首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uncoupling agent releases the respiratory control of rat hepatocytes to approximately the same degree as in isolated mitochondria indicating that mitochondria in situ possess a low H+ conductance as in vitro. Mitochondria also have no detectable natural K+ conductance since the ionophore, valinomycin, is required for K+ ions to uncouple. Na+ but not K+ or choline inhibits the uncoupled respiration of liver cells. This is consistent with operation of neutral mitochondrial Na+ for H+ exchange in vivo. These results indicate a considerable similarity between certain functional and permeability properties of mitochondria in vitro and in situ. These similarities form the basis for discussion of the role of mitochondrial ion transport in metabolic regulation.  相似文献   

2.
The antibiotic A23187 carries Ca2+ across Müller-Rudin membranes made from 1,2-dierucoyl-sn-glycero-3-phosphocholine and n-decane. The conductance of the membranes is not increased by the Ca2+-transport. The flux depends linearly on Ca2+ concentration and ionophore concentration (above pH 6). It increases with increasing pH, approximately by a factor of 4–5 between pH 6 and pH 8. Maximal Ca2+-fluxes of about 10?10mol · cm?2 · s?1 were found. A counter transport of H+ could not be detected.The complex formation between A23187 and Ca2+ in egg phosphatidylcholine vesicles was studied spectroscopically. The results are consistent with the formation of a 2 : 1 complex. Optical absorption measurements on single phosphatidylcholine membranes were used to calculate the concentration of membrane-bound ionophore A23187.  相似文献   

3.
Renilla lumisomes produce a bioluminescent flash when the vesicles are disrupted with hypotonic solutions containing Ca2+. A flash is also observed in the presence of Ca2+ using isotonic solutions of monovalent cations under the following conditions: When the Na+K+ ratio inside the lumisomal membrane is high and when this ratio outside the membrane is low. We suggest that Na+ may be the counter ion for Ca2+ transport. Na+, when outside the membrane, inhibits Ca2+-triggered luminescence suggesting that Na+ blocks Ca2+ channels. Ca2+ uptake into the lumisomal membrane, as measured by bioluminescence, is very rapid in the presence of the ionophore A23187. X537A is much less effective. The Ca2+ triggered bioluminescence flash observed with lumisomes provides a rapid and sensitive assay for ionophores that are specific for divalent cations such as Ca2+.  相似文献   

4.
The effect of a synthetic neutral ligand on the Ca2+ permeability of several biological membranes has been investigated. The ligand had been previously shown to possess Ca2+-ionophoric activities in artificial phospholipid membranes. The neutral ionophore is able to transport Ca2+ across the membranes of erythrocytes and sarcoplasmic reticulum, when lipophilic anions such as tetraphenylborate or carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) are present, presumably to facilitate the diffusion of the charged Ca2+-ionophore complex across the hydrophobic core of the membrane.In mitochondria, the neutral ionophore promotes the active transport of Ca2+ in response to the negative membrane potential generated by respiration, in the presence of the specific inhibitor of the natural carrier ruthenium red.  相似文献   

5.
6.
The optimal concentrations of diaphorase, methyl viologen (MV2+) and NAD+ in the mediated electrocatalytic reduction of NAD+ were decided by applying cyclic voltammetry. The steady-state catalytic current was achieved under the conditions of 1.5 U diaphorase ml–1, 0.2 mM MV2+, and 4.8 mM NAD+ at the scan rate of 2 mV s–1, suggesting that the rate of the electrocatalytic reaction is the highest under the former conditions. However, NAD+ was effective at 0.3 mM as it was at 4.8 mM when the electrocatalysis is coupled with an enzymatic synthesis requiring NADH. In effect, the electrochemical procedure under the conditions of 1.5 U diaphorase ml–1, 0.2 mM MV2+, and 0.3 mM NAD+ worked satisfactorily to drive an enzymatic reduction of pyruvate to d-lactate in the presence of d-lactate dehydrogenase.  相似文献   

