首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Ca2+ uptake of the mitochondria of guinea pig peritoneal macrophages was not stimulated by the addition of calmodulin. However, calmodulin antagonists, both phenotiazines and N-naphthalenesulfonamides, in low concentrations inhibited the Ca2+ uptake of the mitochondoria, as compared to the inhibition of the calmodulin-dependent stimulation of brain phosphodiesterase. These calmodulin antagonists appear to have severe side effects on active processes of the mitochondria and which are unrelated to the specific effect on calmodulin.  相似文献   

2.
Specific activity and Ca2+-affinity of (Ca2++Mg2+)ATPase of calmodulin-depleted ghosts progressively increase during preincubation with 0.1–2 mM Ca2+. Concomitantly, the increment in ATPase activity caused by calmodulin and the binding of calmodulin to ghosts decrease. The effects of calcium ions are abolished by the addition of calmodulin. ATP protects the enzyme from a Ca2+-dependent decrease of the maximum activity but does not seem to influence the Ca2+-dependent transformation of the low Ca2+-affinity enzyme into a high Ca2+-affinity form.  相似文献   

3.
Calmodulin-depleted isotonic erythrocyte ghosts contain 200 ng residual calmodulin/mg protein which is not removed by extensive washings at pCa2+ > 7. Specific activity and Ca2+-affinity of the (Ca2+ + Mg2+)ATPase increase at increasing calmodulin, with K0.5 Ca of 0.38 μM at calmodulin concentrations corresponding to that in erythrocytes. High Ca2+ concentrations inhibit the enzyme. Specific activity and Ca2+-affinity of the enzyme decrease at increasing Mg2+ concentrations. The Ca2+ ? Mg2+ antagonism is likewise observed at inhibitory Ca2+ concentrations.  相似文献   

4.
Ca2+ transport by sarcoplasmic reticulum vesicles was examined by incubating sarcoplasmic reticulum vesicles (0.15 mg/ml) at 37°C in, either normal medium that contained 0.15 M sucrose, 0.1 M KCl, 60 μM CaCl2, 2.5 mM ATP and 30 mM Tes at pH 6.8, or a modified medium for elimination of ADP formed from ATP hydrolysis by including, in addition, 3.6 mM phosphocreatine and 33 U/ml of creatine phosphokinase. In normal medium, Ca2+ uptake of sarcoplasmic reticulum vesicles reached a plateau of about 100 nmol/mg. In modified medium, after this phase of Ca2+ uptake, a second phase of Ca2+ accumulation was initiated and reached a plateau of about 300 nmol/mg. The second phase of Ca2+ accumulation was accompanied by phosphate uptake and could be inhibited by ADP. Since, under these experimental conditions, there was no significant difference of the rates of ATP hydrolysis in normal medium and modified medium, extra Ca2+ uptake in modified medium but not in normal medium could not be explained by different phosphate accumulation in the two media. Unidirectional Ca2+ influx of sarcoplasmic reticulum near steady state of Ca2+ uptake was measured by pulse labeling with 45Ca2+. The Ca2+ efflux rate was then determined by subtracting the net uptake from the influx rate. At the first plateau of Ca2+ uptake in normal medium, Ca2+ influx was balanced by Ca2+ efflux with an exchange rate of 240 nmol/mg per min. This exchange rate was maintained relatively constant at the plateau phase. In modified medium, the Ca2+ exchange rate at the first plateau of Ca2+ uptake was about half of that in normal medium. When the second phase of Ca2+ uptake was initiated, both the influx and efflux rates started to increase and reached a similar exchange rate as observed in normal medium. Also, during the second phase of Ca2+ uptake, the difference between the influx and efflux rates continued to increase until the second plateau phase was approached. In conditions where the formation of ADP and inorganic phosphate was minimized by using a low concentration of sarcoplasmic (7.5 μg/ml) and/or using acetyl phosphate instead of ATP, the second phase of Ca2+ uptake was also observed. These data suggest that the Ca2+ load attained by sarcoplasmic reticulum vesicles during active transport is modulated by ADP accumulated from ATP hydrolysis. ADP probably exerts its effect by facilitating Ca2+ efflux, which subsequently stimulates Ca2+ exchange.  相似文献   

