首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorylation of microtubule-associated protein 2 (MAP 2) by Ca2+-, calmodulin-dependent protein kinase II (protein kinase II) inhibited the actin filament cross-linking activity of MAP 2. This inhibition required the presence of ATP, Mg2+, Ca2+ and calmodulin. The minimal concentration of MAP 2 required for gel formation of actin filaments was increased with increasing amounts of phosphate incorporated into MAP 2, and the phosphorylated MAP 2, into which 10.3 mol of phosphate/mol of protein had been incorporated, did not cause actin filaments to gel under the experimental conditions used. The phosphorylation of MAP 2 by Ca2+-, phospholipid-dependent protein kinase (protein kinase C) and cAMP-dependent protein kinase also inhibited the actin filament cross-linking activity of MAP 2. The extent and rate of phosphorylation of MAP 2 by protein kinase II were higher than those of the phosphorylation by protein kinase C and cAMP-dependent protein kinase. The interaction of actin filaments with MAP 2 was inhibited more by the actions of protein kinase II and protein kinase C than by cAMP-dependent protein kinase. The actin filament cross-linking activity of MAP 2 phosphorylated either by protein kinase II, cAMP-dependent protein kinase or protein kinase C was retrieved when phosphorylated MAP 2 was treated by protein phosphatase. These results indicate that the interaction of actin filaments with MAP 2 is regulated by the phosphorylation-dephosphorylation of MAP 2.  相似文献   

2.
Glycogen synthase has been purified from bovine heart to near homogeneity by a procedure including zonal sucrose gradient ultracentrifugation. The purified enzyme had a subunit molecular weight of 88,000 ± 2000, an ID ratio of between 0.8 and 1.0, and contained less than 0.1 mol of covalently bound phosphate per mole of subunit. The rates, extent, and sites of phosphorylation of the cardiac enzyme were compared with those of skeletal muscle glycogen synthase as catalyzed by both the cardiac cAMP-dependent and a cardiac cAMP-independent protein kinases. The cardiac glycogen synthase was phosphorylated up to 1 mol of phosphate/mol of subunit by the cAMP-dependent protein kinase, to at least 2 mol of phosphate/mol of subunit by the cAMP-independent protein kinase, and to at least 3 mol of phosphate/mol of subunit with the two protein kinases together. There was a linear correlation between the extent of phosphorylation and conversion of cardiac synthase I to the glucose 6-phosphate-dependent form. This correlation was independent of which kinase(s) catalyzed the phosphorylation. Maximum inactivation occurred at an incorporation of 2 mol of phosphate per subunit. Under equivalent conditions, the rates of phosphorylation of cardiac and skeletal muscle glycogen synthase by the cAMP-dependent protein kinase were identical. In contrast, the cardiac enzyme was phosphorylated at a faster rate by the homologous cardiac cAMP-independent protein kinase than was the skeletal muscle synthase by the latter cardiac protein kinase. Analysis of the sites of phosphorylation of the cardiac and skeletal muscle glycogen synthases by CNBr cleavage and trypsin hydrolysis indicated minor differences in the derived phosphopeptides.  相似文献   

3.
Microtubule-associated protein 2 (MAP 2) is the major substrate for phosphorylation in purified preparations of brain microtubules. In earlier work, we showed that phosphorylation is catalyzed by a type II cAMP-dependent protein kinase tightly associated with MAP 2 itself. In the present study, we have examined the extent of MAP 2 phosphorylation by its associated protein kinase. Using an inorganic phosphate assay, we found that MAP 2 contained from 8 to 13 mol of phosphate/mol of protein as isolated. The catalytic subunit of the MAP 2-associated kinase catalyzed the incorporation of additional phosphate to a final level of 20-22 mol/mol of MAP 2. Potato acid phosphatase was used to remove phosphate from MAP 2. Rephosphorylation of acid phosphatase-treated MAP 2 resulted in maximal incorporation of 13 mol of phosphate/mol of MAP 2. The rates and extent of [32P] phosphate incorporation into as isolated and dephosphorylated MAP 2 were found to be identical, and phosphate was incorporated into identical peptides in the two preparations. These results were interpreted to indicate that MAP 2 contains as many as 13 cAMP-dependent phosphorylation sites, and approximately eight phosphates of as yet undetermined origin.  相似文献   

