首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anthracenedione antineoplastic agents mitoxantrone and ametantrone are potent inhibitors of basal and drug-stimulated lipid peroxidation in a variety of subcellular systems (Kharasch, E. D., and Novak, R. F. (1983) J. Pharmacol. Exp. Ther. 226, 500-506). The mechanism by which these compounds function as antioxidants has been investigated using enzymic and chemical systems. Mitoxantrone and ametantrone inhibited NADPH-cytochrome P-450 reductase- and xanthine oxidase-catalyzed conjugated diene formation from linoleic acid in a concentration-dependent manner with half-maximal inhibition achieved at approximately 0.5 microM anthracenedione. Inhibition of linoleic acid peroxidation was not attributable to a decrease in P-450 reductase activity, hydroxyl radical scavenging, or iron chelation by the anthracenediones. Nonenzymic fatty acid peroxidation was also inhibited by the anthracenediones. Linoleic acid oxidation initiated by superoxide (ferrous iron autoxidation) or by hydroxyl radicals (Fenton's reagent) was diminished by mitoxantrone and ametantrone after a brief delay, suggesting an effect subsequent to activated oxygen-dependent initiation. In contrast, linoleic acid oxidation initiated by iron-dependent hydroperoxide decomposition was inhibited immediately. Reinitiation of linoleic acid oxidation in an anthracenedione-inhibited system was accomplished only by superoxide generation, but not by fatty acid hydroperoxide decomposition. These results suggest the anthracenediones diminished neither oxygen radical formation nor oxygen radical-dependent initiation of peroxidation. Rather, inhibition of fatty acid peroxidation by mitoxantrone and ametantrone results from the inhibition of hydroperoxide-dependent initiation and propagation reactions.  相似文献   

2.
Stimulation of the rates of NAD(P)H oxidation, superoxide generation, and hydrogen peroxide formation by three anthracenedione antineoplastic agents in the presence of NADPH-cytochrome P-450 reductase, NADH dehydrogenase, or rabbit hepatic microsomes was studied and the results compared with those obtained for the anthracyclines Adriamycin and daunorubicin. In all cases the anthracenediones, including mitoxantrone and ametantrone, were significantly (5- to 20-fold) less effective than the anthracyclines in stimulating NAD(P)H oxidation, superoxide formation, or hydrogen peroxide production. Of the three anthracenediones studied, the ring-monohydroxylated compound showed the greatest activity followed by the ring-dihydroxylated derivative (mitoxantrone). In contrast, the non-ring-hydroxylated anthracenedione (ametantrone) was a relatively ineffective electron acceptor and inhibited the reduction of more effective acceptors such as Adriamycin. Michaelis-Menten kinetic constants were determined by analysis of the rates of NADPH oxidation. NADP+ and 2'-AMP inhibited the reduction of the ring-hydroxylated anthracenediones and anthracyclines, demonstrating the enzymatic nature of the reaction. The non-ring-hydroxylated anthracenedione inhibited the reduction of Adriamycin by both P-450 reductase and NADH dehydrogenase with 50% inhibition achieved at approximately 300 microM. Thus, there appears to exist a structural relationship between anthracenedione ring hydroxylation and metabolic activation. These results also suggest that the relative inability of the anthracenediones to function as artificial electron acceptors in comparison to the anthracyclines may be correlated with diminished anthracenedione cardiotoxicity.  相似文献   

3.
Prostaglandins (PG) have been postulated to be involved in both tumor metastases to bone and in tumor-induced bone resorption. The anthracenedione antineoplastic agents ametantrone (HAQ) and mitoxantrone are potent antioxidants and inhibit hydroperoxide-dependent initiation and propagation reactions. Therefore, these compounds may inhibit PG production and could also inhibit tumor metastases and tumor-induced resorption. The ability of HAQ, a prototypic anthracenedione, to inhibit PG synthesis and PG-mediated bone resorption was investigated using neonatal mouse calvaria in organ culture. Epidermal growth factor (EGF) stimulates bone resorption in this tissue by inducing PG synthesis. Consequently, if HAQ inhibits EGF-stimulated PG synthesis, it should also inhibit EGF-stimulated bone resorption. HAQ, at 10 μM, completely abolished EGF-stimulated PG synthesis and calcium release. Moreover, HAQ (1.0–30 μM) inhibition of EGF-stimulated PGE2 synthesis correlated with the inhibition of EGF-stimulated Ca release in a concentration-dependent manner. In contrast to EGF, parathyroid hormone stimulates resorption by a PG-independent pathway. HAQ at 10 μM had no effect on parathyroid hormone stimulated Ca release. These results suggest that HAQ inhibition of bone resorption appears to be primarily mediated by inhibition of PG biosynthesis.  相似文献   

