首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(1) H+/electron acceptor ratios have been determined with the oxidant pulse method for cells of denitrifying Paracoccus denitrificans oxidizing endogenous substrates during reduction of O2, NO?2 or N2O. Under optimal H+-translocation conditions, the ratios H+O, H+N2O, H+NO?2 for reduction to N2 and H+NO?2 for reduction to N2O were 6.0–6.3, 4.02, 5.79 and 3.37, respectively. (2) With ascorbate/N,N,N′,N′-tetramethyl-p-phenylenediamine as exogenous substrate, addition of NO?2 or N2O to an anaerobic cell suspension resulted in rapid alkalinization of the outer bulk medium. H+N2O, H+NO?2 for reduction to N2 and H+NO?2 for reduction to N2O were ?0.84, ?2.33 and ?1.90, respectively. (3) The H+oxidant ratios, mentioned in item 2, were not altered in the presence of valinomycinK+ and the triphenylmethylphosphonium cation. (4) A simplified scheme of electron transport to O2, NO?2 and N2O is presented which shows a periplasmic orientation of the nitrite reductase as well as the nitrous oxide reductase. Electrons destined for NO?2, N2O or O2 pass two H+-translocating sites. The H+electron acceptor ratios predicted by this scheme are in good agreement with the experimental values.  相似文献   

2.
Furosemide (1 · 10?4M) inhibits a proportion of the total passive (ouabain-insensitive) K+ influx into primary chick heart cell cultures (85%), BC3H1 cells (75%), MDCK cells (40%) and HeLa cells (57%). This action of furosemide upon K+ influx is independent of (Na+ + K+)-pump inhibition since the furosemide-sensitive component of the K+ influx is identical in the presence and absence of ouabain (1 · 10?3M). For HeLa cells the passive, furosemide-sensitive component of K+ influx is markedly dependent upon the external K+, Na+ and Cl? content. Acetate, iodide and nitrate are ineffective as substitutes for Cl?, whereas Br? is partially effective. Partial Cl? replacement by NO3? gave an apparent affinity of 100 mM [Cl]. Na+ replacement by choline+ abolishes the furosemide-sensitive component, whereas Li+ replacement reduces this component by 48%. Partial Na+ replacement by choline+ gives an apparent affinity of 25 mM [Na+]. Variation in the external K+ content gives an affinity for the furosemide-sensitive component of approx. 1.0 mM. Furosemide inhibition of the passive K+ inflúx is of high affinity, half-maximal inhibition being observed at 5 · 10?6M furosemide. Piretanide (1 · 10?4M) and phloretin (1 · 10?4M) inhibit the same component of passive K+ influx as furosemide; ethacrynic acid and amiloride (both 1 · 10?4M) partially so. The stilbene, SITS (1 · 10?6M), was ineffective as an inhibitor of the furosemide-sensitive component.  相似文献   

3.
(1) Treatment of (Na+ + K+)-ATPase from rabbit kidney outer medulla with the γ-35S labeled thio-analogue of ATP in the presence of Na+ + Mg2+ and the absence of K+ leads to thiophosphorylation of the enzyme. The Km value for [γ-S]ATP is 2.2 μM and for Na+ 4.2 mM at 22°C. Thiophosphorylation is a sigmoidal function of the Na+ concentration, yielding a Hill coefficient nH = 2.6. (2) The thio-analogue (Km = 35 μM) can also support overall (Na+ + K+)-ATPase activity, but Vmax at 37°C is only 1.3 γmol · (mg protein)? · h?1 or 0.09% of the specific activity for ATP (Km = 0.43 mM). (3) The thiophosphoenzyme intermediate, like the natural phosphoenzyme, is sensitive to hydroxylamine, indicating that it also is an acylphosphate. However, the thiophosphoenzyme, unlike the phosphoenzyme, is acid labile at temperatures as low as 0°C. The acid-denatured thiophosphoenzyme has optimal stability at pH 5–6. (4) The thiophosphorylation capacity of the enzyme is equal to its phosphorylation capacity, indicating the same number of sites. Phosphorylation by ATP excludes thiophosphorylation, suggesting that the two substrates compete for the same phosphorylation site. (5) The (apparent) rate constants of thiophosphorylation (0.4 s?1 vs. 180 s?1), spontaneous dethiophosphorylation (0.04 s?1 vs. 0.5 s?1) and K+-stimulated dethiophosphorylation (0.54 s?1 vs. 230 s?1) are much lower than those for the corresponding reactions based on ATP. (6) In contrast to the phosphoenzyme, the thiophosphoenzyme is ADP-sensitive (with an apparent rate constant in ADP-induced dethiophosphorylation of 0.35 s?1, KmADP = 48 μM at 0.1 mM ATP) and is relatively K+-insensitve. The Km for K+ in dethiophosphorylation is 0.9 mM and in dephosphorylation 0.09 mM. The thiophosphoenzyme appears to be for 75–90% in the ADP-sensitive E1-conformation.  相似文献   

