首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Multiple intravenous injections (30 µg, ten times) in ICR mice of trehalose dimycolate and glucose monomycolate fromNocardia rubra, containing C36–48 mycolic acids, showed a prominent antitumor effect on a subcutaneously implanted sarcoma-180, an allogeneic sarcoma of mice with a significant granuloma formation in lungs, spleen and liver. On the other hand, mycoloyl glycolipids other than glucose monomycolate and trehalose dimycolate, such as mannose or fructose mycolate, showed no significant activity for tumor regression or granuloma formation in mice.Trehalose dimycolate and glucose monomycolate fromN. rubra, and glucose monomycolate with C56–60 mycolic acids fromRhodococcus terrae also showed a distinctive priming activity for tumor necrosis factor (TNF), when lipopolysaccharide fromEscherichia coli was administered as an eliciting agent. The TNF activity in the sera of mice was abrogated almost completely by anti-(murine TNF) antibody with protein-A—agarose. Again in contrast, mannose and fructose mycolate fromN. rubra and glucose monomycolate with C30–34 mycolic acids fromRhodococcus equi did not show such activities in mice.Meth-A, a syngeneic fibrosarcoma of BALB/c mice, was less sensitive to administration of glycolipids than sarcoma-180. These results indicated that the existence of a glucose or trehalose molecule was necessary for the expression of immunomodifying activities among various mycoloyl glycolipids differing in carbohydrate structure. However, since the administration of lipopolysaccharide was essentially required as an eliciting agent for the induction of TNF, while no eliciting agent was required for the antitumor activities, TNF does not seem to contribute directly to the antitumor activities of mycoloyl glycolipids in our systems. There was, however, a parallel structure-activity relationship among granuloma-forming, antitumor and TNF-priming activities, indicating that the structures of both the carbohydrate moiety and the mycoloyl residues influenced an initial step, such as macrophage activation, commonly and profoundly.  相似文献   

2.
The mycobacterial membrane protein large 3 (MmpL3) transporter is essential and required for shuttling the lipid trehalose monomycolate (TMM), a precursor of mycolic acid (MA)-containing trehalose dimycolate (TDM) and mycolyl arabinogalactan peptidoglycan (mAGP), in Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium smegmatis. However, the mechanism that MmpL3 uses to facilitate the transport of fatty acids and lipidic elements to the mycobacterial cell wall remains elusive. Here, we report 7 structures of the M. smegmatis MmpL3 transporter in its unbound state and in complex with trehalose 6-decanoate (T6D) or TMM using single-particle cryo-electron microscopy (cryo-EM) and X-ray crystallography. Combined with calculated results from molecular dynamics (MD) and target MD simulations, we reveal a lipid transport mechanism that involves a coupled movement of the periplasmic domain and transmembrane helices of the MmpL3 transporter that facilitates the shuttling of lipids to the mycobacterial cell wall.

Mycobacterial membrane protein Large 3 (MmpL3) is a transporter required for shuttling trehalose monomycolate. Structures of M. smegmatis MmpL3 with and without substrate reveal the mechanism by which MmpL3 transports this essential precursor of lipids for the mycobacterial cell wall.  相似文献   

3.
Rhodococcus equi is a close relative of Mycobacterium spp. and a facultative intracellular pathogen which arrests phagosome maturation in macrophages before the late endocytic stage. We have screened a transposon mutant library of R. equi for mutants with decreased capability to prevent phagolysosome formation. This screen yielded a mutant in the gene for β‐ketoacyl‐(acyl carrier protein)‐synthase A (KasA), a key enzyme of the long‐chain mycolic acid synthesizing FAS‐II system. The longest kasA mutant mycolic acid chains were 10 carbon units shorter than those of wild‐type bacteria. Coating of non‐pathogenic E. coli with purified wild‐type trehalose dimycolate reduced phagolysosome formation substantially which was not the case with shorter kasA mutant‐derived trehalose dimycolate. The mutant was moderately attenuated in macrophages and in a mouse infection model, but was fully cytotoxic.Whereas loss of KasA is lethal in mycobacteria, R. equi kasA mutant multiplication in broth was normal proving that long‐chain mycolic acid compounds are not necessarily required for cellular integrity and viability of the bacteria that typically produce them. This study demonstrates a central role of mycolic acid chain length in diversion of trafficking by R. equi.  相似文献   