4.
Primary, 7,12-dimethylbenz(α)anthracene (DMBA)-induced mammary carcinoma in the rat contains cyclic adenosine 3′,5′-monophosphate (cAMP)-dependent and -independent forms of protein kinase. When growth of DMBA-induced tumors was arrested by either ovariectomy or N6,O2′-dibutyryl cAMP treatment of the host, the activity of cAMP-dependent protein kinase type II markedly increased in the tumor cytosol, as shown by DEAE-cellulose chromatography and autophosphorylation. The increase in activity of cAMP-dependent protein kinase was also demonstrable in the tumor cytosol and nuclei following invitro incubation of tumor slices with cAMP. These results suggest that protein kinase type II is involved in the regression of hormone-dependent mammary tumors.  相似文献   

5.
High mobility group (HMG) proteins 14 and 17 of rat C6 glioma cells are phosphorylated invivo on both serine and threonine. In HMG 14 about 60% of the total [32P]phosphate was identified as phosphoserine and 40% as phosphothreonine. In HMG 17, there was 88% phosphoserine and 12% phosphothreonine. Glioma cell nuclear protein kinase NII phosphorylates HMG 14 and 17 invitro on serine as well as threonine and the relative percentages of [32P]phosphoamino acid are similar to those seen invivo. Nuclear protein kinase NI and the type I and II cAMP-dependent protein kinases exhibit only minor phosphorylating activity towards HMG 14 and 17. We conclude that nuclear protein kinase NII is responsible for the phosphorylation of HMG 14 and 17 invivo.  相似文献   

6.
Human fibrinogen was shown to be a substrate of the catalytic subunit of pig muscle cyclic 3′,5′-AMP-stimulated protein kinase in vitro. Maximally at least 6 mol of (32P)phosphate per mol of fibrinogen was bound, preferentially to the α-chain.  相似文献   

7.
A heat-stable microtubule-associated protein (MAP) with molecular weight of 190,000, termed 190-kD MAP, was purified from bovine adrenal cortex. This MAP showed the same level of ability to promote tubulin polymerization as did MAP2 and tau from mammalian brains. Relatively high amounts of 190-kD MAP could bind to microtubules reconstituted in the presence of taxol. At maximum 1 mol of 190-kD MAP could bind to 2.3 mol of tubulin. 190-kD MAP was phosphorylated by a cAMP-dependent protein kinase prepared from sea urchin spermatozoa and by protein kinase(s) present in the microtubule protein fraction prepared from mammalian brains. The maximal numbers of incorporated phosphate were approximately 0.2 and approximately 0.4 mol per mole of 190-kD MAP, respectively. These values were lower than that of MAP2, which could be heavily phosphorylated by the endogenous protein kinase(s) up to 5 mol per mole of MAP2 under the same assay condition. 190-kD MAP had no effects on the low-shear viscosity of actin and did not induce an increase in turbidity of the actin solution. It was also revealed that 190-kD MAP does not cosediment with actin filaments. These data clearly show that, distinct from MAP2 and tau, this MAP does not interact with actin. Electron microscopic observation of the rotary-shadowed images of 190-kD MAP showed the molecular shape to be a long, thin, flexible rod with a contour length of approximately 100 nm. Quick-freeze, deep-etch replicas of the microtubules reconstituted from 190-kD MAP and brain tubulin revealed many cross-bridges connecting microtubules with each other.  相似文献   

