首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
During early postnatal development there was an increase in the specific activity of a number of oxidative enzymes localized on the outer and inner mitochondrial membrane. The succinic oxidase complex of the inner mitochondrial membrane, whose activity in 1-day-old rats was 50% of the value in adult animals, attained the maximum on about the 10th day after birth. Activity of the choline and the proline oxidase complex, both of which are also localized in the inner mitochondrial membrane, was minimal in 1-day-old rats and went on rising after the 10th day. Rotenone-insensitive NADH-cytochrome c reductase activity, which is localized on the outer mitochondrial membrane, remained stable up to the 10th day, and rose between the 10th and the 90th day. Developmental changes in monoaminooxidase activity, which is likewise localized on the outer mitochondrial membrane, followed a similar course to the choline and proline oxidase complexes. The amount of cytochromes a+alpha3 and cytochrome b in isolated mitochondria did not alter during development. The protein spectrum of the mitochondrial particles, determined by polyacrylamide gel electrophoresis in sodium dodecyl sulphate, likewise displayed no marked changes during postnatal development. The above findings show that the metabolic functions of the mitochondria mature during development and that changes in the different enzymes have their own characteristic time course.  相似文献   

4.
While moderate caloric restriction has beneficial effects on animal health state, fasting may be harmful. The present investigation was designed to test how fasting affects oxidative stress, and to find out whether the effects are opposite to those previously found in caloric restriction studies. We have focused on one of the main determinants of aging rate: the rate of mitochondrial free radical generation. Different parameters related to lipid and protein oxidative damage were also analyzed. Liver mitochondria from rats subjected to 72 h of fasting leaked more electrons per unit of O2 consumed at complex III, than mitochondria from ad libitum fed rats. This increased leak led to a higher free radical generation under state 3 respiration using succinate as substrate. Regarding lipids, fasting altered fatty acid composition of hepatic membranes, increasing the double bond and the peroxidizability indexes. In accordance with this, we observed that hepatic membranes from the fasted animals were more sensitive to lipid peroxidation. Hepatic protein oxidative damage was also increased in fasted rats. Thus, the levels of oxidative modifications, produced either indirectly by reactive carbonyl compounds (Nepsilon- malondialdehyde-lysine), or directly through amino acid oxidation (glutamic and aminoadipic semialdehydes) were elevated due to the fasting treatment in both liver tissue and liver mitochondria. The current study shows that severe food deprivation increases oxidative stress in rat liver, at least in part, by increasing mitochondrial free radical generation during state 3 respiration and by increasing the sensitivity of hepatic membranes to oxidative damage, suggesting that fasting and caloric restriction have different effects on liver mitochondrial oxidative stress.  相似文献   

5.
While moderate caloric restriction has beneficial effects on animal health state, fasting may be harmful. The present investigation was designed to test how fasting affects oxidative stress, and to find out whether the effects are opposite to those previously found in caloric restriction studies. We have focused on one of the main determinants of aging rate: the rate of mitochondrial free radical generation. Different parameters related to lipid and protein oxidative damage were also analyzed. Liver mitochondria from rats subjected to 72 h of fasting leaked more electrons per unit of O2 consumed at complex III, than mitochondria from ad libitum fed rats. This increased leak led to a higher free radical generation under state 3 respiration using succinate as substrate. Regarding lipids, fasting altered fatty acid composition of hepatic membranes, increasing the double bond and the peroxidizability indexes. In accordance with this, we observed that hepatic membranes from the fasted animals were more sensitive to lipid peroxidation. Hepatic protein oxidative damage was also increased in fasted rats. Thus, the levels of oxidative modifications, produced either indirectly by reactive carbonyl compounds (Nepsilon- malondialdehyde-lysine), or directly through amino acid oxidation (glutamic and aminoadipic semialdehydes) were elevated due to the fasting treatment in both liver tissue and liver mitochondria. The current study shows that severe food deprivation increases oxidative stress in rat liver, at least in part, by increasing mitochondrial free radical generation during state 3 respiration and by increasing the sensitivity of hepatic membranes to oxidative damage, suggesting that fasting and caloric restriction have different effects on liver mitochondrial oxidative stress.  相似文献   