4.
Prostaglandins (PG) have been postulated to be involved in both tumor metastases to bone and in tumor-induced bone resorption. The anthracenedione antineoplastic agents ametantrone (HAQ) and mitoxantrone are potent antioxidants and inhibit hydroperoxide-dependent initiation and propagation reactions. Therefore, these compounds may inhibit PG production and could also inhibit tumor metastases and tumor-induced resorption. The ability of HAQ, a prototypic anthracenedione, to inhibit PG synthesis and PG-mediated bone resorption was investigated using neonatal mouse calvaria in organ culture. Epidermal growth factor (EGF) stimulates bone resorption in this tissue by inducing PG synthesis. Consequently, if HAQ inhibits EGF-stimulated PG synthesis, it should also inhibit EGF-stimulated bone resorption. HAQ, at 10 microM, completely abolished EGF-stimulated PG synthesis and calcium release. Moreover, HAQ (1.0-30 microM) inhibition of EGF-stimulated PGE2 synthesis correlated with the inhibition of EGF-stimulated Ca release in a concentration-dependent manner. In contrast to EGF, parathyroid hormone stimulates resorption by a PG-independent pathway. HAQ at 10 microM had no effect on parathyroid hormone stimulated Ca release. These results suggest that HAQ inhibition of bone resorption appears to be primarily mediated by inhibition of PG biosynthesis.  相似文献   

5.
Formation of free radicals in mitochondria plays a key role in the development of apoptosis, which includes formation of superoxide by the respiratory chain, formation of radicals by cytochrome c-cardiolipin complex in the presence of hydrogen peroxide or lipids, and chain lipid peroxidation resulting in cytochrome c release from mitochondria and initiation of the apoptotic cascade. In this work the effect of taxifolin (dihydroquercetin) and some other antioxidants on these three radical-producing reactions was studied. Peroxidase activity of the complex of cytochrome c with dioleyl cardiolipin estimated by chemiluminescence with luminol decreased by 50% with quercetin, taxifolin, rutin, Trolox, and ionol at concentrations 0.7, 0.7, 0.8, 3, and 10 μM, respectively. The lipid radical production detected by coumarin C-525-activated chemiluminescence decreased under the action of rutin and taxifolin in a dose-dependent manner, so that a 50% inhibition of chemiluminescence was observed at the antioxidant concentrations of 3.7 and 10 μM, respectively. Thus, these two radical-producing reactions responsible for apoptosis onset are inhibited by antioxidants at rather low concentrations. Experiments performed on liver slices and mash showed that taxifolin, quercetin, naringenin, and Trolox have low inhibitory effect on the lucigenin-dependent chemiluminescence in the tissue only at concentrations higher than 100 μM.  相似文献   

6.
The protective role of melanin, either synthetic or derived from a metastatic lung melanoma nodule, was studied in terms of its ability to interact with active oxygen species (O2, H2O2, RO, ROO, etc.). Both melanins showed the ability to react with O2. The superoxide dismutase-like activity corresponds to 21 and 10 U/mg for synthetic and tumor melanin, respectively. The latter value accounts for about 8% of the superoxide dismutase activity of cultured melanoma cells. Neither type of melanin showed catalase-like or glutathione peroxidase-like activity. Both types of melanin reacted with RO and ROO radicals as determined by inhibition of the lipid peroxidation reaction of rat liver homogenates. The spontaneous lipid peroxidation of rat liver homogenate was inhibited up to 90% and 80% by synthetic and tumor melanin with half-maximal effects at 2.5 and 5.5 μg melanin/ml, respectively. The 2,2-azobis-(2 amidino propane) (AAPH)-initiated lipid peroxidation of rat liver homogenate was inhibited up to 3% and 20% by synthetic and tumor melanin, with half maximal effect at 120 and 500 μg melanin/ml, respectively. Both types of melanin were able to protect the in vitro inactivation of glucose oxidase, which occurs in the presence of AAPH-generated radicals.  相似文献   

7.
Numerous recent studies have shown the ability of physiological as well as all pharmacological concentrations of melatonin to prevent oxidative stress. We have found that incubating avian heterophils from young birds with a pharmacological concentration of 100 μM (23 × 106 pg/ml) melatonin reduced superoxide anion levels by modulating the activity of superoxide dismutase while also enhancing phagocytosis. There was also a decline in lipid peroxidation levels with both physiological and pharmacological concentrations of this indolamine.

