首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Methionine metabolism in mammals. Adaptation to methionine excess   总被引:15,自引:0,他引:15  
We conducted a systematic evaluation of the effects of increasing levels of dietary methionine on the metabolites and enzymes of methionine metabolism in rat liver. Significant decreases in hepatic concentrations of betaine and serine occurred when the dietary methionine was raised from 0.3 to 1.0%. We observed increased concentrations of S-adenosylhomocysteine in livers of rats fed 1.5% methionine and of S-adenosylmethionine and methionine only when the diet contained 3.0% methionine. Methionine supplementation resulted in decreased hepatic levels of methyltetrahydrofolate-homocysteine methyltransferase and increased levels of methionine adenosyltransferase, betaine-homocysteine methyltransferase, and cystathionine synthase. We used these data to simulate the regulatory locus formed by the enzymes which metabolize homocysteine in livers of rats fed 0.3% methionine, 1.5% methionine, and 3.0% methionine. In comparison to the model for the 0.3% methionine diet group, the model for the 3.0% methionine animals demonstrates a 12-fold increase in the synthesis of cystathionine, a 150% increase in flow through the betaine reaction, and a 550% increase in total metabolism of homocysteine. The concentrations of substrates and other metabolites are significant determinants of this apparent adaptation.  相似文献   

2.
The important features of the enzymes involved in methionine synthesis in sheep were found to be the low activity of betaine-homocysteine methyltransferase and the high activity of 5-methyltetrahydrofolate-homocysteine methyltransferase. The rate of the methionine synthesis in sheep liver was significantly lower than that in rats due to the low activity of hepatic betaine-homocysteine methyltransferase. The hepatic methionine recycling was stimulated by the addition of betaine in both species. These results indicate that in sheep 5-methyltetrahydrofolate-homocysteine methyltransferase plays a significant role in hepatic methionine synthesis along with betaine-homocysteine methyltransferase. In contrast, in the rat hepatic system methionine synthesis is virtually dependent on betaine-homocysteine methyltransferase.  相似文献   

3.
The administration of alcohol to rats fed a protein-restricted diet results in significant changes in the hepatic content of four enzymes of methionine metabolism. The levels of s-adenosylmethionine synthetase, cystathionine synthase, and betaine-homocysteine methyltransferase increase while the level of methyltetrahydrofolate-homocysteine methyltransferase decreases. These changes represent a reversal of the normal adaptive response to protein-restriction. The resultant impairment in methionine conservation could explain the alcohol-induced increase in the dietary lipotrope requirement.  相似文献   

4.
Methionine metabolism in mammals. The methionine-sparing effect of cystine   总被引:2,自引:0,他引:2  
Cystine can replace approximately 70% of the dietary requirement for methionine. We used standard enzyme assays, determinations of the hepatic concentrations of metabolites and an in vitro system which simulates the regulatory site formed by the enzymes which utilize homocysteine in this study of the mechanism for this adaptation. A significant alteration in the pattern of hepatic homocysteine metabolism occurs following the substitution of cystine for methionine. The major change is a marked reduction in the synthesis of cystathionine. Decreases in both the level of cystathionine synthase and in the concentration of adenosyl-methionine, a positive effector of the enzyme, explain this finding. Despite significant increases in the hepatic levels of betaine-homocysteine methyltransferase and methyltetrahydrofolate-homocysteine methyltransferase, flow through these reactions remains relatively constant. The betaine enzyme may be essential for efficient methionine conservation. In the absence of choline, cystine cannot replace methionine in an adequate diet limited in the latter amino acid.  相似文献   

5.
6.
Exposure of sheep to 36% nitrous oxide for 8 days (2-hr per day) led to 90%, 82% and 74% inhibition of 5-methyltetrahydrofolate-homocysteine methyltransferase in the liver, heart and brain, respectively, while there was no significant decrease in the activity of methylmalonyl-CoA mutase. There was also no change of betaine-homocysteine methyltransferase activity. The level of plasma methionine in nitrous-oxide-exposed sheep fell to 30% of its initial value. S-Adenosylmethionine level was reduced to 50% of the control value in the liver, and was also significantly decreased in the heart, but not in the brain. Excretion of formiminoglutamic acid and homocystine was also observed in the urine of sheep exposed to nitrous oxide. These results demonstrate that inhibition of 5-methyltetrahydrofolate-homocysteine methyltransferase causes a pronounced perturbation of methionine metabolism in sheep, suggesting that dietary methionine plus methionine synthesized from the methyl groups of betaine are not sufficient to meet the methyl needs for biological methylation reactions in this species and, in turn, emphasizing the role of 5-methyltetrahydrofolate-homocysteine methyltransferase in methionine synthesis in the sheep.  相似文献   