5.
6.
The effect of a synthetic neutral ligand on the Ca2+ permeability of several biological membranes has been investigated. The ligand had been previously shown to possess Ca2+-ionophoric activities in artificial phospholipid membranes. The neutral ionophore is able to transport Ca2+ across the membranes of erythrocytes and sarcoplasmic reticulum, when lipophilic anions such as tetraphenylborate or carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) are present, presumably to facilitate the diffusion of the charged Ca2+-ionophore complex across the hydrophobic core of the membrane.In mitochondria, the neutral ionophore promotes the active transport of Ca2+ in response to the negative membrane potential generated by respiration, in the presence of the specific inhibitor of the natural carrier ruthenium red.  相似文献   

7.
Plasma membranes isolated from the flagella of ram ejaculated sperm were found to contain a [Ca2+ + Mg2+]-ATPase. Freeze-fracture electron microscopy showed the membranes occur as vesicles. The membrane vesicles actively accumulate Ca2+, uptake was reversed by the ionophore A23187 and inhibited by either ruthenium red or La3+. The plasma membranes contain two major proteins, designated proteins A and B, with molecular weights of 109,000 and 18,300 daltons, respectively. Protein B is not detected in plasma membranes isolated from ram epididymal sperm. The plasma membrane Ca2+ pump may be modulated by protein factors present in seminal plasma.  相似文献   

8.
Ionophore A23187-mediated Ca2+-induced oscillations in the conductance of the Ca2+-sensitive K+ channels of human red cells were monitored with ion specific electrodes. The membrane potential was continuously reflected in CCCP-mediated pH changes in the buffer-free medium, changes in extracellular K+ activity were followed with a K+-selective electrode, and changes in the intracellular concentration of ionized calcium were calculated on the basis of cellular 45Ca content. An increased cellular 45Ca content at the successive minima of the oscillations where the K+ channels are closed indicates that the activation of the channels might be a (dCa2+/dt)-sensitive process and that accommodation to enhanced levels of intracellular free calcium may occur. An incipient inactivation of the K+ channels at intracellular ionized calcium levels of about 10 μM and a concurrent membrane potential of about ?65 mV was observed. At a membrane potential of about ?70 mV and an intracellular concentration of about 2·10?4M no inactivation of K+ channels took place. Inactivation of the K+ channels is suggested to be a compound function of the intracellular level of free calcium and the membrane potential. The observed sharp peak values in cellular 45Ca content support the notion that a necessary component of the oscillatory system is a Ca2+ pump operating with a significant delay in the activation/inactivation process in response to changes in cellular concentration of ionized calcium.  相似文献   

9.
In complexes of divalent metals with large exchange rate constant (KH2O) of the coordinated H2O, such as Ca2+ and Cu2+, the cubic structure in the ligand field is usually unstable and conformation changes are easily induced. We observed the molecular motion of phosphatidylserine (PS) in an amphipathic solvent (water / methanol / chloroform) by 1H-NMR and ESR using Ca2+ and / or Cu2+, which has a similar KH2O to that of Ca2+. We found that Ca2+ did not hinder the molecular movements of PS. However, Cu2+ reduced the movements of both headgroups and the double bonds in the fatty acids of PS. By addition of both Ca2+ and Cu2+, phase transition to a soft solid phase in the PS membrane was observed at room temperature. The results indicate that the headgroups are clustered in two-dimensional network with each ligand field displaced from the aqueous phase to the water / oil interface. The structure changes of the polar headgroups after the binding of divalent cations are considered to trigger the phase transition of this acidic phospholipid membrane.  相似文献   