6.
7.
Effects of cage beddings on microsomal oxidative enzymes in rat liver   总被引:1,自引:0,他引:1  
The purpose of the present studies was to evaluate the effects of some commercially available cage beddings on rat liver microsomal cytochrome P-450-dependent drug-metabolizing enzyme, ethylmorphine N-demethylase, and the carcinogen-metabolizing enzyme, benzo(a)pyrene hydroxylase. Sprague-Dawley rats were housed in cages containing cedar chip, corncob or heat-treated pinewood bedding for 3 weeks. Control rats were housed in cages on wire bottom floors containing no bedding material. Rats housed in cages containing cedar chip showed 18, 46 and 49% increases in liver cytochrome P-450 content, ethylmorphine N-demethylase and benzo(a)pyrene hydroxylase activities, respectively. The liver enzyme activities of rats housed in cages containing corncob bedding were similar to those obtained with control rats. In contrast, the pinewood-bedded rats showed a 21% decrease in ethylmorphine N-demethylase activity without affecting cytochrome P-450 content and benzo(a)pyrene hydroxylase activity. Hexobarbital-induced sleep times of the variously bedded rats were similar to those of control animals. These data suggest that the commercial bedding materials differ in their abilities to affect liver microsomal enzymes. Thus, interlaboratory variability in basal enzyme activities reported in the literature may be partly due to bedding materials used in the animal's cages.  相似文献   

8.
9.
The mechanisms involved in the inhibitory effects of antilipolytic agents on rat liver peroxisomal fatty acid oxidative activity have been explored. Treatment of fasting rats with antilipolytic drugs (either 3,5-dimethylpyrazole (12 mg/kg body weight) or Acipimox (25 mg/kg body weight)) resulted in a decrease in free fatty acid and glucose plasma levels within 5–10 and in a significant increase in the plasma glucagon to insulin ratio within 15. Changes in the fatty acid oxidative activity appeared with a 2.5–3 h delay and were then very rapid (a 30–40% decrease in the activity occured in additional 2 h). Many peroxisomal enzyme activities (including non-β-oxidative activities such as uricase and D-amino acid oxidase) exhibited similar changes with the same delay. Simultaneously with the enzyme changes, at the electron microscope level many autophagic vacuoles were detected in the liver cells, often containing peroxisomal structures. Glutamine, an inhibitor of proteolysis in vivo, prevented the decrease in enzyme activities. It was concluded that the decrease in peroxisomal enzyme activities may be the consequence of enhanced peroxisome degradation due to the stimulation of autophagic processes in liver cells.  相似文献   

10.
In normal or thyroidectomized rat liver mitochondria, glucagon produced fast but transient stimulation of respiration rates in state 3 and state 4 whatever the substrates. Stimulation reached its maximum 20 to 30 minutes after glucagon injection. However, the effects of glucagon are less marked after removal of the thyroid gland, since the increases observed in the oxygen consumption and basal metabolic rates were only half those shown in normal rats. The activating effects of triiodothyronine and glucagon on the ADP phosphorylation rates were found to be additive. Pretreatment with cycloheximide blocked the activation induced by glucagon but not that induced by triiodothyronine. Both hormones therefore stimulate oxidative phosphorylation but by different mechanisms. Thyroidectomy did not alter the early rise in glycaemia observed in response to glucagon. It may therefore be assumed that the hypothyroid rat's sensitivity to glucagon is not directly connected with the change in cAMP metabolism.  相似文献   

11.
The metabolic effects of methotrexate in perfused livers are similar to those exerted by hormones acting through Ca(2+)-dependent mechanisms. The aim of the present study was to determine whether the effects of methotrexate are mediated by a direct action on cellular Ca(2+) fluxes. Methotrexate did not affect the ATP-dependent (45)Ca(2+) uptake by mitochondria, microsomes and inside-out plasma membrane vesicles and Ca(2+) efflux from plasma membrane vesicles. However, methotrexate was able to stimulate (45)Ca(2+) release from preloaded microsomes. The amount of Ca(2+) released by methotrexate was similar to that induced by IP(3). Methotrexate could be acting through the capacitative calcium entry mechanism.  相似文献   