4.
The fluffy layer fraction prepared from Bacterionema matruchotii was found to possess high activity for the biosynthesis of mycolic acids which were bound to an unknown compound by an alkali-labile linkage [T. Shimakata, M. Iwaki, and T. Kusaka (1984) Arch. Biochem. Biophys. 229, 329-339]. To determine the structure of the mycolate-containing compound, it was purified and analyzed by field desorption (FD) and secondary ion mass spectrometry (SI-MS). When non-labelled palmitic acid was used as a precursor in the in vitro biosynthetic system, the underivatized product had a cationized molecular ion, [M + Na]+, at m/z 843 in FD-MS and a protonated ion, [M + H]+, at m/z 821 in SI-MS, corresponding to the quasimolecular ion of trehalose monomycolate (C32:0). In SI-MS, characteristic fragment ions due to cleavage of glycosidic linkages were clearly detected in addition to the molecular ion. If [1-13C]palmitic acid was the precursor, 2 mass unit increases in both the quasimolecular and fragment ions were observed, indicating that two molecules of palmitate were incorporated into the product. alpha-Trehalose was found in the aqueous phase after saponification of the product. By the electron impact mass spectrometry of the trimethylsilylated product, the mycolate was found to be esterified with an hydroxyl group at position 6 of the trehalose molecule. These results clearly demonstrated that the predominant product synthesized by the fluffy layer fraction with palmitate as substrate was 6-monomycolate (C32:0) of alpha-D-trehalose. Because newly synthesized mycolic acid was mainly in the form of trehalose monomycolate instead of free mycolate or trehalose dimycolate, the role of trehalose in the biosynthesis of mycolic acid is discussed.  相似文献   

5.
The hallmark of Mycobacterium-induced pathology is granulomatous inflammation at the site of infection. Mycobacterial lipids are potent immunomodulators that contribute to the granulomatous response and are released in appreciable quantities by intracellular bacilli. Previously we investigated the granulomagenic nature of the peripheral cell wall lipids of Mycobacterium bovis bacillus Calmette-Guérin (BCG) by coating the lipids onto 90-microm diameter microspheres that were mixed into Matrigel matrix with syngeneic bone marrow-derived macrophages and injected i.p. into mice. These studies demonstrated that BCG lipids elicit proinflammatory cytokines and recruit leukocytes. In the current study we determined the lipids responsible for this proinflammatory effect. BCG-derived cell wall lipids were fractionated and purified by liquid chromatography and preparative TLC. The isolated fractions including phosphatidylinositol dimannosides, cardiolipin, phosphatidylglycerol, phosphatidylethanolamine, trehalose monomycolate, trehalose dimycolate, and mycoside B. Trehalose dimycolate, when delivered to bone marrow-derived murine macrophages, induced the greatest secretion of IL-1beta, IL-6, and TNF-alpha in vitro. Trehalose dimycolate similarly induced the greatest secretion of these proinflammatory cytokines in ex vivo matrices over the course of 12 days. Trehalose monomycolate and dimycolate also induced profound neutrophil recruitment in vivo. Experiments with TLR2 or TLR4 gene-deficient mice revealed no defects in responses to trehalose mycolates, although MyD88-deficient mice manifested significantly reduced cell recruitment and cytokine production. These results demonstrate that the trehalose mycolates, particularly trehalose dimycolate, are the most bioactive lipids in the BCG extract, inducing a proinflammatory cascade that influences granuloma formation.  相似文献   

6.
Small amounts of free mycolic acids and trehalose dimycolate that are rapidly formed by Mycobacterium tuberculosis H37Ra are probably derived from mycolyl acetyl trehalose and transferred to the cell wall. However, the transfer of mycolic acids from mycolyl acetyl trehalose to the cell wall still appears to be the more prominent route.  相似文献   

7.
When the localization of mycolic acid biosynthetic activity was examined with Bacterionema matruchotii cells disrupted by the ultrasonic vibration method, activity was detected only in the cell wall fraction, not in the inner membrane nor in the 78,000g supernatant. Either the supernatant or sugar was absolutely required for the incorporation of [14C]palmitate into mycolic acids. Among sugars examined, glucose was most effective, with maltose being second. Unexpectedly, trehalose was inert. As to substrate, the present system utilized free palmitic acid rather than palmitoyl-CoA. The reaction products from palmitate and glucose were glucose mycolate and trehalose monomycolate, in which the label from [14C]palmitate or [14C]glucose was incorporated. Glucose palmitate was also formed. Addition of trehalose resulted in a shift from glucose mycolate to trehalose monomycolate. These data clearly indicate that sugars play an important role in the synthesis of mycolic acids from free fatty acids.  相似文献   

