首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A theoretical model for the remodeling of collagen gels is proposed. The collagen fabric is modeled as a network of collagen fibers, which in turn are composed of collagen fibrils. In the model, the strengthening of collagen fabric is accomplished by fibroblasts, which continuously recruit and attach more collagen fibrils to existing collagen fibers. The fibroblasts also accomplish a reorientation of collagen fibers. Fibroblasts are assumed to reorient collagen fibers toward the direction of maximum material stiffness. The proposed model is applied to experiments in which fibroblasts were inserted into a collagen gel. The model is able to predict the force-strain curves for the experimental collagen gels, and the final distribution of collagen fibers also agrees qualitatively with the experiments.  相似文献   

2.
The structural integrity of cartilage depends on the presence of extracellular matrices (ECM) formed by heterotypic fibrils composed of collagen II, collagen IX, and collagen XI. The formation of these fibrils depends on the site-specific binding between relatively small regions of interacting collagen molecules. Single amino acid substitutions in collagen II change the physicochemical and structural characteristics of those sites, thereby leading to an alteration of intermolecular collagen II/collagen IX interaction. Employing a biosensor to study interactions between R75C, R789C or G853E collagen II mutants and collagen IX, we demonstrated significant changes in the binding affinities. Moreover, analyses of computer models representing mutation sites defined exact changes in physicochemical characteristics of collagen II mutants. Our study shows that changes in collagen II/collagen IX affinity could represent one of the steps in a cascade of changes occurring in the ECM of cartilage as a result of single amino acid substitutions in collagen II.  相似文献   

3.
The contents of type I, type III and type V collagen and the collagen type specific distributions in liver under normal and cirrhotic conditions were examined. In CCl4 injected rat, the increasing amount of type V collagen was a specific event during the progression of cirrhosis. In normal liver, immunohistochemical observation showed that type V collagen was localized on the fine fibrils, while type I was localized on the thick fibril. Type V collagen was partially colocalized with type IV collagen. In the cirrhotic liver, type V collagen was localized on the margin of the thick fibrous septa along with type IV collagen. Type I collagen existed in the core region of fibrous septa where the stellate cells were prominent. To elucidate the mechanism of the type specific deposition of collagen in the liver, we constructed a coculture system using both stellate cells and hepatocytes. In this system, type V collagen was mainly deposited on hepatocyte colonies not on stellate cells, while type I collagen fibrils were localized on stellate cells. The spatial positioning of type I and type V collagens in vitro was similar to that in the liver. In the cell adhesion assay, the adhesion of stellate cells to type V collagen was poorer than that of the hepatocytes. The collagen type-specific affinity of the stellate cells and hepatocytes may explain the specific localization of type V collagen in the liver and coculture system. These results suggested that the functions of type V collagen are not only to connect type IV collagen with type I collagen fibril, but also to protect the parenchyma from excess type I collagen deposition produced by stellate cells under pathological conditions.  相似文献   

4.
Type V collagen controls the initiation of collagen fibril assembly   总被引:1,自引:0,他引:1  
Vertebrate collagen fibrils are heterotypically composed of a quantitatively major and minor fibril collagen. In non-cartilaginous tissues, type I collagen accounts for the majority of the collagen mass, and collagen type V, the functions of which are poorly understood, is a minor component. Type V collagen has been implicated in the regulation of fibril diameter, and we reported recently preliminary evidence that type V collagen is required for collagen fibril nucleation (Wenstrup, R. J., Florer, J. B., Cole, W. G., Willing, M. C., and Birk, D. E. (2004) J. Cell. Biochem. 92, 113-124). The purpose of this study was to define the roles of type V collagen in the regulation of collagen fibrillogenesis and matrix assembly. Mouse embryos completely deficient in pro-alpha1(V) chains were created by homologous recombination. The col5a1-/- animals die in early embryogenesis, at approximately embryonic day 10. The type V collagen-deficient mice demonstrate a virtual lack of collagen fibril formation. In contrast, the col5a1+/- animals are viable. The reduced type V collagen content is associated with a 50% reduction in fibril number and dermal collagen content. In addition, relatively normal, cylindrical fibrils are assembled with a second population of large, structurally abnormal collagen fibrils. The structural properties of the abnormal matrix are decreased relative to the wild type control animals. These data indicate a central role for the evolutionary, ancient type V collagen in the regulation of fibrillogenesis. The complete dependence of fibril formation on type V collagen is indicative of the critical role of the latter in early fibril initiation. In addition, this fibril collagen is important in the determination of fibril structure and matrix organization.  相似文献   