7.
Summary The neutral noncyclic, lithium-selective ionophore ETH1644, which is structurally different from previously available ionophores of this type, is a selective carrier of Li in lipid bilayer membranes of various lipid composition. The ionophore forms a 21 carrier/cation complex, and the rate-limiting step in the overall transport process is the diffusion of the carrier/ion complex across the membrane.The selectivity sequence for lithiumvs. other ions normally found in biological systems is: Li+ (1)>Na+ (0.017)K+ (0.017) >Cl (0.001), Ca2+ and Mg2+ are impermeant. At neutral pH protons do not interfere with the Li+-carrying ability of this ionophore. On the basis of structural differences and supported by conductance data, it is argued that the improved selectivity of Li+ over the other alkali cations is due more to a decrease in the affinities of the ionophore for the latter cations that to an increase of its affinity to Li+. This ionophore can also act as a carrier of biogenic amines (catecholes, indoles and derivatives), with the structure of the permeant species and mechanism of permeation similar to that observed with the alkali cations. The selectivity sequence is: tryptamine (18.1)>phenylethylamine (11.6)> tyramine (2.4)>Li+(1)>serotonin (0.34)>epinephrine (0.09) >dopamine (0.05)>norepinephrine (0.02), showing the ionophore to be more selective to Li+ than to any of the neurotransmitters studies.  相似文献   

8.
Effects of the ionophore A23187 on isolated broken and intact chloroplasts in the pH range of 6.2 to 7.6 have been studied. In both types of chloroplasts, uncoupling of photosynthetic electron transport by A23187 (6–10 μm) was mediated either by Mg2+ or—in the absence of divalent cations (i.e., when EDTA was added to the medium)—by high concentrations of Na+, but not of K+ ions. At increased concentrations of the ionophore (above about 10 μm) and high pH (7.2 to 7.6), uncoupling in broken chloroplasts was also mediated by K+ ions. The inhibition of the energy-dependent slow decline of chlorophyll fluorescence in intact chloroplasts by the ionophore (which denotes uncoupling) is reversed by EDTA in the presence of K+, but not of Na+ ions. In 3-(3′,4′-dichlorophenyl)1,1-dimethylurea-poisoned intact chloroplasts, the yield of variable chlorophyll fluorescence is lowered by A23187 + EDTA and increased again by addition of NaCl or KCl. Chlorophyll fluorescence spectra at 77 °K of intact chloroplasts incubated with A23187 + EDTA indicated that the distribution of excitation energy had changed in favor of photosystem I, as expected from a depletion of Mg2+. This change was reversed by MgCl2+, KCl, or NaCl. From a comparison of low-temperature fluorescence spectra of broken and intact chloroplasts at different levels of Mg2+ in the medium, the concentration of free Mg2+ in the stroma of the intact chloroplasts at pH 7.6 in the dark was estimated at 1 to 4 mm. The results show that in chloroplasts the specificity of A23187 for divalent cations is limited. In the presence of EDTA, the ionophore mediates fast Na+H+ exchange across thylakoid membranes, whereas K+ is transferred much less efficiently. Both Na+ and K+ ions seem to be transported readily across the chloroplast envelope by the action of the ionophore, leading to an exchange of Mg2+ for monovalent cations at the thylakoid membrane surfaces in intact chloroplasts.  相似文献   

9.
The fluxes of K+ and NH4+ carried by nonactin and trinactin across thin lipid membranes have been measured as functions of ion activity, electric potential and time. In agreement with the predictions of a version of the carrier model in common use, the shape of the initial current-voltage relation is independent of the activity of the electrolyte, ai while the ratio of the initial conductance, G0, to the steady-state conductance, G, increases according to G0/G = const1 + const2 × ai. For trinactin the data presented allow the estimation of the rate constants of the carrier process (in the limit of zero potential) in a manner which does not assume any particular variation with potential for the constants. Using empirically determined functions of potential, a complete set of values is also available for nonactin. The curve fitting which is necessary is described in the following paper. The data presently available for valinomycin are sufficient neither to test the model nor to determine a complete set of constants.  相似文献   

10.
A temperature sensitive kanamycin (Km) resistant R plasmid, Rtsl, was found to confer cupric ion (Cu2+) resistance on its hosts in Escherichiacoli. At conjugal transfer, two kinds of segregants were obtained from Rtsl, i.e. Cu2+ resistant, Km sensitive and Km resistant, Cu2+ sensitive plasmids. Protein T existed in E.coli cells harboring Rtsl or the CurKms-plasmid. The inhibitory effect on the host cell growth at 43°C was observed with Rtsl+ or the KmrCus-plasmid+ cells. A relationship between these Rtsl derivatives and Rtsl in Proteusmirabilis which has been studied was discussed.  相似文献   