8.
Mycobacteria are shaped by a thick envelope made of an array of uniquely structured lipids and polysaccharides. However, the spatial organization of these molecules remains unclear. Here, we show that exposure to an esterase from Mycobacterium smegmatis (Msmeg_1529), hydrolyzing the ester linkage of trehalose dimycolate in vitro, triggers rapid and efficient lysis of Mycobacterium tuberculosis, Mycobacterium bovis BCG, and Mycobacterium marinum. Exposure to the esterase immediately releases free mycolic acids, while concomitantly depleting trehalose mycolates. Moreover, lysis could be competitively inhibited by an excess of purified trehalose dimycolate and was abolished by a S124A mutation affecting the catalytic activity of the esterase. These findings are consistent with an indispensable structural role of trehalose mycolates in the architectural design of the exposed surface of the mycobacterial envelope. Importantly, we also demonstrate that the esterase-mediated rapid lysis of M. tuberculosis significantly improves its detection in paucibacillary samples.  相似文献   

9.
Binding of the macrophage lectin mincle to trehalose dimycolate, a key glycolipid virulence factor on the surface of Mycobacterium tuberculosis and Mycobacterium bovis, initiates responses that can lead both to toxicity and to protection of these pathogens from destruction. Crystallographic structural analysis, site-directed mutagenesis, and binding studies with glycolipid mimics have been used to define an extended binding site in the C-type carbohydrate recognition domain (CRD) of bovine mincle that encompasses both the headgroup and a portion of the attached acyl chains. One glucose residue of the trehalose Glcα1–1Glcα headgroup is liganded to a Ca2+ in a manner common to many C-type CRDs, whereas the second glucose residue is accommodated in a novel secondary binding site. The additional contacts in the secondary site lead to a 36-fold higher affinity for trehalose compared with glucose. An adjacent hydrophobic groove, not seen in other C-type CRDs, provides a docking site for one of the acyl chains attached to the trehalose, which can be targeted with small molecule analogs of trehalose dimycolate that bind with 52-fold higher affinity than trehalose. The data demonstrate how mincle bridges between the surfaces of the macrophage and the mycobacterium and suggest the possibility of disrupting this interaction. In addition, the results may provide a basis for design of adjuvants that mimic the ability of mycobacteria to stimulate a response to immunization that can be employed in vaccine development.  相似文献   

10.
Penicilliumcharlesii incorporates 3H or 14C from 3H- or 14C-labeled ethanolamine into an -alkali soluble, alcohol -insoluble fraction obtained from cell walls. Dansyl ethanolamine was isolated from this alcohol-insoluble fraction following dansylation and hydrolysis. The alcohol-insoluble material was non-dialyzable and contained galactofuranosyl, glucosyl, phosphoryl, amino acyl and variable quantities of uronosyl residues. The lack of detectable quantities of mannosyl residues in this material suggests that the galactofuranosyl-containing cell wall polymer is distinct from the peptidophosphogalactomannan which is obtained from culture filtrates of P. charlesii (Gander etal., (1974) J. Biol. Chem. 249, 2063).  相似文献   

11.
Controls of citrate synthase activity   总被引:3,自引:0,他引:3  
P A Srere 《Life sciences》1974,15(10):1695-1710
The inhibition of citrate synthase by a variety of nucleotides and polycarboxylate compounds is not unexpected since many of the compounds are substrate analogs of citrate synthase. These effectors are interesting by virtue of the fact that many of them are intermediates and/or end products in the metabolic path of which citrate synthase can be considered the first committed step. As a consequence, it is possible to propose regulation of citrate synthase by ATP (or phosphorylation potential) by acyl CoA (acylation level) and NADH (redox potential). Aside from these putative controls, it is possible that the major control of citrate synthase activity is by changes in the concentration of its substrates acetyl CoA and oxalacetate.I discuss in this review the many factors that must be considered before one can decide whether or not interactions between metabolites and enzymes observed in an in vitro catalytic situation have metabolic relevance. These factors include 1) the concentrations of substrates at the enzyme site, 2) the concentrations of effectors at the enzyme site, 3) the presence of modifying substances, and 4) the difference in behavior of an enzyme at its concentration in vivo compared to its concentration in vitro. In the case of citrate synthase as is generally true for other enzymes, no accurate knowledge of these factors are available in vitro so that little can be said concerning the in situ control of citrate synthase, which may be the result of all the factors acting in concert. The studies of effectors on enzymes in vitro can only serve as a guideline for parameters to study when techniques are available to study control of enzymes in situ.  相似文献   