8.
Phosphorylation of voltage-sensitive Na+ channels in neurons by protein kinase C slows Na+ channel inactivation and reduces peak Na+ currents. Na+ channels purified from rat brain and reconstituted into phospholipid vesicles under conditions that restore Na+ channel function were rapidly phosphorylated by protein kinase C on their 260-kDa alpha subunit. The phosphorylation reaction required Ca2+, diolein, and phosphatidylserine for activation of protein kinase C, and the rate of phosphorylation of reconstituted Na+ channels was 3- to 4-fold faster than for Na+ channels in detergent solution. Phosphorylation was on serine residues in three distinct tryptic phosphopeptides designated A, B, and C. Up to 2.5 mol of phosphate were incorporated per mol of Na+ channel. Following maximum phosphorylation by protein kinase C, cAMP-dependent protein kinase was able to incorporate more than 2.25 mol of phosphate per mol of Na+ channel indicating that these two kinases phosphorylate distinct sites. However, prior phosphorylation by cAMP-dependent protein kinase prevented phosphorylation of phosphopeptide B indicating that both kinases phosphorylate the site in this peptide. Phosphopeptide B shown here to be phosphorylated by protein kinase C and phosphopeptide 7 previously shown to be phosphorylated by cAMP-dependent protein kinase co-migrate on two-dimensional phosphopeptide maps and evidently are identical. The reduction in peak Na+ currents caused by both protein kinase C and cAMP-dependent protein kinase may result from phosphorylation of this single common site.  相似文献   

9.
We found a novel 81-kDa acidic protein (ACAMP-81) in the bovine brain membrane fraction, which bound to calmodulin in a Ca(2+)-dependent manner. The present study reveals physicochemical properties and phosphorylation of this protein with various protein kinases in vitro. The Stokes radius and sedimentation coefficient were calculated to be 52 A and 2.05 S, respectively, suggesting that the structure of ACAMP-81 is highly elongated. Purified Ca2+/phospholipid-dependent protein kinase (protein kinase C), cAMP-dependent protein kinase, and Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaM kinase II) catalyzed the incorporation of 1.46, 0.72, and 0.44 mol of phosphate/mol of ACAMP-81, respectively. The amino acid residues of ACAMP-81 phosphorylated by either protein kinase C or cAMP-dependent protein kinase were almost exclusively on serine. Sequential phosphorylation of ACAMP-81 by cAMP-dependent protein kinase and protein kinase C resulted in the additional incorporation of 1.15 mol of [32P]phosphate into ACAMP-81. Comparison of phosphopeptide maps of ACAMP-81 phosphorylated by each kinase revealed that there are two classes of phosphorylatable polypeptide, one is phosphorylatable by both protein kinases which contained two polypeptides and the others are specific sites for protein kinase C.  相似文献   

10.
Cyclic AMP-dependent protein kinase of Neurospora crassa   总被引:3,自引:0,他引:3  
Neurosporacrassa was surveyed for cyclic AMP-dependent protein kinase activity. Two peaks (I and II) of protein kinase activity were demonstrated by DEAE-cellulose chromatography of wild type Neurospora extracts. Peak I was stimulated by cyclic AMP, eluted below 60 mM NaCl and had high activity using histone H2B as substrate. Peak II eluted at 200–250 mM NaCl; its activity was not cyclic AMP stimulated and was highest with dephosphorylated casein as a substrate. Cyclic AMP binding to a protein associated with the protein kinase is specifically inhibited by certain cyclic AMP analogs.  相似文献   