4.
Na+, K+ and Cl? concentrations (cji) and activities (aji), and mucosal membrane potentials (Em) were measured in epithelial cells of isolated bullfrog (Rana catesbeiana) small intestine. Segments of intestine were stripped of their external muscle layers, and bathed (at 25°C and pH 7.2) in oxygenated Ringer solutions containing 105 mM Na+ and Cl? and 5.4 mM K+. Na+ and K+ concentrations were determined by atomic absorption spectrometry and Cl? concentrations by conductometric titration following extraction of the dried tissue with 0.1 M HNO3. 14C-labelled inulin was used to determine extracellular volume. Em was measured with conventional open tip microelectrodes, aCli with solid-state Cl?-selective silver microelectrodes and aNai and aKi with Na+- and K+-selective liquid ion-exchanger microelectrodes. The average Em recorded was ?34 mV. cNai, cKi and cCli were 51, 105 and 52 mM. The corresponding values for aNai, aKi and aCli were 18, 80 and 33 mM. These results suggest that a large fraction of the cytoplasmic Na+ is ‘bound’ or sequestered in an osmotically inactive form, that all, or virtually all the cytoplasmic K+ behaves as if in free solution, and that there is probably some binding of cytoplasmic Cl?. aCli significantly exceeds the level corresponding to electrochemical equilibrium across the mucosal and baso-lateral cell membranes. Earlier studies showed that coupled mucosal entry of Na+ and Cl? is implicated in intracellular Cl? accumulation in this tissue. This study permitted estimation of the steady-state transapical Na+ and Cl? electrochemical potential differences (Δμ̄Na and Δμ̄Cl). Δμ̄Na (?7000 J · mol?1; cell minus mucosal medium) was energetically more than sufficient to account for Δμ̄Cl (1000–2000 J · mol?1).  相似文献   

5.
The subcellular distribution of adenyl cyclase was investigated in small intestinal epithelial cells. Enterocytes were isolated, disrupted and the resulting membranes fractionated by differential and sucrose gradient centrifugation. Separation of luminal (brush border) and contra-luminal (basolateral) plasma membrane was achieved on a discontinuous sucrose gradient.The activity of adenyl cyclase was followed during fractionation in relation to other enzymes, notably those considered as markers for luminal and contraluminal plasma membrane. The luminal membrane was identified by the membrane-bound enzymes sucrase and alkaline phosphatase and the basolateral region by (Na+ + K+)-ATPase. Enrichment of the former two enzymes in purified luminal plasma membrane was 8-fold over cells and that of (Na+ + K+)-ATPase in purified basolateral plasma membranes was 13-fold. F?-activated adenyl cyclase co-purified with (Na+ + K+)-ATPase, suggesting a common localization on the plasma membrane. The distribution of K+-stimulated phosphatase and 5′-nucleotidase also followed (Na+ + K+)-ATPase during fractionation.  相似文献   

6.
The technique of laser Doppler electrophoresis was applied for the study of the surface charge properties of (Na+,+)-ATPase containing microsomal vesicles derived from guinea-pig kidney. The influence of pH, the screening and binding of uni- and divalent cations and the binding of ATP show: (1) one net negative charge per protein unit with a pK = 3.9; (2) deviation from the Debye relation between surface potential and ionic strength for univalent cations, with no difference in the effect of Na+ and K+; (3) Mg2+ binds with an association constant of Ka = 1.1 · 102M?1 while ATP binds with an apparent Ka = 1.1 · 104M?2 for 1 mM Nacl, 0.2 mM KCI, 0.1 mM MgCl2, 0.1 mM Tris-HCI (pH 7.3). The binding is weaker at higher Mg2+ concentrations. There is no ATP binding in the absence of Mg2+. In addition, the average vesicle size derived from the linewidth of the quasi-elastic light scattering spectrum is 203.7 ± 15.2 nm. In the presence of ATP a reduction in size is observed.  相似文献   