11.
(1) Na+ currents and Na+-current fluctuations were measured in myelinated frog nerve fibres at 15°C during 7.7 ms depolarizations to V = 40, 60 and 80 mV. (2) The conductance γ of a single Na+ channel and the number N0 of channels per node were calculated from ensemble average values of the mean Na+ current and the variance of Na+-current fluctuations. (3) For a hyperpolarizing holding potential of VH = ?28 mV the mean values of the channel conductance and number were γ = 9.8 pS and N0 = 74 000. (4) After changing the holding potential to the resting potential (VH = 0) the conductance γ increased by a factor of 1.37 whereas the number N0 decreased by a factor of 0.60. (5) Addition of 8 nM tetrodotoxin at a holding potential of VH = ?28 mV increased γ by a factor of 1.55 and reduced N0 by a factor of 0.25. (6) The increase of the channel conductance at reduced channel numbers suggests negative cooperativity between Na+ channels in the nodal membrane.  相似文献   

12.
Two spectroscopic probes of free internal Ca2+ were used to determine the influence of H+ and anion permeation on the active transport of Ca2+ by skeletal sarcoplasmic reticulum. The studies were carried out on a well-characterized Ca2+-Mg2+-ATPase-rich sarcoplasmic reticulum fraction. Studies of D. McKinley and G. Meissner (1977, FEBS Lett., 82, 47–50) show that this fraction consists of two populations of vesicles: type I which has an electrically active monovalent cation (M+) permeability and type II which lacks it. The present study distinguishes between electrically active (charge-carrying) and electrically silent (e.g., countertransport) mechanisms of ion permeation in the two vesicles and shows how the active transport of Ca2+ is influenced by these permeabilities. The major results are as follows: (1) Both type I and II vesicles have an electrically active H+ permeability. (2) Type I vesicles have electrically active anion (A?) permeabilities; type II vesicles do not. (3) At low concentrations of nonpenetrating buffers, ion imbalances across the membrane can create pH imbalances. This is due to the coupling of M+ and A? movements with H+ movements. Following a jump in KCl concentration internal acidification is observed in type I vesicles while internal alkalinization is observed in type II vesicles. These pH gradients are dissipated on a time scale of seconds and tens of minutes for type I and II vesicles, respectively. (4) Tris(hydroxymethyl)aminomethane (Tris) was shown to be effective in dissipating pH gradients in type II vesicles. A model is proposed whereby HCl is equilibrated across the membrane by a Tris-catalyzed transport cycle involving transport of an ion pair between Tris-H+ and Cl? and return of the unprotonated form of the buffer. (5) The permeabilities of several physiological and nonphysiological anions were determined for type I and II vesicles. Electrically active permeability was demonstrated for Cl? and phosphate in type I vesicles. Type II vesicles lacked electrically active mechanisms for these two anions. Evidence is given for slow Cl?OH? exchange and for rapid Cl?HCO3? exchange in type II vesicles. Electrically silent phosphate influx probably occurs by H2PO4?OH? exchange. (6) Under normal conditions the Ca2+ uptake of type II vesicles is masked. It can be unmasked by addition of nigericin in the presence of Tris. The combination of ionophore and penetrating buffer render the type II vesicles KCl permeable, allowing the replenishment of internal K+ during active transport. The results are analyzed and shown to be in agreement with the Ca2+-Mg2+-ATPase pump acting as a Ca2+K+ exchanger. The results are shown to be in disagreement with electrogenic models of pump function.  相似文献   

13.
Vanadate inhibition of sarcoplasmic reticulum Ca2+-ATPase and other ATPases.   总被引:15,自引:0,他引:15  
Vanadate is a potent inhibitor of the Ca2+-ATPase activity of sarcoplasmic reticulum in the presence of A-23187. The purified enzyme is sensitive to vanadate even in the absence of the ionophore. Ca2+ and norepinephrine protect the enzyme against inhibition of vanadate. The nonspecificity of vanadate is emphasized by the finding of inhibition of several other ATPases including the Ca2+Mg2+-ATPases of the ascites and human red cell plasma membranes, Mg2+-ATPase of the ascites plasma membrane, and the K+-ATPases of E.coli and hog gastric mucosal cell membranes. The ascites plasma membrane Ca2+-ATPase (an ecto ATPase) and mitochondrial ATPase are not inhibited by vanadate.  相似文献   