In the present work, we evaluated malonaldehyde (MDA) levels as an indicator of lipid peroxidation (both basal and antigen-induced) in young and old animals (ring doves) at different times of day (16:00 and 00:00) and with two incubation times (15 and 60 min). The lipid peroxidation was also measured in heterophils from old animals, incubated with the physiological concentrations of melatonin measured in young animals (50 and 300 pg/ml, diurnal and nocturnal, respectively). The results, expressed as nmol MDA/mg protein, show that MDA levels were higher in heterophils of old animals than in the young birds in all the experimental groups studied at both 16:00 and 00:00 (00:00 is the time at which the lowest peroxidation levels were obtained). Incubation with melatonin was found to reduce MDA levels, with the maximum reduction being after the 60 min incubation time and the nocturnal melatonin concentration. At both concentrations (diurnal and nocturnal), melatonin also counteracted the enhancement of MDA levels caused by latex beads, with the effect being greater at the longer incubation time. In conclusion, the results are further evidence of the antioxidant effect of melatonin even at physiological concentrations, and suggest its utility as a therapeutic agent in some pathological processes associated with age.  相似文献   

8.
《Free radical research》2013,47(1):153-159
Ceruloplasmin (CP) effectively inhibited superoxide and ferritin-dependent peroxidation of phospholipid liposomes, using xanthine oxidase or gamma irradiation of water as sources of superoxide. In addition, CP inhibited superoxide-dependent mobilization of iron from ferritin. suggesting that CP inhibited lipid peroxidation by decreasing the availability of iron from ferritin. CP also exhibited some superoxide scavenging activity as evidenced by its inhibition of superoxide-dependent cytochrome c reduction. However, superoxide scavenging by CP did not quantitatively account for its inhibitory effects on iron release. The effects of CP on iron-catalyzed lipid peroxidation in systems containing exogenously added ferrous iron was also investigated. CP exhibited prooxidant and antioxidant effects; CP stimulated at lower concentrations, reached a maximum. and inhibited at higher concentrations. However. the addition of apoferritin inhibited CP and Fe(II)-catalyzed lipid peroxidation at all concentrations of CP. In addition, CP catalyzed the incorporation of Fe(II) into apoferritin. Collectively these data suggest that CP inhibits superoxide and ferritin-dependent lipid peroxidation via its ability to incorporate reductively-mobilized iron into ferritin.  相似文献   

9.
O Suzuki  H Hattori  Y Katsumata  M Oya 《Life sciences》1979,25(14):1231-1235
m-Octopamine was characterized as substrate for monoamine oxidase (MAO) in rat brain and liver mitochondria. The Km and Vmax values of the brain enzyme were 735 μM and 32.5 nmoles/mg protein/30 min, and those of the liver enzyme 351 μM and 125 nmoles/mg protein/30 min, respectively. The inhibition experiments with clorgyline and deprenyl showed that m-octopamine was a common substrate for type A and type B MAO, though a major part of the activity was due to type A enzyme.  相似文献   