10.
Vesicles isolated from rat heart, particularly enriched in sarcolemma markers, were examined for their sidedness by investigation of side-specific interactions of modulators with the asymmetric (Na+ + K+)-ATPase and adenylate cyclase complex. The membrane preparation with the properties expected for inside-out vesicles showed the highest rate of ATP-driven Ca2+ transport. The Ca2+ pump was stimulated 1.7- and 2.1-fold by external Na+ and K+, respectively, the half-maximal activation occurring at 35 mM monovalent cation concentration. In vesicles loaded with Ca2+ by pump action in a medium containing 160 mM KCl, a slow spontaneous release of Ca2+ started after 2 min. The rate of this release could be dramatically increased by the addition of 40 mM NaCl to the external medium. In contrast, 40 mM KCl exerted no appreciable effect on vesicles loaded with Ca2+ in a medium containing 160 mM NaCl. Ca2+ movements were also studied in the absence of ATP and Mg2+. Vesicles containing an outwardly directed Na+ gradient showed the highest Ca2+ uptake activity. These findings suggested the operation of a Ca2+/Na+ antiporter in addition to the active Ca2+ pump in these sarcolemmal vesicles. A valinomycin-induced inward K+-diffusion potential stimulated the Na+- Ca2+ exchange, suggesting its electrogenic nature. If in the absence of ATP and Mg2+ the transmembrane Nai+/Nao+ gradient exceeded 160/15 mM concentrations, Ca2+ uptake could be stimulated by the addition of 5 mM oxalate, indicating Na+ gradient-induced Ca2+ uptake to be a translocation of Ca2+ to the lumen of the vesicle. A sarcoplasmic reticulum contamination, removed by further sucrose gradient fractionation, contained rather low Na+-Ca2+ exchange activity. This result suggests that the activity can be entirely accounted for by the sarcolemmal content of the cardiac membrane preparation.  相似文献   

11.
12.
Exposure of either alveolar macrophages or blood neutrophils to 0.2 – 1 μM ionophore A23187 in the presence of 0.1 – 1 mM CaCl2 causes a rapid extracellular release of Ca2+, which can be measured by a Ca2+-selective electrode. The initial rate at which the cation is extruded from the cells is about 0.1 – 0.2 μg-ions/min/ml of cell water. ATP depletion, but not replacement of extracellular Na+ with choline, produces a marked inhibition of Ca2+ release from macrophages. When the movements of Ca2+ between neutrophils and the incubation medium are followed by an isotopic technique, a transient increase in cell-associated 45Ca2+ is detected a few seconds after the addition of the ionophore. We suggest that the ionophore A23187 mobilises Ca2+ from intracellular stores, with a subsequent cell extrusion of the bivalent cation catalysed by a pump localised at the cell surface. These and other data are consistent with the conclusion that the peripheral Ca2+ pump system of macrophages and neutrophils is very similar to the well know Ca2+ pump of the red cells with regard to mechanism and capacity.  相似文献   

13.
The structural preferences of soya phosphatidylinositol in isolation and in mixtures with soya phosphatidylethanolamine, and the influence of Ca2+ and Mg2+ on these preferences, have been examined employing 31P-NMR and freeze-fracture techniques. It is shown that phosphatidylinositol assumes the bilayer organization on hydration both in the presence and absence of Ca2+ and Mg2+. In mixed systems with HII phase) phosphatidylethanolamine, phosphatidylinositol induces lipidic particle structure at low (<10 mol%) concentrations and bilayer structure at higher levels. In systems containing 15 or 20 mol% phosphatidylinositol, Ca2+ (but not Mg2+) can induce HII phase structure. The results indicate that phosphatidylinositol is a more effective agent than other acidic phospholipids for stabilizing bilayer structure, particularly when high levels of divalent cations are present. These findings are discussed in terms of functional roles of phosphatidylinositol and mechanisms whereby Ca2+ induces structural reorganization in mixed systems containing acidic phospholipids and phosphatidylethanolamine.  相似文献   

14.
The binding of ATP and Ca2+ by the Ca2+ pump protein of sarcoplasmic reticulum from rabbit skeletal muscle has been studied and correlated with the formation of a phoshorylated intermediate. The Ca2+ pump protein has been found to contain one specific ATP and two specific Ca2+ binding sites per phosphorylation site. ATP binding is dependent on Mg2+ and is severely decreased when a phosphorylated intermediate is formed by the addition of Ca2+. In the presence of Mg2+ and the absence of Ca2+, ATP and ADP bind completely to the membrane. Pre-incubation with N-ethylmaleimide results in inhibition of ATP binding and decrease of Ca2+ binding. In the absence of ATP, Ca2+ binding is noncooperative at pH 6–7 and negatively cooperative at pH 8. Mg2+, Sr2+ and La3+, in that order, decrease Ca2+ binding by the Ca2+ pump protein. The affinity of the Ca2+ pump protein for both ATP and Ca2+ increases when the pH is raised from 6 to 8. At the infection point (pH ≈ 7.3) the binding constants of the Ca2+ pump protein-MgATP2? and Ca2+ pump protein-calcium complexes are approx. 0.25 and 0.5 μM?1, respectively. The unphosphorylated Ca2+ pump protein does not contain a Mg2+ binding site with an affinity comparable to those of the ATP and Ca2+ binding sites.The affinity of the Ca2+ pump protein for Ca2+ is not appreciably changed by the addition of ATP. The ratio of phosphorylated intermediate formed to bound Ca2+ is close to 2 over a 5-fold range of phosphoenzyme concentration. The equilibrium constant for phosphoenzyme formation is less than one at saturating levels of Ca2+. The phosphoenzyme is thus a “high-energy” intermediate, whose energy may then be used for the translocation of the two Ca2+.A reaction scheme is discussed showing that phosphorylation of sarcoplasmic reticulum proceeds via an enzyme-Ca22+-MgATP2? complex. This complex is then converted to a phosphoenzyme intermediate which binds two Ca2+ and probably Mg2+.  相似文献   