5.
Structural hierarchy controls deformation behavior of collagen   总被引:1,自引:0,他引:1  
The structure of collagen, the most abundant protein in mammals, consists of a triple helix composed of three helical polypeptide chains. The deformation behavior of collagen is governed by molecular mechanisms that involve the interaction between different helical hierarchies found in collagen. Here, we report results of Steered Molecular Dynamics study of the full-length collagen molecule (~290 nm). The collagen molecule is extended at various pulling rates ranging from 0.00003/ps to 0.012/ps. These simulations reveal a new level of hierarchy exhibited by collagen: helicity of the triple chain. This level of hierarchy is apparent at the 290 nm length and cannot be observed in the 7-9 nm models often described to evaluate collagen mechanics. The deformation mechanisms in collagen are governed by all three levels of hierarchy, helicity of single chain (level-1), helical triple helix (level-2), and hereby described helicity of the triple chain (level-3). The mechanics resulting from the three levels is described by an interlocking gear analogy. In addition, remarkably, the full-length collagen does not show much unwinding of triple helix unlike that exhibited by short collagen models. Further, the full-length collagen does not show significant unwinding of the triple helix, unlike that exhibited by short collagen. Also reported is that the interchain hydrogen bond energy in the full-length collagen is significantly smaller than the overall interchain nonbonded interaction energies, suggesting that the nonbonded interactions have far more important role than hydrogen bonds in the mechanics of collagen. However, hydrogen bonding is essential for the triple helical conformation of the collagen. Hence, although mechanics of collagen is controlled by nonbonded interchain interaction energies, the confirmation of collagen is attributed to the interchain hydrogen bonding.  相似文献   

6.
The molecular characteristics of purified pepsin solubilized collagen from rat liver was studied in control and dimethylnitrosamine administered animals. The α- and β-chains of purified pepsin solubilized liver collagen were separated by subjecting the denatured collagen to SDS-polyacrylamide gel electrophoresis. The α1(III) chains were resolved from the α1(I) chains by interrupted electrophoresis with delayed reduction of the disulfide bonds of type III collagen. The aldehyde content of the purified pepsin solubilized collagen was estimated in control and experimental samples in order to assess the extent of collagen cross-links. Fibril formation curves were studied with purified pepsin solubilized collagen to see the rate of formation of cross-links within the fibrillar mesh. The results of the unreduced electrophoretic studies revealed a significant increase in the β-subunit of type I collagen with a remarkable decrease of α/β ratio in DMN treated animals. Reduction with β-mercaptoethanol indicated the presence of type III collagen in the electrophoretic field with a proportionate increase on the 21st day. A significant increase in the aldehyde content and an increased rate of fibril formation were noticed in DMN induced fibrotic liver collagen. The data of the present investigation revealed that the DMN induced fibrotic liver collagen is more cross-linked than normal liver collagen and the deposition of type III collagen is more prominent than type I collagen in early fibrosis.  相似文献   

7.
Based on previous observations indicating a role for collagen peptides in eliciting a positive feedback for collagen biosynthesis, this study was initiated to elucidate the effect of non-crosslinked collagen on granulation tissue formation in dermal excision wounds. The wounds were treated with either non-crosslinked or crosslinked native collagen, or left untreated as controls. Granulation tissue was analyzed for collagen type I mRNA, for levels of interstitial collagen and for the number of blood vessels. The results indicated significant increases in procollagen type I mRNA, in interstitial collagen, in the number of blood vessels and in epithelial advance in the non-crosslinked collagen-treated wounds relative to the untreated controls. It is assumed that the presence of non-crosslinked collagen in a healing wound enhances both procollagen type I biosynthesis and the repair process of dermal wounds, due to the more readily released collagen peptides derived from this exogenous collagen dressing.  相似文献   