10.
The aim of this study was to assess the effects of folic acid on coronary flow and oxidative stress markers with or without non-specific inhibition of nitric oxide synthase by l-NAME in isolated rat hearts. The hearts of male Wistar albino rats (n = 12, age 8 weeks, body mass 180–200 g) were retrograde perfused according to the Langendorff technique at gradually increased constant perfusion pressure (40–120 cmH2O). Coronary flow and markers of oxidative stress: nitrite outflow, superoxide anion production, and index of lipid peroxidation (by measuring thiobarbituric acid reactive substances) in coronary effluent were calculated. The experiments were performed during control conditions and in presence of folic acid (100 μM) alone or folic acid (100 μM) plus l-NAME (30 μM). Control values of coronary flow varied in range from 4.37 ± 0.10 ml/min/g wt at 40 cmH2O to 12.05 ± 0.42 ml/min/g wt at 120 cmH2O. Nitrite outflow varied from 1.68 ± 0.17 nmol/min/g wt at 40 cmH2O to 3.56 ± 0.17 nmol/min/g wt at 120 cmH2O and was parallel with coronary perfusion pressure-coronary flow curve. Folic acid significantly increased coronary flow (40–120 cmH2O, 5.63 ± 0.10 ml/min/g wt and 15.2 ± 0.42 ml/min/g wt, respectively) and was accompanied by significant increase in nitrite outflow (2.28 ± 0.29 nmol/min/g wt at 40 cmH2O to 6.66 ± 0.50 nmol/min/g wt at 120 cmH2O). In addition, folic acid significantly decreased superoxide anion production especially at upper coronary perfusion pressure values (60% at 120 cmH2O) and increased index of lipid peroxidation (37.16% at 120 cmH2O), respectively. Folic acid plus l-NAME did not change control values of coronary flow significantly. However, folic acid plus l-NAME increased nitrite outflow especially at upper coronary perfusion pressure values (43.05% at 120 cmH2O) and did not change significantly superoxide anion production or index of lipid peroxidation versus control values, respectively. The results clearly showed that on isolated rat hearts at gradually increased constant perfusion pressure, folic acid increased coronary flow, increased nitrite outflow, decreased superoxide anion production, and increased index of lipid peroxidation. These effects were reversed or blocked by l-NAME thus demonstrating mediation or at least participation of NO in the mechanism of the folic acid-induced effects.  相似文献   

11.
《Free radical research》2013,47(3):179-185
The effects of ebselen(2-pheny1-1,2-benzoisoselenazol-3(2H)-one), a synthetic seleno-organic compound with glutathione peroxidase-like activity were investigated on lipid peroxidation in rat liver microsomes. Ebselen inhibited malondialdehyde production coupled to the lipid peroxidation stimulated by either ADP-iron-ascorbate or CC14. The inhibitory activity of ebselen on each system was strongly increased by a 5-min preincubation with liver microsomes; the IC50 values against ADP-Fe-ascorbate-stimulated and CC14-stimulated lipid peroxidation were 1.6/jM and 70 μM respectively. Ebselen also inhibited the endogenous lipid peroxidation with a NADPH-generating system, but it slightly stimulated the endogenous activity of ADP-Fe-ascorbate-stimulated lipid peroxidation (without a NADPH-generating system). Furthermore, ebselen inhibited oxygen uptake coupled to the lipid peroxidation by ADP-Fe-ascorbate and NADPH-ADP-iron; the IC50 values were 2.5μM AND 20.3 μM respectively. Ebselen also prolonged the lag-time of onset of ADP-Fe-ascorbate-stimulated lipid peroxidation significantly, but not that observed with NADPH-ADP-Fe-stimulated lipid peroxidation.  相似文献   

12.
O Suzuki  Y Katsumata  M Oya 《Life sciences》1979,24(24):2227-2230
1,4-Methylhistamine was characterized as substrate for monoamine oxidase (MAO) in rat liver mitochondria. The Km and Vmax values were 38.8 μM and 6.33 nmoles/mg protein/60 min, respectively. The inhibition experiments with clorgyline and deprenyl, the selective inhibitors for type A and type B MAO, showed that 1,4-methylhistamine was specific for type B MAO.  相似文献   

13.
Neonicotinoids have high agonistic affinity to insect nicotinic acetylcholine receptors (nAChR) and are frequently used as insecticides against most devastating lepidopteran insect pests. Imidacloprid influenced dose-dependent decline in the state III and IV respiration, respiration control index (RCI), and P/O ratios, in vitro and in vivo. The bioassay indicated its LD50 value to be 531.24 μM. The insecticide exhibited a dose-dependent inhibition on F0F1-ATPase and complex IV activity. At 600 μM, the insecticide inhibited 83.62 and 27.13% of F0F1-ATPase and complex IV activity, respectively, and induced the release of 0.26 nmoles/min/mg protein of cytochrome c. A significant dose- and time-dependent increase in oxidative stress was observed; at 600 μM, the insecticide correspondingly induced lipid peroxidation, LDH activity, and accumulation of H2O2 content by 83.33, 31.51 and 223.66%. The stress was the maximum at 48 h of insecticide treatment (91.58, 35.28, and 189.80%, respectively). In contrast, catalase and superoxide dismutase were reduced in a dose- and time-dependent manner in imidacloprid-fed larvae. The results therefore suggest that imidacloprid impedes mitochondrial function and induces oxidative stress in H. armigera, which contributes to reduced growth of the larvae along with its neurotoxic effect.  相似文献   