7.
Treatment of rats with a methionine diet leads not only to a marked increase of S-adenosylmethionine synthetase in liver, but also to the increase of glycine, guanidoacetate and betaine-homocysteine methyltransferases. The activity of tRNA methyltransferase decreased with the increased amounts of methionine in the diets. However, the activities of phospholipids and S-adenosylmethionine-homocysteine methyltransferases did not show any significant change. When hepatocarcinogenesis induced by 2-fluorenylacetamide progresses, the activities of glycine and guanidoacetate methyltransferases in rat liver decreased, and could not be detected in tumorous area 8 months after treatment. The levels of S-adenosylmethionine in the liver also decreased to levels of one-fifth of control animals at 8 months. The uptake and metabolism of [methyl-3H]-methionine and -S-adenosylmethionine have been investigated by in vivo and isolated hepatocytes. The uptake of methionine and transfer of methyl group to phospholipid in the cells by methionine were remarkably higher than those by S-adenosylmethionine. These results indicate that phospholipids in hepatocytes accept methyl group from S-adenosylmethionine immediately, when it is synthesized from methionine, before mixing its pool in the cells.  相似文献   

8.
Obesity is an underlying risk factor in the development of cardiovascular disease, dyslipidemia and non-alcoholic fatty liver disease (NAFLD). Increased hepatic lipid accumulation is a hallmark in the progression of NAFLD and impairments in liver phosphatidylcholine (PC) metabolism may be central to the pathogenesis. Hepatic PC biosynthesis, which is linked to the one-carbon (C1) metabolism by phosphatidylethanolamine N-methyltransferase, is known to be important for hepatic lipid export by VLDL particles. Here, we assessed the influence of a high-fat (HF) diet and NAFLD status in mice on hepatic methyl-group expenditure and C1-metabolism by analyzing changes in gene expression, protein levels, metabolite concentrations, and nuclear epigenetic processes. In livers from HF diet induced obese mice a significant downregulation of cystathionine β-synthase (CBS) and an increased betaine-homocysteine methyltransferase (BHMT) expression were observed. Experiments in vitro, using hepatoma cells stimulated with peroxisome proliferator activated receptor alpha (PPARα) agonist WY14,643, revealed a significantly reduced Cbs mRNA expression. Moreover, metabolite measurements identified decreased hepatic cystathionine and L-α-amino-n-butyrate concentrations as part of the transsulfuration pathway and reduced hepatic betaine concentrations, but no metabolite changes in the methionine cycle in HF diet fed mice compared to controls. Furthermore, we detected diminished hepatic gene expression of de novo DNA methyltransferase 3b but no effects on hepatic global genomic DNA methylation or hepatic DNA methylation in the Cbs promoter region upon HF diet. Our data suggest that HF diet induces a PPARα-mediated downregulation of key enzymes in the hepatic transsulfuration pathway and upregulates BHMT expression in mice to accommodate to enhanced dietary fat processing while preserving the essential amino acid methionine.  相似文献   

9.
The dietary levels of both choline and protein are major determinants of the content of betaine in rat liver. Increased protein intake decreases hepatic betaine. Our studies indicate that an increase in the betaine-homocysteine methyltransferase reaction due to an increased availability of homocysteine is the basis for this effect of dietary protein.  相似文献   

10.
The activities of choline oxidase and betaine-homocysteine methyltransferase increased markedly in pre-ruminant lamb liver after birth and subsequently decreased when the lambs reached the ruminant state, while the developmental changes in hepatic 5-methyl-H4folate-homocysteine methyltransferase were negatively correlated with those of betaine-homocysteine methyltransferase. Hepatic phospholipid methyltransferase was elevated almost four-fold by the 10th postnatal day, but declined thereafter. Hepatic glycine methyltransferase in one-day-old lambs increased 55-fold, compared with that of fetuses, and thereafter decreased dramatically with age. Guanidoacetate methyltransferase, glycine methyltransferase and betaine-homocysteine methyltransferase in sheep pancreas increased markedly with age and were many times higher than the hepatic enzymes in adult sheep. Choline oxidase, betaine-homocysteine methyltransferase, cystathionine beta-synthase and glycine methyltransferase in adult sheep liver were much lower than those in rat. These results illustrate the conservative features of methyl group metabolism in postruminant sheep.  相似文献   