8.
A Fertala  A L Sieron  E Adachi  S A Jimenez 《Biochemistry》2001,40(48):14422-14428
Single amino acid substitutions in collagen II cause heterogeneous cartilage disorders including some chondrodysplasias and certain forms of heritable osteoarthritis. In this study, we examined molecular interactions between normal collagen II and collagen IX, and the effect of a Cys substitution for Arg-alpha1-519 in collagen II on these interactions. Binding assays showed that the association equilibrium constant of collagen IX-collagen II interaction is 15 x 10(6) M(-1). Specificity of the interaction was analyzed by the binding of collagen IX to recombinant collagen II variants lacking fragments of 234 amino acids corresponding to particular D-periods. The results indicated that the C-terminal half of collagen II, which includes the D3 and D4 periods, has a high affinity for collagen IX, and that the nontriple helical telopeptides of collagen II are not essential for the specific binding of collagen IX. Computer analysis of the surface of the mutated collagen II and binding assays showed that a Cys substitution for Arg-alpha1-519 changes electrostatic properties around the mutation site, increases the affinity of mutant collagen II for collagen IX, and possibly alters the specificity of the interaction. Thus, the results indicate that interactions between collagen II and collagen IX are site specific and that single amino acid substitutions in collagen II may change the molecular interactions with collagen IX that could destabilize the cartilaginous matrix.  相似文献   

9.
The role of the non-helical regions of the collagen molecule in fibrillogenesis has been investigated by comparing the kinetics of fibril formation of pepsin-treated acid-soluble collagen, acid-soluble collagen and mixtures of the two and by comparison of the thermal stabilities of the fibrils formed. The acid-soluble collagen was found to aggregate more rapidly than the pepsin-treated collagen under physiological conditions of pH and ionic strength. Variations in ionic strength, at physiological pH, were found to have differing effects on the aggregation of these two forms of soluble collagen. Fibrils formed from the pepsinized-collagen had a lower thermal stability tha n those formed from the intact collagen. The behavior observed with mixtures of acid-soluble and pepsin-treated collagens was found to be quantitatively consistent with the pepsinized collagen being able to utilize the nuclei formed by the acid-soluble collagen for subsequent growth. However, the use of the acid-soluble nuclei by the pepsinized collagen for growth did not enhance its rate of precipitation during the growth phase, nor did it enhance the thermal stability of the fibrils formed from the pepsinized collagen.  相似文献   

10.
11.
Various collagens were extracted and purified from human placenta after partial pepsin digestion. We prepared type III + I (57:43), enriched type I, type III, and type IV collagens on an industrial level, and studied their biological properties with MRC5 fibroblast cells. Using the process of contraction of a hydrated collagen lattice described by Bell, we found tha the contraction rate was dependent on collagen type composition. The contraction was faster and more pronounced with pepsinized type I collagen than with pepsinized type III + I (57:43) collagen; the lowest rate was obtained with the pepsinized type III collagen. Using a new technique of collagen cross-linking, a gel was made with type IV collagen. This cross-linking procedure, based on partial oxidation of sugar residues and hydroxylysine by periodic acid, followed by neutralization, resulted in an increased number of natural cross-link bridges between oxidized and nonoxidized collagen molecules, without internal toxic residues. The fibroblasts were unable to contract type IV/IVox collagen gels. The type IV/IVox collagen gel was transparent and its amorphous ultrastructure lacked any visible striated fibrils. Fibroblast cells exhibited atypical behavior in these type IV/IVox collagen gels as evidenced by optical and electron microscopy. The penetration of fibroblasts could be measured. Fibroblasts penetrated faster in type IV/IVox collagen gels than in untreated type III + I collagen gels. The lowest rate of penetration was obtained with cross-linked type III + I gels. Fibroblast proliferation was similar on untreated or cross-linked type III + I collagen gels and slightly increased on type IV/IVox collagen gels, suggesting that this cross-linking procedure was not toxic.  相似文献   