14.
Ionophore A23187-mediated Ca2+-induced oscillations in the conductance of the Ca2+-sensitive K+ channels of human red cells were monitored with ion specific electrodes. The membrane potential was continuously reflected in CCCP-mediated pH changes in the buffer-free medium, changes in extracellular K+ activity were followed with a K+-selective electrode, and changes in the intracellular concentration of ionized calcium were calculated on the basis of cellular 45Ca content. An increased cellular 45Ca content at the successive minima of the oscillations where the K+ channels are closed indicates that the activation of the channels might be a (dCa2+/dt)-sensitive process and that accommodation to enhanced levels of intracellular free calcium may occur. An incipient inactivation of the K+ channels at intracellular ionized calcium levels of about 10 μM and a concurrent membrane potential of about ?65 mV was observed. At a membrane potential of about ?70 mV and an intracellular concentration of about 2·10?4M no inactivation of K+ channels took place. Inactivation of the K+ channels is suggested to be a compound function of the intracellular level of free calcium and the membrane potential. The observed sharp peak values in cellular 45Ca content support the notion that a necessary component of the oscillatory system is a Ca2+ pump operating with a significant delay in the activation/inactivation process in response to changes in cellular concentration of ionized calcium.  相似文献   

15.
Nitrous oxide reductase from Wolinella succinogenes was tested for benzyl viologen cation (BV+)-chlorinated methane oxidoreductase activity, using di-, tri- and tetra-chloromethanes, and for the inhibition of BV+-N2O oxidoreductase activity by these chloromethanes. No BV+-chlorinated methane oxidoreductase activity was detected. Any such activity, if it exists, must be less than 0.1% of the BV+-N2O oxidoreductase activity of the enzyme. Inhibition of the BV+-N2O oxidoreductase activity by dichloromethane was detected and was apparently reversible and non-competitive, as is the case with the small metal-ligand type inhibitors of the enzyme (e.g. acettlene, azide, cyanide and carbon monoxide). Trichloromethane was a weaker inhibitor and inhibition was not detected with tetrachloromethane.  相似文献   

16.
Electrophoretic cation permeability, as estimated by rates of passive swelling of mitochondria suspended in Na+ and K+ nitrate, increases with increasing temperature and elevated pH and is inhibited by Mg+2. Mitochondria swollen in Na+ nitrate at 37° and pH 8.2 contract in an energy-dependent reaction. The efficiency of the contraction (absorbance change per O2 or ATP consumed) decreases with increased electrophoretic cation permeability as established by either elevated pH or addition of gramicidin. Efficiency is increased by Mg+2. This inverse relationship between electrophoretic cation permeability and efficiency of contraction is compatible with an osmotic contractile mechanism which depends on the Na+H+ exchanger present in the mitochondrial membrane.  相似文献   

17.
We have studied the kinetics of ionophore X-537A-mediated transport of manganese ions into small unilamellar vesicles formed from dipalmitoylphosphatidylcholine. To follow the transport we used the paramagnetic effect of manganese on the 1H-NMR signal from choline trimethylammonium groups on the inner phospholipid monolayer. The transport of only one manganese ion produces an intravesicular concentration which is high enough (approx. 1 mM) to substantially broaden this signal. The observed signal thus arises predominantly from those vesicles which contain no manganese. Therefore, as manganese is transported into the vesicles the observed signal decreases in intensity, but does not broaden. The initial time-dependence of the intensity of the signal, S(t), can be approximated by the simple first-order rate law: S(t) = S(O)exp(?K′t), where K′ is the probability per unit time for the transport of a manganese ion from the external medium to the intravesicular space. From the dependence of K′ on the ionophore X-537A concentration we conclude that manganese is transported into the vesicles via both 1 : 1 and 2 : 1 complexes with ionophore X-537A. At low ratios of ionophore X-537A to vesicles transport via the 1 : 1 complex predominates; at high ratios transport via the 2 : 1 complex predominates. From the dependence of K′ on manganese concentration we determined that under our conditions the equilibration of ionophore X-537A between vesicles is much faster than the transport of manganese through the vesicles. Lastly, from the dependence of K′ on temperature, we conclude that the ionophore X-537A-mediated transport of manganese into the dipalmitoylphosphatidylcholine vesicles is very sensitive to the gel-liquid crystalline phase transition.  相似文献   