15.
The presence of an Na+/Ca2+ exchange system in basolateral plasma membranes from rat small intestinal epithelium has been demonstrated by studying Na+ gradient-dependent Ca2+ uptake and the inhibition of ATP-dependent Ca2+ accumulation by Na+. The presence of 75 mM Na+ in the uptake solution reduces ATP-dependent Ca2+ transport by 45%, despite the fact that Na+ does not affect Ca2+-ATPase activity. Preincubation of the membrane vesicles with ouabain or monensin reduces the Na+ inhibition of ATP-dependent Ca2+ uptake to 20%, apparently by preventing accumulation of Na+ in the vesicles realized by the Na+-pump. It was concluded that high intravesicular Na+ competes with Ca2+ for intravesicular Ca2+ binding sites. In the presence of ouabain, the inhibition of ATP-dependent Ca2+ transport shows a sigmoidal dependence on the Na+ concentration, suggesting cooperative interaction between counter transport of at least two sodium ions for one calcium ion. The apparent affinity for Na+ is between 15 and 20 mM. Uptake of Ca2+ in the absence of ATP can be enhanced by an Na+ gradient (Na+ inside > Na+ outside). This Na+ gradient-dependent Ca2+ uptake is further stimulated by an inside positive membrane potential but abolished by monensin. The apparent affinity for Ca2+ of this system is below 1 μM. In contrast to the ATP-dependent Ca2+ transport, there is no significant difference in Na+ gradient-dependent Ca2+ uptake between basolateral vesicles from duodenum, midjejunum and terminal ileum. In duodenum the activity of ATP-driven Ca2+ uptake is 5-times greater than the Na+/Ca2+ exchange capacity but in the ileum both systems are of equal potency. Furthermore, the Na+/Ca2+ exchange mechanism is not subject to regulation by 1α,25-dihydroxy vitamin D-3, since repletion of vitamin D-deficient rats with this seco-steroid hormone does not influence the Na+/Ca2+ exchange system while it doubles the ATP-driven Ca2+ pump activity.  相似文献   

16.
N-Ethylmaleimide was employed as a surface label for sarcolemmal proteins after demonstrating that it does not penetrate to the intracellular space at concentrations below 1·10?4 M. The sarcolemmal markers, ouabain-sensitive (Na+ + K+)-ATPase and Na+/Ca2+-exchange activities, were inhibited in N-ethylmaleimide perfused hearts. Intracellular activities such as creatine phosphokinase, glutamate-oxaloacetate transaminase and the internal phosphatase site of the Na+ pump (K+-p-nitrophosphatase) were not affected. Almost 20% of the (Ca2+ + Mg2+)-ATPase and Ca2+ pump were inhibited indicating the localization of a portion of this activity in the sarcolemma. Sarcolemma purified by a recent method (Morcos, N.C. and Drummond, G.I. (1980) Biochim. Biophys. Acta 598, 27–39) from N-ethylmaleimide-perfused hearts showed loss of approx. 85% of its (Ca2+ + Mg2+-ATPase and Ca2+ pump compared to control hearts. (Ca2+ + Mg2+)-ATPase and Ca2+ pump activities showed two classes of sensitivity to vanadate ion inhibition. The high vanadate affinity class (K12 for inhibition approx. 1.5 μM) may be localized in the sarcolemma and represented approx. 20% of the total inhibitable activity in agreement with estimates from N-ethylmaleimide studies. Sucrose density fractionation indicated that only a small portion of Mg2+-ATPase and Ca2+-ATPase may be associated with the sarcolemma. The major portion of these activities seems to be associated with high density particles.  相似文献   