11.
The search for an unusual cyclic nucleotide-dependent protein kinase in nematodes represented an attempt to gain some insight into the proposed homology of the cAMP and cGMP-dependent protein kinases. Two species of protein kinase were found in high speed supernatants of the mycophagous nematode Aphelenchusavenae. One of the two, bound to DEAE cellulose and was eluted from it in a manner characteristic of the type I cAMP kinase. The enzyme had high affinity for cAMP and dissociated upon binding to the cyclic nucleotide, as judged by the fact that catalytic activity did not bind to a cAMP affinity column. The second enzyme did not bind to DEAE. Unexpectedly, it too had high affinity for cAMP and much lower affinity for cGMP (unlike the cAMPcGMP kinase from insects). The holoenzyme bound tightly to the cAMP affinity column and required a high concentration of the cyclic nucleotide for elution. This latter enzyme is the only example of a cAMP-dependent protein kinase that does not dissociate upon activation.  相似文献   

12.
Tyrosine hydroxylase was maximally phosphorylated by protein kinase C, with a stoichiometry of 0.43 mol of phosphate/mol of tyrosine hydroxylase subunit at Ser40, and by calmodulin-dependent protein kinase II, with stoichiometries of 0.43 mol/mol at Ser40 and 0.76 mol/mol at Ser19, respectively, without undergoing any significant direct activation. In contrast, the enzyme was maximally phosphorylated with a stoichiometry of 0.78 mol of phosphate/mol of subunit at Ser40 by cAMP-dependent protein kinase, which resulted in a large activation of the enzyme (about 3-fold activation under the assay conditions). Incubation of the enzyme, which had previously been maximally phosphorylated by calmodulin-dependent protein kinase II, with protein kinase C under phosphorylating conditions resulted in no additional incorporation of phosphate into the enzyme, suggesting that both protein kinases phosphorylated Ser40 of the same subunits of the enzyme. Since tyrosine hydroxylase is thought to be composed of four identical subunits, the results may indicate that calmodulin-dependent protein kinase II or protein kinase C phosphorylates only two of the four subunits of the enzyme at Ser40 without affecting the enzyme activity and that cAMP-dependent protein kinase phosphorylates Ser40 of all four subunits of the enzyme molecule, causing a marked activation. Based on a linear relationship between phosphorylation and the resulting activation of the enzyme by cAMP-dependent protein kinase, possible mechanisms for the activation of the enzyme by the protein kinase are discussed.  相似文献   

13.
Incorporation of 32P from [γ-32P]ATP into a homogeneous preparation of rat hepatic 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatase was catalyzed by a homogeneous preparation of the catalytic subunit of the cyclic AMP dependent protein kinase from rat liver. Approximately 2 mol of phosphate were incorporated per mol of the dimeric enzyme and this was associated with inhibition of the phosphotransferase activity and activation of the phosphohydrolase activity. Acid hydrolysis of the enzyme that was phosphorylated in,vitro revealed that only seryl residues were labeled. Fructose 2,6-bisphosphate inhibited the initial rate of phosphorylation of the enzyme. It is concluded that both activities of this bifunctional enzyme are regulated in a reciprocal manner by cyclic AMP-dependent phosphorylation and that this phosphorylation can be modulated by fructose 2,6-bisphosphate.  相似文献   

14.
Both the triple-helical and denatured forms of nonfibrillar bovine dermal type I collagen were tested as substrates for the catalytic subunit of cAMP-dependent protein kinase in an in vitro reaction. Native, triple-helical collagen was not phosphorylated, but collagen that had been thermally denatured into individual alpha chains was a substrate for the protein kinase. Catalytic subunit of cAMP-dependent protein kinase phosphorylated denatured collagen to between 3 to 4 mol of phosphate/mol of (alpha 1(I)2 alpha 2(I). Pepsin-solubilized and intact collagens were phosphorylated similarly, as long as each was in a nonhelical conformation. The first 2 mol of phosphate incorporated into type I collagen by the protein kinase were present in the alpha 2(I) chain. The alpha 1(I) chain was only phosphorylated during long incubations in which the stoichiometry exceeded 2 mol of phosphate/mol of (alpha 1(I)2 alpha 2(I). Phosphoserine was the only phosphoamino acid identified in collagen that had been phosphorylated to any degree by the protein kinase. The 2 mol of phosphate incorporated into the alpha 2(I) chain were localized to the alpha 2(I)CB4 cyanogen bromide fragment. The catalytic subunit of cAMP-dependent protein kinase phosphorylated denatured pepsin-solubilized collagen with a Km of 8 microM and a Vmax of approximately 0.1 mumol/min/mg of enzyme. Denatured, but not triple-helical, type I collagen was also phosphorylated by cGMP-dependent protein kinase, although it was a poorer substrate for this enzyme than for the cAMP-dependent protein kinase. Collagen was not a substrate for phospholipid-sensitive Ca2+-dependent protein kinase. These results suggest the potential for nascent alpha chains of type I collagen to be susceptible to phosphorylation by cAMP-dependent protein kinase in vivo prior to triple-helix formation. Such a phosphorylation of collagen could be relevant to the action of cAMP to increase the intracellular degradation of newly synthesized collagen.  相似文献   