11.
12.
Disturbance of methyl group metabolism in alloxan-diabetic sheep   总被引:1,自引:0,他引:1  
Alloxan-induced diabetes results in changes in the activities of a number of enzymes related to methyl group metabolism in sheep. Decreases in the activities of phospholipid methyltransferase and betaine-homocysteine methyltransferase in diabetic sheep liver indicate a reduced rate of choline synthesis and oxidation. A 65-fold increase in the activity of glycine methyltransferase and a 4-fold rise in the activity of gamma-cystathionase in diabetic sheep liver with elevated urinary excretion of cyst(e)ine suggest that catabolism of the methyl group of methionine and homocysteine was enhanced in the diabetic state.  相似文献   

13.
To produce a severe choline-methionine deficiency, a synthetic L-amino acid diet, free of choline, methionine, vitamin B12, and folic acid and supplemented with guanidoacetic acid, a methyl group acceptor, was fed to female rats for 2 weeks. The in vitro activity of liver microsomal phosphatidylethanolamine methyltransferase was stimulated twofold when compared with basal diet controls. The activity of choline phosphotransferase was depressed by 86%; thus, the contribution of the methyltransferase in the overall synthesis of phosphatidylcholine apparently increased. However, measurement of the in vivo methylation of phosphatidylethanolamine by incorporation of [1,2-14C]ethanolamine into phosphatidylcholine indicates that the methylation pathway is markedly depressed in methyl deficiency. Hepatic concentrations of the methyltransferase substrate, S-adenosylmethionine, and the inhibitory metabolite, S-adenosylhomocysteine, were significantly altered such that an unfavorable environment for methylation was present in the deficient animal. The ratio of substrate to inhibitor was depressed from 5.2:1 in the controls to 1.7:1 in the livers of methyl-depleted rats. Control of transmethylation in accordance with the availability of substrates, phosphatidylethanolamine, or S-adenosylmethionine, and the level of S-adenosylhomocysteine is discussed.  相似文献   

14.
Methionine metabolism plays a central role in methylation reactions, production of glutathione and methylarginines, and modulating homocysteine levels. The mechanisms by which these are affected in NAFLD are not fully understood. The aim is to perform a metabolomic, molecular and epigenetic analyses of hepatic methionine metabolism in diet-induced NAFLD. Female 129S1/SvlmJ;C57Bl/6J mice were fed a chow (n = 6) or high-fat high-cholesterol (HFHC) diet (n = 8) for 52 weeks. Metabolomic study, enzymatic expression and DNA methylation analyses were performed. HFHC diet led to weight gain, marked steatosis and extensive fibrosis. In the methionine cycle, hepatic methionine was depleted (30%, p< 0.01) while s-adenosylmethionine (SAM)/methionine ratio (p< 0.05), s-adenosylhomocysteine (SAH) (35%, p< 0.01) and homocysteine (25%, p< 0.01) were increased significantly. SAH hydrolase protein levels decreased significantly (p <0.01). Serine, a substrate for both homocysteine remethylation and transsulfuration, was depleted (45%, p< 0.01). In the transsulfuration pathway, cystathionine and cysteine trended upward while glutathione decreased significantly (p< 0.05). In the transmethylation pathway, levels of glycine N-methyltransferase (GNMT), the most abundant methyltransferase in the liver, decreased. The phosphatidylcholine (PC)/ phosphatidylethanolamine (PE) ratio increased significantly (p< 0.01), indicative of increased phosphatidylethanolamine methyltransferase (PEMT) activity. The protein levels of protein arginine methytransferase 1 (PRMT1) increased significantly, but its products, monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA), decreased significantly. Circulating ADMA increased and approached significance (p< 0.06). Protein expression of methionine adenosyltransferase 1A, cystathionine β-synthase, γ-glutamylcysteine synthetase, betaine-homocysteine methyltransferase, and methionine synthase remained unchanged. Although gene expression of the DNA methyltransferase Dnmt3a decreased, the global DNA methylation was unaltered. Among individual genes, only HMG-CoA reductase (Hmgcr) was hypermethylated, and no methylation changes were observed in fatty acid synthase (Fasn), nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (Nfκb1), c-Jun, B-cell lymphoma 2 (Bcl-2) and Caspase 3. NAFLD was associated with hepatic methionine deficiency and homocysteine elevation, resulting mainly from impaired homocysteine remethylation, and aberrancy in methyltransferase reactions. Despite increased PRMT1 expression, hepatic ADMA was depleted while circulating ADMA was increased, suggesting increased export to circulation.  相似文献   