18.
Accumulation of calcium has been studied in bovine rod outer segments (rods), isolated by sucrose density gradient centrifugation. Calcium-depleted rods are obtained by having ethyleneglycol-bis-(β-aminoethylether)-N,N′-tetraacetic acid (EGTA) present during isolation.Rods thus isolated have a leaky plasma membrane, as shown by the effects of ionophore A23187 and by their light-induced phosphorylation behaviour. The accumulation of 45Ca, determined by incubation followed by a single fast washing-filtration procedure, thus represents translocation across the rod sac membrane.Accumulation in non-depleted rods is independent of the external calcium level and of ATP, suggesting exchange of 40Ca by 45Ca. In depleted rods in the presence of ATP there is net uptake, sigmoidally increasing with the external calcium concentration to the level attained in non-depleted rods. This net uptake is abolished by omission of ATP, its replacement by β,γ-methylene ATP and lowering the temperature to 0° C, suggesting involvement of enzymatic hydrolysis of ATP.Replacement of KCl by NaCl in the medium causes marked inhibition of 45Ca uptake, both net uptake and exchange. Oligomycin, ruthenium red, lanthanum and ouabain do not inhibit accumulation.Efflux of 45Ca from pre-loaded rods is slow in a KCl medium (t12 ~30 min at 25° C), but is greatly accelerated by addition of NaCl or Ca2+ (t12 10 s at 25°C).It is concluded that the rod sac membrane contains a carrier system, which is sensitive towards Ca2+ and Na+ and which requires ATP for net uptake of Ca2+ but not for exchange transport of Ca2+ with Ca2+ or Na+.  相似文献   

19.
The electrogenic nature of the l-glutamate-stimulated Na+ flux was examined by measuring the distribution of the lipophilic anion [35S]thiocyanate (SCN?) into synaptic membrane vesicles that were incubated in a NaCl medium. Concentrations of l-glutamate from 10?7 to 10?4 M added to the incubation medium caused an enhanced intravesicular accumulation of SCN?. Based on the SCN? distribution in synaptic membrane vesicles it was calculated that 10 μM l-glutamate induced an average change in the membrane potential of + 13 mV. l-Glutamate enhanced both the Na+ and K+ conductance of these membranes as determined by increases in SCN? influx. Other neuroexcitatory amino acids and amino acid analogs (d-glutamate, l-aspartate, l-cysteine sulfinate, kainate, ibotenate, quisqualate, N-methyl-d-aspartate, and dl-homocysteate) also increased SCN? accumulation in synaptic membrane vesicles. These observations are indicative of the activation by l-glutamate and some of its analogs of excitatory amino acid receptor ion channel complexes in synaptic membranes.  相似文献   

20.
A maximal rate of the ouabain-sensitive 204Tl influx in human erythrocytes can be attained at trace concentrations of Tl+ in Mg2+ isotonic media free of K+ and Na+. The maximal influx of Tl+ from isotonic Mg(NO3)2 at 20°C and pH 7.4 was 0.45 mM · 1?1 · h?1 with a Km of 0.025 mM. In contrast to the active influx of Tl+, the passive Tl+ fluxes were neither saturated nor influenced by external cations in the range of concentrations of Tl+ and K+ studied. The rate constants of Tl+ passive fluxes in human and cat erythrocytes can be related to pH by the equation log kin(out) = –A + B · pH, where A and B are empirical constants for particular conditions. The apparent activation energy was 16 and 11 kcal/mol in sulphate and nitrate media, respectively. Tl+ and the alkali metal cations seem to overcome a common barrier in the erythrocyte membrane. Nevertheless, the rate of the passive penetration of Tl+ is about two orders of magnitude faster than those of K+ or Rb+. An extra non-Coulombic interaction between Tl+ and membrane ligands appears to be involved providing an accumulation of Tl+ somewhere in the vicinity of the membrane barrier and increasing the diffusion fluxes of Tl+ in both directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号