12.
Modulation of collagen fibrillogenesis by tenascin-X and type VI collagen   总被引:5,自引:0,他引:5  
Tenascin-X (TNX) is an extracellular matrix glycoprotein. We previously demonstrated that TNX regulates the expression of type VI collagen. In this study, we investigated the binding of TNX to type I collagen as well as to type VI collagen and the effects of these proteins on fibrillogenesis of type I collagen. Full-length recombinant TNX, which is expressed in and purified from mammalian cell cultures, and type VI collagen purified from bovine placenta were used. Solid-phase assays revealed that TNX or type VI collagen bound to type I collagen, although TNX did not bind to type VI collagen, fibronectin, or laminin. The rate of collagen fibril formation and its quantity, measured as increased turbidity, was markedly increased by the presence of TNX, whereas type VI collagen did not increase the quantity but accelerated the rate of collagen fibril formation. Combined treatment of both had an additive effect on the rate of collagen fibril formation. Furthermore, deletion of the epidermal growth factor-like (EGF) domain or fibrinogen-like domain of TNX attenuated the initial rate of collagen fibril formation. Finally, we observed abnormally large collagen fibrils by electron microscopy in the skin from TNX-deficient (TNX-/-) mice during development. These findings demonstrate a fundamental role for TNX and type VI collagen in regulation of collagen fibrillogenesis in vivo and in vitro.  相似文献   

13.
14.
The aim of this work was to prepare specific antibodies against skin and bone collagen (type I) and cartilage collagen (type II) for the study of differential collagen synthesis during development of the chick embryo by immunofluorescence. Antibodies against native type I collagen from chick cranial bone, and native pepsin-extracted type II collagen from chick sternal cartilage were raised in rabbits, rats, and guinea pigs. The antibodies, purified by cross-absorption on the heterologous collagen type, followed by absorption and elution from the homologous collagen type, were specific according to passive hemagglutination tests and indirect immunofluorescence staining of chick bone and cartilage tissues. Antibodies specific to type I collagen labeled bone trabeculae from tibia and perichondrium from sternal cartilage. Antibodies specific to type II collagen stained chondrocytes of sternal and epiphyseal cartilage, whereas fluorescence with intercellular cartilage collagen was obtained only after treatment with hyaluronidase. Applying type II collagen antibodies to sections of chick embryos, the earliest cartilage collagen found was in the notochord, at stage 15, followed by vertebral collagen secreted by sclerotome cells adjacent to the notochord from stage 25 onwards. Type I collagen was found in the dermatomal myotomal plate and presumptive dermis at stage 17, in limb mesenchyme at stage 24, and in the perichondrium of tibiae at stage 31.  相似文献   

15.
The respective requirements of collagen and MT1-MMP in the activation of MMP-2 by primary fibroblast cultures were explored further. Three-dimensional gels enriched in human collagen types I and III or composed of recombinant human type II or III collagen, caused increased MT1-MMP production (mRNA and protein) and induced MMP-2 activation. Only marginal induction was seen with dried monomeric collagen confirming the need for collagen fibrillar organisation for activation. To our surprise, relatively low amounts (as low as 25 microg/ml) of acid soluble type I collagen added to fibroblast cultures also induced potent MMP-2 activation. However, the requirement for collagen fibril formation by the added collagen was indicated by the inhibition seen when the collagen was pre-incubated with a fibril-blocking peptide, and the reduced activation seen with alkali-treated collagen preparations known to have impaired fibrilisation. Pre-treatment of the collagen with sodium periodate also abrogated MMP-2 activation induction. Further evidence of the requirement for collagen fibril formation was provided by the lack of activation when type IV collagen, which does not form collagen fibrils, was added in the cultures. Fibroblasts derived from MT1-MMP-deficient mice were unable to activate MMP-2 in response to either three-dimensional collagen gel or added collagen solutions, compared to their littermate controls. Collectively, these data indicate that the fibrillar structure of collagen and MT1-MMP are essential for the MMP-2 activational response in fibroblasts.  相似文献   

16.
Certain strains of mice develop a symmetrical polyarthritis after immunization with type II collagen. The incidence of arthritis after such immunization is variable. To study the arthritogenic potential of T cells reactive with type II collagen, we isolated draining lymph node cells from mice that had developed arthritis after immunization with bovine type II collagen. From these immune lymph node cells we were able to clone T cells reactive with type II collagen. Two separate sets of T cell clones were isolated. The first set reacted with either native bovine or native chick type II collagen, but did not react with type I collagen. The second set of T cell clones reacted with bovine type II collagen, but did not respond to either native chick type II collagen or type I collagen. These clones will be tested for their influence on the development of arthritis in vivo.  相似文献   