17.
Ca2+ inhibited the Mg2+-dependent and K+-stimulated p-nitrophenylphosphatase activity of a highly purified preparation of dog kidney (Na+ + K+)-ATPase. In the absence of K+, however, a Mg2+-dependent and Ca2+-stimulated phosphatase was observed, the maximal velocity of which, at pH 7.2, was about 20% of that of the K+-stimulated phosphatase. The Ca2+-stimulated phosphatase, like the K+-stimulated activity, was inhibited by either ouabain or Na+ or ATP. Ouabain sensitivity was decreased with increase in Ca2+, but the K0.5 values of the inhibitory effects of Na+ and ATP were independent of Ca2+ concentration. Optimal pH was 7.0 for Ca2+-stimulated activity, and 7.8–8.2 for the K+-stimulated activity. The ratio of the two activities was the same in several enzyme preparations in different states of purity. The data indicate that (a) Ca2+-stimulated phosphatase is catalyzed by (Na+ + K+)-ATPase; (b) there is a site of Ca2+ action different from the site at which Ca2+ inhibits in competition with Mg2+; and (c) Ca2+ stimulation can not be explained easily by the action of Ca2+ at either the Na+ site or the K+ site.  相似文献   

18.
Human erythrocytes are able to incorporate cyclic AMP (cAMP) in amounts larger than those required to saturate cAMP-dependent protein kinase. In contrast to previous observations in avian red blood cells in which cAMP stimulates the Na+/K+ cotransport system, we demonstrate that cAMP inhibits this system in human erythrocytes. The cotransport inhibition is enhanced by addition of phosphodiesterase inhibitor 1-methyl-3-isobutylxanthine to the incubation medium. The cAMP concentration giving half-maximal cotransport inhibition showed a wide variation among different individuals (from 0.1 to 5 mM external cAMP concentration). In contrast to cAMP, cyclic GMP showed little effect on the cotransport system. Ca2+ introduced into the cell interior was an inhibitor of the Na+/K+ cotransport system. These results suggest that in human cells in which endogeneous levels of cAMP and Ca2+ are modulated by hormones, the Na+/K+ cotransport system may be under hormonal regulation.  相似文献   

19.
ABA与Ca2+/CaM信使系统关系   总被引:1,自引:0,他引:1  
《西北植物学报》2001,21(6):1283-1287
介绍了胞间信号ABA在信号传递过程中对胞内钙信号的影响及其两者的关系.  相似文献   

20.
The influence of extracellular Ca2+ and Mg2+ on the transport of 2-deoxy-[3H]glucose into human polymorphonuclear neutrophils was studied. Omission of these cations from the cell suspensions had little effect on resting hexose uptake. Furthermore, the addition of the bivalent cation chelator, EDTA, depressed uptake only slightly. Similarly, neither cation was essential for the enhanced 2-deoxy-D-[3H]glucose uptake stimulated by two chemotactic factors (C5a and N-formylmethionylleucylphenylalanine) and arachidonic acid: enhanced uptake was only partially depressed by the omission of Ca2+ and Mg2+ from the suspensions and was still prominent in the presence of EDTA. Two other neutrophil stimulants, the ionophores, A23187 and ionomycin, also enhanced hexose uptake but their actions were heavily dependent upon extracellular bivalent cations and were totally abrogated by EDTA. In all instances, extracellular Ca2+, but not Mg2+, supported optimal enhanced hexose transport induced by stimuli.Activation of 2-deoxy-D-[3H]glucose uptake by each of the five stimuli was totally blocked by cytochalasin B (a blocker of carrier-mediated hexose transport) and D-glucose but not by L-glucose. The data indicate, therefore, that a variety of neutrophil stimulants activate carrier-mediated hexose transport. Although this transport can be triggered by the movement of extracellular Ca2+ into the cell (as exemplified by the action of the two ionophores), such Ca2+ movement is not required for the actions of chemotactic factors or arachidonic acid. Other mechanisms, such as a rearrangement of intracellular Ca2+, may be involved in mediating the activation of hexose transport induced by the latter stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号