12.
The yield of trehalose dimycolate (TDM), the major glycolipid species elaborated by Rhodococcus rhodochrous, a producer of approx. C40-mycolic acid, was not constant in cells cultured for different periods of time. From cells collected at 24, 36, 72, 144 and 172 h of cultivation the following percentages of TDM in diethyl ether soluble lipids (DESL) were found: 10.8%, 23.4%, 10.0%, 9.0% and 5.0%, respectively. In turn, the cellular content accounted for approx. 0.6%, 1.2%, 0.9%, 0.6% and 0.2%, respectively. On the other hand, the yield of galactose monomycolate (GalMM), a minor glycolipid species maintained at approx. 3.4% in DESL during the different periods of time examined; this value represented about 0.3% of the cellular content. The melting temperatures of TDMs fell between 37 degrees C to approximately 97 degrees C with the lowest value from cells grown for 36 h, whereas the melting temperatures of the GalMMs were in a narrow range between 56 degrees C and 64 degrees C. The methyl ester derivatives of the constituent fatty acid moieties of DTMs and GalMMs migrated on thin layer chromatography like methyl esters of C40-C46 mycolic acids, therefore faster than methyl esters of C28-C34 mycolic acids but slower than methyl esters of C50-C56 mycolic acids. Further analysis of the products of pyrolysis of the methyl ester derivatives of the fatty acid moiety released from TDM after alkaline hydrolysis was carried out using gas chromatography combined mass spectrometry.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We have measured the fluorescence decay of N-phenyl-1-naphthylamine using the phase-modulation method, in several solvent systems and egg phosphatidylcholine vesicles. The decay is monoexponential in pure solvents (both polar and non-polar) of low viscosity. In polar viscous solvents or in non-polar solvents containing an added polar solute, the decay is heterogeneous and emission wavelength dependent. In such cases, dielectric relaxation and/or excited-state complexing give rise to a shift of the emission spectrum on the nanosecond time scale. Emission-wavelength-dependent decay was also observed when N-phenyl-1-naphthylamine was bound to egg phosphatidylcholine vesicles. From these results as well as the position of the emission spectral maximum, we conclude that N-phenyl-1-naphthylamine probes the ester-carbonyl region of the phospholipid acyl chains, where it undergoes an excited-state reaction. This result contradicts the often made assumption that N-phenyl-1-naphthylamine probes the deeper hydrocarbon region of the bilayer.  相似文献   

14.
Evidence is presented in support of the hypothesis that an important step in the adaptive synthesis of fatty acid synthetase is the conversion of inactive enzyme precursors to active enzyme via the incorporation of the 4′-phosphopantetheine prosthetic group. Fatty acid synthetase activity was generated in vitro when CoA or E. coli acyl carrier protein was incubated with enzymatically inactive extracts from livers of rats fed a fat-free diet for 0–5 hr following starvation, and a factor present in liver extracts from rats refed for more than 6 hr. When (14C)-CoA, labelled in the pantetheine moiety, was used in the above system, radioactivity was incorporated into a protein bound form, from which it could be released by mild alkaline hydrolysis.  相似文献   

15.
The regulation of the synthesis of trp operon enzymes was studied in streptomycin-resistant Escherichiacoli mutants temperature-sensitive for UGA suppression by normal tRNATrp. Our mutants carry a trpR+ allele that when transferred to a different genetic background causes repression of trp operon enzyme synthesis at both low (35°C) and high (42°C) temperatures; however, in our mutants with an excess of tryptophan and at increased temperatures trp enzyme synthesis is derepressed. Based on our results and the sequence data of the trpR gene [Singleton et al. (1980) Nucleic Acids Res., 8, 1551–1560], we offer a model for the involvement of the limited misreading of UGA codons by normal charged tRNATrp in the autogenous regulation of the trpR gene expression. The UGA readthrough process may be a regulatory amplifier of the effect of tryptophan starvation.  相似文献   