7.
(1) A (K+ + H+)-ATPase containing membrane fraction, isolated from pig gastric mucosa, has been further purified by means of zonal electrophoresis, leading to a 20% increase in specific activity and an increase in ratio of (K+ + H+)-ATPase to basal Mg2+-ATPase activity from 9 to 20. (2) The target size of (Na+ + K+)-ATPase, determined by radiation inactivation analysis, is 332 kDa, in excellent agreement with the earlier value of 327 kDa obtained from the subunit composition and subunit molecular weights. This shows that the Kepner-Macey factor of 6.4·1011 is valid for membrane-bound ATPases. (3) The target size of (K+ + H+)-ATPase is 444 kDa, which, in connection with a subunit molecular weight of 110000, suggests a tetrameric assembly of the native enzyme. The ouabain-insensitive K+-stimulated p-nitrophenylphosphatase activity has a target size of 295 kDa. (4) In the presence of added Mg2+ the target sizes of the (K+ + H+)-ATPase and its phosphatase activity are decreased by about 15%, while that for the (Na+ + K+)-ATPase is not significantly changed. This observation is discussed in terms of a Mg2+-induced tightening of the subunits composing the (K+ + H+)-ATPase molecule.  相似文献   

8.
A new technique for isolating fragmented plasma membranes from skeletal muscle has been developed that is based on gentle mechanical disruption of selected homogenate fractions. (Na+ + K+)-stimulated, Mg2+-dependent ATPase was used as an enzymatic marker for the plasma membrane, Ca2+-stimulated, Mg2+-dependent ATPase as a marker for sarcoplasmic reticulum, and succinate dehydrogenase for mitochondria. Cell Cell segments in an amber low-speed (800 × g) pellet of a frog muscle homogenate were disrupted by repeated gentle shearing with a Polytron homogenizer. Sarcoplasmic reticulum was released into the low-speed supernatant, whereas most of the plasma membrane marker remained in a white, fluffy layer of the sediment, which contained sarcolemma and myofibrils. Additional gentle shearing of the white low-speed sediment extracted plasma membranes in a form that required centrifugation at 100 000 × g for pelleting. This pellet, the fragmented plasma membrane fraction, had a relatively high specific activity of (Na+ + K+)-stimulated ATPase compared with the other fractions, but it had essentially no Ca2+-stimulated ATPase activity and only a small percentage of the succinate dehydrogenase activity of the homogenate.Experimental evidence suggests that the fragmented plasma membrane fraction is derived from delicate transverse tubules rather than from the thicker, basement membrane-coated sarcolemmal sheath of muscle cells. Electron microscopy showed small vesicles lined by a single thin membrane. Hydroxyproline, a characteristic constituent of collagen and basement membrane, could not be detected in this fraction.  相似文献   

9.
The antibiotic A23187 carries Ca2+ across Müller-Rudin membranes made from 1,2-dierucoyl-sn-glycero-3-phosphocholine and n-decane. The conductance of the membranes is not increased by the Ca2+-transport. The flux depends linearly on Ca2+ concentration and ionophore concentration (above pH 6). It increases with increasing pH, approximately by a factor of 4–5 between pH 6 and pH 8. Maximal Ca2+-fluxes of about 10?10mol · cm?2 · s?1 were found. A counter transport of H+ could not be detected.The complex formation between A23187 and Ca2+ in egg phosphatidylcholine vesicles was studied spectroscopically. The results are consistent with the formation of a 2 : 1 complex. Optical absorption measurements on single phosphatidylcholine membranes were used to calculate the concentration of membrane-bound ionophore A23187.  相似文献   

10.
Premeiotic DNA synthesis in fission yeast   总被引:57,自引:0,他引:57  
Sporulating and various non-sporulating strains of S. pombe, especially several mutants deficient in conjugation or meiosis, were compared with respect to DNA synthesis under sporulation conditions. Meiosis and sporulation were induced by a transfer to nitrogen-free medium. As synchronized mitotic division was observed in all the strains as a first response to the shift, reducing the DNA amount per cell from the replicated state in G2 to the unreplicated state in the G1 phase of the cell cycle. Cells of the heterothallic wild-type strains (h+h+ or h?h?) accumulated in G1 with respect to DNA synthesis when they were incubated separately. In a mixed culture of these strains a period of enhanced DNA synthesis was observed after the start of zygote formation. This period of synthesis was absent in mutant fus1, where only prezygotes accumulated. Hence we conclude that in zygotic meiosis the premeiotic DNA synthesis is confined to zygotes after conjugation has been completed. In the diploid sporulating wild-type strain (h+h?), capable of azygotic meiosis without prior conjugation, premeiotic DNA synthesis occurred between 212 and 5 h after the shift to the sporulation medium. There was no significant premeiotic DNA synthesis observed in diploid cells of the meiosis-deficient mutants mei1 or mei3, whereas premeiotic DNA synthesis proceeded normally in mutant mei4, which is blocked at a stage after commitment to meiosis in opposition to both the other mutants.  相似文献   