15.
Dietary experiments were carried out to evaluate the physiological role of glycine methyltransferase. When rats received a 18% casein diet containing excess methionine, the activity of the enzyme in liver extracts increased with increasing methionine content in the diet. Adenosylmethionine synthetase and adenosylhomocysteinase activities were also elevated, while guanidoacetate methyltransferase activity showed no significant change. The glycine methyltransferase activity reached a maximal level after 4–6 days on the 3% methionine diet. Immunological titration showed that the increase in activity was associated with the increase in amount of the enzyme.  相似文献   

16.
The effects of dietary supplementation with 0.5% methionine, 2.5% serine, or both on hyperhomocysteinemia induced by deprivation of dietary choline or by dietary addition of 0.5% guanidinoacetic acid (GAA) were investigated in rats fed a 10% casein diet. Hyperhomocysteinemia induced by choline deprivation was not suppressed by methionine alone and was only partially suppressed by serine alone, whereas it was completely suppressed by a combination of methionine and serine, suggesting a synergistic effect of methionine and serine. Fatty liver was also completely prevented by the combination of methionine and serine. Compared with methionine alone, the combination of methionine and serine decreased hepatic S-adenosylhomocysteine and homocysteine concentrations and increased hepatic betaine and serine concentrations and betaine-homocysteine S-methyltransferase activity. GAA-induced hyperhomocysteinemia was partially suppressed by methionine alone, but no interacting effect of methionine and serine was detected. In contrast, GAA-induced fatty liver was completely prevented by the combination of methionine and serine. These results indicate that a combination of methionine and serine is effective in suppressing both hyperhomocysteinemia and fatty liver induced by choline deprivation, and that methionine alone is effective in suppressing GAA-induced hyperhomocysteinemia partially.  相似文献   

17.
The effects of dietary supplementation with 0.5% methionine, 2.5% serine, or both on hyperhomocysteinemia induced by deprivation of dietary choline or by dietary addition of 0.5% guanidinoacetic acid (GAA) were investigated in rats fed a 10% casein diet. Hyperhomocysteinemia induced by choline deprivation was not suppressed by methionine alone and was only partially suppressed by serine alone, whereas it was completely suppressed by a combination of methionine and serine, suggesting a synergistic effect of methionine and serine. Fatty liver was also completely prevented by the combination of methionine and serine. Compared with methionine alone, the combination of methionine and serine decreased hepatic S-adenosylhomocysteine and homocysteine concentrations and increased hepatic betaine and serine concentrations and betaine-homocysteine S-methyltransferase activity. GAA-induced hyperhomocysteinemia was partially suppressed by methionine alone, but no interacting effect of methionine and serine was detected. In contrast, GAA-induced fatty liver was completely prevented by the combination of methionine and serine. These results indicate that a combination of methionine and serine is effective in suppressing both hyperhomocysteinemia and fatty liver induced by choline deprivation, and that methionine alone is effective in suppressing GAA-induced hyperhomocysteinemia partially.  相似文献   

18.
S-Adenosylhomocysteine inhibits betaine-homocysteine methyltransferase. The inhibition is nonlinear, competitive in relation to homocysteine, and noncompetitive in relation to betaine. S-Adenosylhomocysteine activates cystathionine synthase at all concentrations of the substrates, serine and homocysteine. By altering the distribution of homocysteine between these competing pathways, S-adenosylhomocysteine may be significant in the regulation of methionine metabolism in the intact animal.  相似文献   

19.
20.
To determine the effect of dietary protein level on experimental hyperhomocysteinemia, rats were fed 10% casein (10C) and 40% casein (40C) diets with or without 0.5% guanidinoacetic acid (GAA) for 14 d. In addition, rats were fed 10C + 0.75% methionine (10CM) and 40C + 0.75% methionine (40CM) diets with or without 2.5% serine for 14 d to determine the relationship between the dietary protein level and intensity of the hypohomocysteinemic effect of serine. GAA supplementation markedly increased the plasma homocysteine concentration in rats fed with the 10C diet, whereas it did not increase the plasma homocysteine concentration in rats fed with the 40C diet. Although serine supplementation significantly suppressed the methionine-induced enhancement of plasma homocysteine concentration, the decreased plasma homocysteine concentration was significantly lower in rats fed with the 40CM diet than in rats fed with the 10CM diet. The hepatic cystathionine β-synthase and betaine-homocysteine S-methyltransferase activities were significantly higher in rats fed with the 40C or 40CM diet than in rats fed with the 10C or 10CM diet, irrespective of supplementation with GAA and serine. These results indicate that the high-casein diet was effective for both suppressing GAA-induced hyperhomocysteinemia and potentiating the hypohomocysteinemic effect of serine, probably through the enhanced activity of homocysteine-metabolizing enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号