zona glomerulosa. Angiotensin I was a weak steroidogenic agent in vitro (1%) and was not blocked by an inhibitor of converting enzyme. Adrenal cells dispersed from the outer zone of the cortex would appear to be devoid of significant converting enzyme activity.  相似文献   

20.
Metabolism of Leu-enkephalin and Met-enkephalin-Arg6-Phe7 was studied using synaptosomal plasma membranes prepared from rat corpus striatum and whole brain. Cleavage of the pentapeptide was mediated largely by an aminopeptidase leading to the release of Tyr and Gly-Gly-Phe-Leu. Bestatin, an aminopeptidase inhibitor, prevented the release of Tyr and the tetrapeptide, but not secondary cleavage at the Gly Phe site leading to the release of Tyr-Gly-Gly and Phe-Leu. Cleavage at the latter site was inhibited by low concentrations of Thiorphan, an inhibitor of a non-aminopeptidase enkephalinase. MK-421, an inhibitor of the angiotensin converting enzyme, acted only at high substrate concentrations of Leu-enkephalin, indicating that the converting enzyme has a relatively low affinity for the pentapeptide. In contrast to the pentapeptide the major products found upon incubation of heptapeptide with synaptosomal plasma membrane were Arg-Phe and Met-enkephalin. Product release was inhibited by low concentrations of MK-421 but not by Thiorphan, indicating that the cleavage of the heptapeptide was mediated by the angiotensin converting enzyme. This pathway may represent a mechanism for the formation of Met-enkephalin from larger precursors present in striatum and other regions of the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号