14.
Phthalic acid diamide insecticides are the most effective insecticides used against most of the lepidopteran pests including Helicoverpa armigera, a polyphagous pest posing threat to several crops worldwide. The present studies were undertaken to understand different target sites and their interaction with insect ryanodine receptors (RyR). Bioassays indicated that flubendiamide inhibited the larval growth in dose‐dependent manner with LD50 value of 0.72 μM, and at 0.8 μM larval growth decreased by about 88%. Flubendiamide accelerated the Ca2+‐ATPase activity in dose‐dependent trend, and at 0.8 μM, the activity was increased by 77.47%. Flubendiamide impedes mitochondrial function by interfering with complex I and F0F1‐ATPase activity, and at 0.8 μM the inhibition was found to be about 92% and 50%, respectively. In vitro incubation of larval mitochondria with flubendiamide induced the efflux of cytochrome c, indicating the mitochondrial toxicity of the insecticide. Flubendiamide inhibited lactate dehydrogenase and the accumulation of H2O2, thereby preventing the cells from lipid peroxidation compared to control larvae. At 0.8 μM the LDH, H2O2 content and lipid peroxidation was inhibited by 98.44, 70.81, and 70.81%, respectively. Cytochrome P450, general esterases, AChE, and antioxidant enzymes (catalase and superoxide dismutase) exhibited a dose‐dependent increasing trend, whereas alkaline phosphatase and the midgut proteases, except amino peptidase, exhibited dose‐dependent inhibition in insecticide‐fed larvae. The results suggest that flubendiamide induced the harmful effects on the growth and development of H. armigera larvae by inducing mitochondrial dysfunction and inhibition of midgut proteases, along with its interaction with RyR.  相似文献   

15.
The antioxidant properties of silibin complexes, the water-soluble form silibin dihemisuccinate (SDH), and the lipid-soluble form, silibin phosphatidylcholine complex known as IdB 1016, were evaluated by studying their abilities to react with the superoxide radical anion (O2.−), and the hydroxyl radical (OH.). In addition, their effect on pulmonary and hepatic microsomal lipid peroxidation had been investigated. Superoxide radicals were generated by the PMS-NADH system and measured by their ability to reduce NBT. IC50 concentrations for the inhibition of the NBT reduction by SDH and IdB 1016 were found to be 25 μM and 316 μM respectively. Both silibin complexes had an inhibitory effect on xanthine oxidase activity. SDH reacted rapidly with OH. radicals at approximately diffusion controlled rate and the rate constant was found to be (K=8·2×109 M −1 s−1); it appeared to chelate Fe2+ in solution. In hepatic microsomes, when lipid peroxidation was induced by Fe2+, SDH inhibited by 39·5 per cent and IdB 1016 by 19·5 per cent, whereas when lipid peroxidation was induced by CuOOH, IdB 1016 exerted a better protective effect than SDH (29·4 per cent and 19·4 per cent inhibition, respectively). In both microsomal systems lipid peroxidation proceeded through a thiol depletion mechanism which could be restored in the presence of silibin complexes. Low levels of lipid peroxidation in pulmonary microsomes point out the differences between in-vitro lipid peroxidation occurring in microsomes of different tissues. The results support the free radical scavenger and antioxidative properties of silibin when it is complexed with a suitable molecule to increase its bioavailabilty. © 1997 John Wiley & Sons, Ltd.  相似文献   

16.
Treatment of bovine pulmonary artery smooth muscle microsomes with the superoxide radical generating system hypoxanthine plus xanthine oxidase stimulated iron release, hydroxyl radical production and lipid peroxidation. Pretreatment of the microsomes with deferoxamine or dime thy lthiourea markedly inhibited lipid peroxidation, and prevented hydroxyl radical production without appreciably altering iron release. The superoxide radical generating system did not alter the ambient superoxide dismutase activity. However,addition of exogenous superoxide dismutase prevented superoxide radical induced iron release,hydroxyl radical production and lipid peroxidation. Simultaneous treatment of the microsomes with deferoxamine, dimethylthiourea or superoxide dismutase prevented hydroxyl radical production and liqid peroxidation. While deferoxamine or dimethylthiourea did not appreciably alter iron release, superoxide dismutase prevented iron release. However, addition of deferoxamine, dimethylthiourea or superoxide dismutase even 2 min after treatment did not significantly inhibit lipid peroxidation, hydroxyl radical production and iron release. Pretreatment of microsomes with the anion channel blocker 4,4’- dithiocyano 2,′- disulphonic acid stilbine did not cause any discernible change in chemiluminiscence induced by the superoxide radical generating system but markedly inhibited lipid peroxidation without appreciably altering iron release and hydroxial radical production.  相似文献   