15.
The heat-labile inhibitor of casein kinases 1 and 2 from rat liver cytosol (J.F. Bertomeu et al., FEBS Lett., 124, 262–264) has been purified extensively and characterized. Analysis by gel filtration and SDS-polyacrylamide gel electrophoresis suggest that the inhibitor has an Mr of 30,000. It did not contain glycosaminoglycans, oligonucleotides or neutral sugars and was totally inactivated by digestion with trypsin. Besides casein kinases, the inhibitor also inhibited the catalytic subunit of cAMP-dependent protein kinase to the same extent. The data suggest that the inhibitor is a monomeric protein that could modulate intracellular protein phosphorylation by both casein kinases and cAMP-dependent protein kinase.  相似文献   

16.
A synthetic protein kinase substrate, PRO-LEU-SER-ARG-THR-LEU-SER-VAL-SER-SER-NH2, undergoes calcium-dependent binding by calmodulin. Phosphorylation of the peptide decreases its affinity for calmodulin with the dissociation constant increasing from 2.4 to ca. 7 mM. The results are consistent with the suggestion that calmodulin and the cAMP-dependent protein kinase can act on common recognition sequences.  相似文献   

17.
A cyclic nucleotide- and Ca2+-independent protein kinase, initially identified as a glycogen synthase kinase (Itarte, E. and Huang, K.-P. (1979) J. Biol. Chem. 254, 4052–4057), was also found to phosphorylate phosphorylase kinase and troponin from skeletal muscle as well as myosin light chain and myosin light chain kinase from both smooth and skeletal muscles. With the exception of myosin light chain from skeletal muscle, all the above-mentioned proteins are also substrates for the multifunctional cAMP-dependent protein kinase. The results suggest that this cyclic nucleotide- and Ca2+-independent protein kinase, like cAMP-dependent protein kinase, may have multiple cellular functions.  相似文献   

18.
Microtubules assembled by the incubation of GTP at 37 °C were disassembled by the action of calmodulin-dependent protein kinase (Kinase II) which occrs only in the brain tissues. This disassembly required the presence of ATP and physiological concentrations of Ca2+ and calmodulin.  相似文献   