11.
The stoichiometry of H+ ejection coupled to electron flow from succinate to ferricyanide in the electron transport chain of mitochondria from Ehrlich ascites tumor and AS30-D hepatoma cells was determined. Values close to 4.0 for the H+2e? ejection ratio were found in both cell lines, with either Ca2+ or K+ (+ valinomycin) as charge-compensating permeant cation. The 4 H+ ejected were compensated by outward movement of two negative charges to reduce 2 Fe(CN)63? to 2 Fe(CN)64?, and the uptake of two positive charges in the form of the permeant cation. Experiments on (a) omission of rotenone (b) the effect of antimycin A and (c) depletion of endogenous NAD(P)-linked substrates showed that no significant endogenous electron flow or H+ ejection occurred, thus eliminating possible overestimation of the H+/2e? ratio from endogenous substrates. These data on mitochondria from two tumor cell lines are fully consistent with earlier measurements of the H+/O stoichiometry for succinate and NADH oxidation in tumor mitochondria and with the H+2e? stoichiometry for site 2 in normal rat liver mitochondria.  相似文献   

12.
The permeability of the lysosomal membrane to small anions and cations was studied at 37°C and pH 7.0 in a lysosomal-mitochondrial fraction isolated from the liver of untreated rats. The extent of osmotic lysis following ion influx was used as a measure of ion permeancy. In order to preserve electroneutrality, anion influx was coupled to an influx of K+ in the presence of valinomycin, and cation influx was coupled to an efflux of H+ using the protonophore 3-tert-butyl-5,2′-dichloro-4′-nitrosalicilylanilide. Lysosomal lysis was monitored by observing the loss of latency of two lysosomal hydrolases.The order of permeability of the lysosomal membrane to anions was found to be SCN? > I? > CH3COO? > Cl? ≈ HCO?3 ≈ Pi > SO42? and that to cations Cs+ > K+ > Na+ > H+. These orders are largely in agreement with the lyotropic series of anions and cations.The implications of these findings for the mechanism by means of which a low intralysosomal pH is produced and maintained are discussed.  相似文献   

13.
13C nuclear magnetic resonance (n.m.r.) spectral data for 13C reductively methylated N-terminal tryptic glycopeptides and for 13C reductively methylated N-terminal glyco-octapeptides derived from homozygous glycophorins AM and AN are presented. Their 13C chemical shift data are compared with the previously published 13C n.m.r. data for 13C reductively methylated homozygous glycophorins AM and AN in order to investigate the means of display of the MN blood determinants by these species. The pH dependence of the 13C resonances of Nα,N-[13C]dimethyl leucine of glyco-octapeptide AN and of Nα,N-[13C]dimethyl serine of glyco-octapepti AM indicated that only a slight structural perturbation occurs at the N-terminus when a large portion of the glycoprotein molecule is removed. However, one structural ‘state’ of 13C reductively methylated glycophorin AM is lost when the glyco-octapeptide AM is produced. The 13C resonance of Nα,N-[13C]dimethyl leucine of glycooctapeptide AN titrated with a pKa of 7.7 (Hill coefficient ~ 1). The 13C resonance of Nα,N-[13C]dimethyl serine, on the other hand, exhibited an unusual pH dependence, indicating the existence of some possible steric constraints or hydrogen bonding in this molecule. In comparison to the data obtained for 13C-labelled glycooctapeptide AM molecule, the pH dependence of the chemical shift of the 13C resonance of Nα,N-[13C]dimethyl serine of tripeptide tri-L-serine is also presented. Circular dichroism (c.d.) spectra indicated that the reductive methylation technique does not cause a large perturbation of the glycophorin A molecule.  相似文献   