17.
南瓜醇提物的体外抗氧化活性(英文)   总被引:1,自引:0,他引:1  
采用化学体系模拟法体外测定南瓜醇提物((pumpkin ethanol extract,PEE)对1,1-二苯基-2-苦苯肼自由基(DPPH·)、超氧阴离子自由基(O2)和羟自由基(·OH)的清除能力,总还原力,对β-胡萝卜素/亚油酸自氧化体系的总抗氧化能力以及脂质过氧化的抑制能力.结果显示PEE对DPPH·、02-和·OH均有较强的清除能力,IC50值分别为18.8 mg/mL、29.0 ms/mL和44.9μg/mL,有显著的还原力和总抗氧化力,对脂质过氧化有一定的抑制作用.PEE的体外抗氧化活性均有良好的量效关系.上述结果为南瓜作为抗氧化的保健食品或功能食品开发利用提供了依据.  相似文献   

18.
Time- and concentration-course studies were conducted to determine the effect of bentazon [3-isopropyl-1H-2,l,3,-benzothiadiazin-4(3H)-one 2,2-dioxide] on photosynthesis, RNA synthesis, protein synthesis, and lipid synthesis using enzymatically isolated leaf cells of red kidney bean (Phaseolus vulgaris L.). Photosynthesis and RNA synthesis were inhibited about 75% at 1 μM bentazon at the 30 min treatment period. This was the lowest concentration and shortest time that significantly inhibited any of these four processes. The degree of inhibition of photosynthesis was greater than the degree of inhibition of RNA synthesis at higher concentrations and/or longer time periods. At 10 μM bentazon, protein synthesis and lipid synthesis were also inhibited. Lipid synthesis was stimulated at 0.1 and 1 μM at 120 min.  相似文献   

19.
Singlet oxygen is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules and it also promotes deleterious processes such as cell death. The protective role of antioxidant enzymes against singlet oxygen-induced oxidative damage in HL-60 cells was investigated in control and cells pre-treated with diethyldithiocarbamic acid, aminotriazole and oxlalomalate, specific inhibitors of superoxide dismutase, catalase and NADP+-dependent isocitrate dehydrogenase, respectively. Upon exposure to rose bengal (20 μM)/light (15 min), which generates singlet oxygen, to HL-60 cells, the viability was lower and the lipid peroxidation and oxidative DNA damage were higher in inhibitor-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species as well as the significant decrease in the intracellular GSH level in inhibitor-treated HL-60 cells exposed to singlet oxygen. Upon exposure to rose bengal (3 μM)/light (15 min), which induced apoptotic cell death, a clear inverse relationship was observed between the control and inhibitor-treated HL-60 cells in their susceptibility to apoptosis. These results suggest that antioxidant enzymes play an important role in cellular defense against singlet oxygen-induced cell death including necrosis and apoptosis.  相似文献   

20.
Histidine decarboxylase production from Lactobacillus hilgardii 5w, isolated from wine, was inhibited by the presence of l-malic acid in the basal culture medium. The inhibition was related to l-malic acid concentration. The maximal production of the enzyme at 12 h of culture incubated at 30°C was inhibited 71% by 2 g/L l-malic acid and 47% by 0.5 g/L. In these conditions l-malic acid consumption was 16% and 20% respectively. The addition of 300 mg/L citric acid to the basal medium stimulated the enzyme production from 9 to 45 nmoles/min/mg dry weight, and the increase was correlated with citric acid concentration. When different concentrations of l-malic acid were added to the basal medium plus 200 mg/L citric acid, reversion of stimulation was observed, achieving the maximum at a concentration of 2 g/L. In this case, citric acid comsumption was not modified, whereas L-malic acid utilization was higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号