12.
13.
14.
15.
16.
The effects of N-substituted tricyanovinylamines on oxidative phosphorylation as well as on glutathione and total SH group concentrations in rat liver mitochondria was studied. The N-TCVA derivatives studied (N-cyclohexyl; N-isobutyl; N-benzyl; N-phenyl; N-4-Br-phenyl; N-3-nitrophenyl) had an uncoupling effection on the oxidative phosphorylation. They stimulated the respiration of mitochondria and influenced their membrane potential. In their property as SH agents, the N-TCVA derivatives reduced the level of TSH groups of the mitochondria present in concentrations of 2 mumol/mg protein. The activity of succinate dehydrogenase was decreased by N-TCVA by 13%. N-TCVA derivatives changed the redox state of glutathione in mitochondria. This effect was observed at the concentration 0.3 mumol/mg protein. The results obtained in the present study support the view that the glutathione status is more sensitive than the total level of SH groups to incubation of mitochondria with SH agents such as N-TCVA derivatives.  相似文献   

17.
18.
We recently showed that melatonin counteracted mitochondrial oxidative stress and increased the activity of the mitochondrial oxidative phosphorylation (OXPHOS) enzymes both in vivo and in vitro. To further clarify these effects, we studied here the activity of OXPHOS enzymes and the synthesis of ATP in rat liver and brain mitochondria in vitro. In sub-mitochondrial particles, melatonin increases the activity of the complexes I and IV dose-dependently, the effect being significant between 1 and 10nM. Blue native-PAGE followed by histochemical analysis of the OXPHOS enzymes further showed the melatonin-induced increase of complex I activity. Titration studies show that melatonin counteracts the partial inhibition of complex IV induced by 5 microM potassium cyanide. However, melatonin (up to 5mM) was unable to recover the activity of complex IV when it was completely blocked by 100 microM cyanide. These data suggest that the indoleamine could stimulate the activity of the non-inhibited part of the complex IV. Melatonin also increases the production of ATP in control mitochondria and counteracts the cyanide-induced inhibition of ATP synthesis. These results provide new hormonal mechanism regulating mitochondrial homeostasis and may explain, at least in part, the anti-aging and neuroprotective properties of melatonin.  相似文献   

19.
The effects of cadmium ions or cadmium-metallothionein on the activities of acyl-CoA:1acyl-sn-glycerol 3-phosphoric acid or 1-acyl-sn-glycero 3-phosphocholine acyltransferase of rat liver microsomes have been studied, in vitro. Cadmium ions were found to cause a noncompetitive type inhibition of these two acyltransferases. The Ki values were calculated, and found to be smallest (1.7 × 10?5m) for palmitoyl-CoA and greatest (1.0 × 10?4m) for linoleoyl-CoA, among the several fatty acyl-CoA's tested on the 1-acyl-sn-glycerol 3-phosphoric acid acyltransferases. With the 1-acyl-sn-glycero 3-phosphocholine acyltransferase, the Ki values were found to be smallest for the plamitoyl-CoA acyltransferase (3.8 × 10?5m) and largest for thearachidonoyl-CoA acyltransferase (1.1 × 10?4m). In contrast, mouse liver cadmium-metallothionein, including 4 mol of cadmium and 2 mol of zinc in one molecule of metallothionein, was not found to be inhibitory or rather stimulative on the above two acyltransferases at the same concentration of cadmium tested in the cadmium ion inhibitor experiments. The above results demonstrate that there is a strong and irreversible inhibition by cadmium ions on acyl-CoA acyltransferases, but that when cadmium acts on the enzyme in the form of a cadmium-metallothionein complex, the inhibition effect does not occur. These findings may reflect differing degrees of toxicity of these two types of cadmium compounds in mammalian tissues.  相似文献   

20.
Effects of hypophysectomy and subsequent growth hormone administration on mitochondrial enzymes of the urea cycle were investigated in rat liver. Hypophysectomy increased the activities of the two mitochondrial enzymes, carbamyl phosphate synthetase and ornithine transcarbamylase but not of the cytosolic enzyme, argininosuccinate synthetase. The activity of mitochondrial phosphate dependent glutaminase was not affected. Administration of bovine growth hormone (100 μg/100 g body weight) for two weeks decreased the activities of carbamyl phosphate synthetase and ornithine transcarbamylase almost to the normal level. These results suggest a specific effect of growth hormone on mitochondrial enzymes of the urea cycle and serve to explain the increased urea formation in hypopituitarism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号