14.
Two spectroscopic probes of free internal Ca2+ were used to determine the influence of H+ and anion permeation on the active transport of Ca2+ by skeletal sarcoplasmic reticulum. The studies were carried out on a well-characterized Ca2+-Mg2+-ATPase-rich sarcoplasmic reticulum fraction. Studies of D. McKinley and G. Meissner (1977, FEBS Lett., 82, 47–50) show that this fraction consists of two populations of vesicles: type I which has an electrically active monovalent cation (M+) permeability and type II which lacks it. The present study distinguishes between electrically active (charge-carrying) and electrically silent (e.g., countertransport) mechanisms of ion permeation in the two vesicles and shows how the active transport of Ca2+ is influenced by these permeabilities. The major results are as follows: (1) Both type I and II vesicles have an electrically active H+ permeability. (2) Type I vesicles have electrically active anion (A?) permeabilities; type II vesicles do not. (3) At low concentrations of nonpenetrating buffers, ion imbalances across the membrane can create pH imbalances. This is due to the coupling of M+ and A? movements with H+ movements. Following a jump in KCl concentration internal acidification is observed in type I vesicles while internal alkalinization is observed in type II vesicles. These pH gradients are dissipated on a time scale of seconds and tens of minutes for type I and II vesicles, respectively. (4) Tris(hydroxymethyl)aminomethane (Tris) was shown to be effective in dissipating pH gradients in type II vesicles. A model is proposed whereby HCl is equilibrated across the membrane by a Tris-catalyzed transport cycle involving transport of an ion pair between Tris-H+ and Cl? and return of the unprotonated form of the buffer. (5) The permeabilities of several physiological and nonphysiological anions were determined for type I and II vesicles. Electrically active permeability was demonstrated for Cl? and phosphate in type I vesicles. Type II vesicles lacked electrically active mechanisms for these two anions. Evidence is given for slow Cl?OH? exchange and for rapid Cl?HCO3? exchange in type II vesicles. Electrically silent phosphate influx probably occurs by H2PO4?OH? exchange. (6) Under normal conditions the Ca2+ uptake of type II vesicles is masked. It can be unmasked by addition of nigericin in the presence of Tris. The combination of ionophore and penetrating buffer render the type II vesicles KCl permeable, allowing the replenishment of internal K+ during active transport. The results are analyzed and shown to be in agreement with the Ca2+-Mg2+-ATPase pump acting as a Ca2+K+ exchanger. The results are shown to be in disagreement with electrogenic models of pump function.  相似文献   

15.
Effect of changing [K+], [Na+] and [Cl?] in nutrient solution on potential difference (PD) and resistance was studied in bullfrog antrum with and without nutrient HCO3? but with 95% O2/5% CO2 in both cases. In both cases, changing from 4 to 40 mM K+ gave about the same initial PD maximum (anomalous response) which was followed by a decrease below control level. Latter effect was much less with zero than with 25 mM HCO3?. Changing from 102 to 8 mM Na+ gave initial normal PD response about the same in both cases. However, 10 min later the change in PD with zero HCO3? was insignificant but with 25 mM HCO3? the PD decreased (anomalous response of electrogenic NaCl symport). PD maxima due to K+ and Na+ were largely related to (Na+ + K+)-ATPase pump. Changes in nutrient Cl? from 81 to 8.1 mM gave only a decrease in PD (normal response). Initial PD increases are explained by relative increases in resistance of simple conductance pathways and of parallel pathways of (Na+ + K+)-ATPase pump and Na+/Cl? symport. Removal of HCO3? and concurrent reduction of pH modify resistance of these pathways.  相似文献   

16.
Diffusion of histamine, theophylline and tryptamine through planar lipid bilayer membranes was studied as a function of pH. Membranes were made of egg phosphatidylcholine plus cholesterol (1 : 1 mol ratio) in tetradecane. Tracer fluxes and electrical conductances were used to estimate the permeabilities to nonionic and ionic species. Only the nonionic forms crossed the membrane at a significant rate. The membrane permeabilities to the nonionic species were: histamine, 3.5 · 10?5cm · s?1; theophylline, 2.9 · 10?4cm · s?1; and tryptamine, 1.8 · 10?1cm · s?1. Chemical reactions in the unstirred layers are important in the transport of tryptamine and theophylline, but not histamine. For example, as pH decreased from 10.0 to 7.5 the ratio of nonionic (B) to ionic (BH+) tryptamine decreased by 300-fold, but the total tryptamine permeability decreased only 3-fold. The relative insensitivity of the total tryptamine permeability to the ratio, [B]/[BH+], is due to the rapid interconversion of B and BH+ in the instirred layers. Our model describing diffusion and reaction in the unstirred layers can explain some ‘anomalous’ relationships between pH and weak acid/base transport through lipid bilayer and biological membranes.  相似文献   