17.
Collagen is the most abundant protein in the human body and thereby a structural protein of considerable biotechnological interest. The complex maturation process of collagen, including essential post-translational modifications such as prolyl and lysyl hydroxylation, has precluded large-scale production of recombinant collagen featuring the biophysical properties of endogenous collagen. The characterization of new prolyl and lysyl hydroxylase genes encoded by the giant virus mimivirus reveals a method for production of hydroxylated collagen. The coexpression of a human collagen type III construct together with mimivirus prolyl and lysyl hydroxylases in Escherichia coli yielded up to 90 mg of hydroxylated collagen per liter culture. The respective levels of prolyl and lysyl hydroxylation reaching 25 % and 26 % were similar to the hydroxylation levels of native human collagen type III. The distribution of hydroxyproline and hydroxylysine along recombinant collagen was also similar to that of native collagen as determined by mass spectrometric analysis of tryptic peptides. The triple helix signature of recombinant hydroxylated collagen was confirmed by circular dichroism, which also showed that hydroxylation increased the thermal stability of the recombinant collagen construct. Recombinant hydroxylated collagen produced in E. coli supported the growth of human umbilical endothelial cells, underlining the biocompatibility of the recombinant protein as extracellular matrix. The high yield of recombinant protein expression and the extensive level of prolyl and lysyl hydroxylation achieved indicate that recombinant hydroxylated collagen can be produced at large scale for biomaterials engineering in the context of biomedical applications.  相似文献   

18.
19.
《Process Biochemistry》2014,49(2):210-216
Collagen has been extensively used as a biomaterial in many biomedical applications. Recently, collagen based biomaterials were prepared using organic solvents. In this context, the method of addition of organic solvent described in the present study will be an important contribution in the preparation of collagen-based biomaterials. The effect of acetonitrile on collagen structure and stability was investigated using biophysical methods. Collagen undergoes solvent-induced denaturation with increasing concentration of acetonitrile. It was observed that addition of acetonitrile (50–90%) to a collagen solution in a single shot (method 1) led to precipitation. Contrary, collagen remained in the solution when acetonitrile content was increased to 90% in a collagen solution that had been formerly equilibrated with 20% acetonitrile (method 2). Interestingly, triple helical structure was retained when precipitated collagen, obtained from method 1, was re-dissolved in acetic acid solution. The re-dissolved collagen exhibits comparable melting temperature as that of native collagen. Re-dissolved collagen also showed fibril formation, but with decreased rate. The soluble collagen in 90% acetonitrile, prepared by method 2, is found to be unordered. The above results thus suggest that the method of addition of acetonitrile plays an important role in the folding and unfolding of collagen.  相似文献   

20.
Integrin alpha1beta1, one of the cellular collagen receptors, can participate in the regulation of collagen accumulation by acting as a negative feedback regulator. The molecular mechanism behind this phenomenon has been unknown. We have plated cells inside three-dimensional collagen and analyzed a set of chemical inhibitors for various signal transduction pathways. Only two wide-spectrum serine/threonine kinase inhibitors, H-7 and iso-H-7 could prevent the down-regulation of alpha1(I) collagen mRNA levels in cells exposed to three-dimensional collagen. In monolayer iso-H-7 slightly down-regulated collagen gene expression, indicating that inside collagen it affected integrin signaling rather than having a direct stimulatory effect on collagen mRNA levels. The effect of iso-H-7 was not dependent on its ability to inhibit protein kinases A, C, or G. H-7 and iso-H-7 could also inhibit collagen gel contraction, but this mechanism was independent of collagen gene regulation. Three-dimensional collagen could also up-regulate the mRNA levels of several matrix metalloproteinases (MMPs) but H-7 and iso-H-7 had no effect on the regulation of MMP genes. Our data indicate that three-dimensional collagenous matrix regulates distinct cellular signaling pathways and that collagen gene regulation is independent of the other effects of the matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号