19.
Summary Non-histone chromatin protein (NHCP) fractions were extracted from purified beef thyroid nuclear preparations and tested for the presence of protein kinase activities using several known mediators of thyroid regulation, as well as potential phosphotransferase substrates using purified or partially purified protein kinase activities. The addition of cAMP/3-isobutyl-l-methylxanthine had no effect on NHCP historic kinase activity; the addition of 10 g of the heat-stable cAMP-dependent protein kinase A inhibitor, however, resulted in a 47% reduction in histone H2 kinase activity. Nuclear casein kinase II activity was present in the NHCP fractions as evidenced by the capacity of spermine to stimulate (ED50 = 0.19 mM) and heparin to inhibit (ID50 = 0.09 g/ml) the phosphorylation of casein; further, the phosphotransferase activity could be purified by sequential casein-agarose and spermine-agarose affinity chromatography. Neither calcium-calmodulin nor calcium/phosphatidylserine/diolein had an effect on NHCP casein kinase or histone kinase activities, respectively. The addition of cAMP-dependent protein kinase A catalytic subunit, nuclear casein kinase II, calcium-activated calmodulin-dependent protein kinase and diacylglycerol-activated calcium/phospholipid-dependent protein kinase C activities exhibited distinct phosphorylation patterns when NHCP were used as substrates and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. We conclude that NHCP fraction from beef thyroid: 1) contains both cAMP-dependent protein kinase A catalytic subunit and nuclear casein kinase II and 2) substrates for cAMP-dependent protein kinase A, calcium-activited calmodulin-dependent protein kinase, protein kinase C, and nuclear casein kinase II.Abbreviations NHCP Non-Histone Chromatin Proteins - PK-A cAMP-Dependent Protein Kinase - CAMPK Calcium-Activated Calmodulin-Dependent Protein Kinase - PK-C Diacylglycerol-Activated Calcium/phospholipid-dependent Protein Kinase - NK-11 Nuclear Casein Kinase 11 - CK-G Cytosolic Casein Kinase G or 11 - PMSF Phenylmethyl Sulfonyl Fluoride - PKI the Heat Stable PK-A Inhibitor (Walsh inhibitor) - SDS-PAGE Sodium Dodecylsulfate Polyacrylamide Gel Electrophoresis - EDTA Ethylenediamine Tetraacetic Acid - EGTA Ethyleneglycol bis- (B-aminoethyl ether) N,N,N,N,-Tetraacetic Acid - PS Phosphatidylserine - DO 1,2-Diolein  相似文献   

20.
Microtubule-associated protein tau from Alzheimer brain has been shown to be phosphorylated at several ser/thr-pro and ser/thr-X sites (Hasegawa, M. et al., J. Biol. Chem, 267, 17047–17054, 1992). Several proline-dependent protein kinases (PDPKs) (MAP kinase, cdc2 kinase, glycogen synthase kinase-3, tubulin-activated protein kinase, and 40 kDa neurofilament kinase) are implicated in the phosphorylation of the ser-thr-pro sites. The identity of the kinase(s) that phosphorylate that ser/thr-X sites are unknown. To identify the latter kinase(s) we have compared the phosphorylation of bovine tau by several brain protein kinases. Stoichiometric phosphorylation of tau was achieved by casein kinase-1, calmodulin-dependent protein kinase II, Gr kinase, protein kinase C and cyclic AMP-dependent protein kinase, but not with casein kinase-2 or phosphorylase kinase. Casein kinase-1 and calmodulin-dependent protein kinase II were the best tau kinases, with greater than 4 mol and 3 mol32P incorporated, respectively, into each mol of tau. With the sequential addition of these two kinases,32P incorporation approached 6 mol. Peptide mapping revealed that the different kinases largely phosphorylate different sites on tau. After phosphorylation by casein kinase-1, calmodulin-dependent protein kinase II, Gr kinase, cyclic AMP-dependent protein kinase and casein kinase-2, the mobility of tau isoforms as detected by SDS-PAGE was decreased. Protein kinase C phosphorylation did not produce such a mobility shift. Our results suggest that one or more of the kinases studied here may participate in the hyperphosphorylation of tau in Alzheimer disease. Such phosphorylation may serve to modulate the activaties of other tau kinases such as the PDPKs.Abbreviations PHF paired helical filaments - A-kinase cyclic AMP-dependent protein kinase - CaM kinase II calcium/calmodulin-dependent protein kinase II - C-kinase calcium-phospholipid-dependent protein kinase - CK-1 casein kinase-1 - CK-2 casein kinase-2 - Gr kinase calcium/calmodulin-dependent protein kinase from rat cerebellum - GSK-3 glycogen synthase kinase-3 - MAP kinase mitogen-activated protein kinase - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号