17.
Showdomycin inhibited pig brain (Na+ + K+)-ATPase with pseudo first-order kinetics. The rate of inhibition by showdomycin was examined in the presence of 16 combinations of four ligands, i.e., Na+, K+, Mg2+ and ATP, and was found to depend on the ligands added. Combinations of ligands were divided into five groups in terms of the magnitude of the rate constant; in the order of decreasing rate constants these were: (1)Na+ + Mg2+ + ATP, (2) Mg2+, Mg2+ + K+, K+ and none, (3) Na+ + Mg2+, Na+, K+ + Na+ and Na+ + K+ + Mg2+, (4) Mg2+ + K+ + ATP, K+ + ATP and Mg2+ + ATP, (5)K+ + Na+ + ATP, Na+ + ATP, Na+ + ATP, Na+ + K+ + Mg2+ + ATP and ATP. The highest rate was obtained in the presence of Na+, Mg2+ and ATP. The apparent concentrations of Na+, Mg2+ and ATP for half-maximum stimulation of inhibition (K0.5s) were 3 mM, 0.13 mM and 4μM, respectively. The rate was unchanged upon further increase in Na+ concentration from 140 to 1000 mM. The rates of inhibition could be explained on the basis of the enzyme forms present, including E1, E2, ES, E1-P and E2-P, i.e., E2 has higher reactivity with showdomycin than E1, while E2-P has almost the same reactivity as E1-P. We conclude that the reaction of (Na+ + K+)-ATPase proceeds via at least four kinds of enzyme form (E1, E2, E1 · nucleotide and EP), which all have different conformations.  相似文献   

18.
ADP and Pi-loaded membrane vesicles from l-malate-grown Bacillus alcalophilus synthesized ATP upon energization with ascorbateN,N,N′,N′-tetramethyl-p-phenylenediamine. ATP synthesis occurred over a range of external pH from 6.0 to 11.0, under conditions in which the total protonmotive force Δ\?gmH+ was as low as ?30 mV. The phosphate potentials (ΔGp) were calculated to be 11 and 12 kcal/mol at pH 10.5 and 9.0, respectively, whereas the Δ\?gmH+ values in vesicles at these two pH values were quite different (?40 ± 20 mV at pH 10.5 and ?125 ± 20 mV at pH 9.0). ATP synthesis was inhibited by KCN, gramicidin, and by N,N′-dicyclohexylcarbodiimide. Inward translocation of protons, concomitant with ATP synthesis, was demonstrated using direct pH monitoring and fluorescence methods. No dependence upon the presence of Na+ or K+ was found. Thus, ATP synthesis in B. alcalophilus appears to involve a proton-translocating ATPase which functions at low Δ\?gmH+.  相似文献   

19.
The action of xanthine oxidase upon acetaldehyde or xanthine at pH 10.2 has been shown to be accompanied by substantial accumulation of O2? during the first few minutes of the reaction. H2O2 decreases this accumulation of O2? presumably because of the Haber-Weiss reaction (H2O2+O2?OH?+OH+O2) and very small amounts of superoxide dismutase eliminate it. This accumulation of O2? was demonstrated in terms of a burst of reduction of cytochrome c, seen when the latter compound was added after aerobic preincubation of xanthine oxidase with its substrate. The kinetic peculiarities of the luminescence seen in the presence of luminol, which previously led to the proposal of H2O4?, can now be satisfactorily explained entirely on the basis of known radical intermediates.  相似文献   

20.
Author index     
The ionic influence and ouabain sensitivity of lymphocyte Mg2+-ATPase and Mg2+-(Na+ + K+)-activated ATPase were studied in intact cells, microsomal fraction and isolated plasma membranes. The active site of 5′-nucleotidase and Mg2+-ATPase seemed to be localized on the external side of the plasma membrane whereas the ATP binding site of (Na+ + K+)-ATPase was located inside the membrane.Concanavalin A induced an early stimulation of Mg2+-ATPase and (Na+ + K+)-ATPase both on intact cells and purified plasma membranes. In contrast, 5′-nucleotidase activity was not affected by the mitogen. Although the thymocyte Mg2+-ATPase activity was 3–5 times lower than in spleen lymphocytes, it was much more stimulated in the former cells (about 40 versus 20 %). (Na+ + K+)-ATPase activity was undetectable in thymocytes. However, in spleen lymphocytes (Na+ + K+)-ATPase activity can be detected and was 30 % increased by concanavalin A. Several aspects of this enzymic stimulation had also characteristic features of blast transformation induced by concanavalin A, suggesting a possible role of these enzymes, especially Mg2+-ATPase, in lymphocyte stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号