16.
Rabbit peritoneal neutrophils incorporated [14C]arachidonic acid into seven molecular species of choline-containing phosphoglycerides. These 2-[14C]arachidonoyl species differed with respect to the alkyl ether or acyl residue bound at the sn-1 position; four of the seven were ether-linked. Stimulation with calcium ionophore A23187 induced a proportionate release of arachidonate from all seven molecular species: 40% of the released arachidonate came from alkyl ether species. Thus, 1-O-alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine (GPC) is a significant source of metabolizable arachidonic acid. Since 1-O-alkyl-2-lyso-GPC is the metabolic precussor of platelet activating factor, these results further interrelate pathways forming arachidonate metabolites and platelet activating factor; they also supply a rationale for the observation that both classes of stimuli form concomitantly during cell activation.  相似文献   

17.
The fluorescent phospholipid 1-acyl-2-[6-[(7-nitro-2,1,3benzoxadiazol-4-yl)amino]-caproyl]phosphatidylcholine (C6-NBD-PC) was used as a substrate for porcine pancreatic phospholipase A2 (PA2) and bovine milk lipoprotein lipase (LpL). Hydrolysis of C6-NBD-PC by either enzyme resulted in a greater than 50-fold fluorescence enhancement with no shift in the emission maximum at 540 nm; Ca++ was required for PA2 catalysis. Identification of the products of hydrolysis showed cleavage at the sn-1 and sn-2 positions for LpL and PA2, respectively. For PA2, but not for LpL, there was a marked enhancement of enzyme catalysis at lipid concentrations above the critical micellar concentration of the lipid. Furthermore, apolipoprotein C-II, the activator protein of LpL for long-chain fatty acyl substrates, did not enhance the rate of catalysis of the water-soluble fluorescent phospholipid for either enzyme.  相似文献   

18.
Trehalose dimycolate, a glycolipid component of the cell walls of mycobacteria, induces interstitial pneumonitis and alveolar hemorrhages in C57BL/6 and C57BL/10 mice. Homozygous nude (nu/nu) mice of these backgrounds are not susceptible to this form of pulmonary injury. However, after administration of T-lymphocyte-enriched spleen cell preparations from syngeneic donors, homozygous nude mice become susceptible to trehalose dimycolate. The observations suggest that production of pulmonary lesions by this mycobacterial component is dependent on T lymphocytes. While the mechanisms are still under study, we propose that trehalose dimycolate can function as an activator of T lymphocytes and that products of activated T cells are responsible for production of the pulmonary lesions.  相似文献   

19.
This study demonstrated that the phospholipase A1 purified from human post-heparin plasma catalyzes the same reactions (hydrolysis and transacylation) and utilizes the same substrates as the phospholipase A1 obtained by heparin treatment of the plasmalemma of rat liver (Waite, M. and Sisson, P. (1973) J. Biol. Chem. 248, 7985). 1-acylglycerol was the preferred acyl donor and transacylation was the predominate reaction. The results strongly support our earlier conclusions that the phospholipase in plasma originates from the liver and that this enzyme is capable of using a variety of acyl acceptors, including water.  相似文献   

20.
We have isolated and purified to homogeneity an alpha,alpha'-trehalose 6-monomycolate:alpha,alpha'-trehalose mycolyltransferase (trehalose mycolyltransferase) from Mycobacterium smegmatis that catalyzes the exchange of a mycolyl group between trehalose, trehalose 6-monomycolate (TM), and trehalose 6,6'-dimycolate (TD). This enzyme was prominent in M. smegmatis and it catalyzed the following reactions. TM + [14C]trehalose in equilibrium [14C]TM + trehalose [14C]TM + TM in equilibrium [14C]TD + trehalose This enzyme was purified by (i) ammonium sulfate fractionation, (ii) QAE-Sephadex A-50 column chromatography, (iii) gel filtration on a Sephadex G-75 column, and (iv) SP-Sephadex C-50 column chromatography. The purified protein yielded a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its molecular weight was estimated to be 25,000. This enzyme was a glycoprotein, had no cofactor requirement, and was highly specific for alpha,alpha'-trehalose as the mycolate acceptor. It was less specific for the acyl donor group since the palmitoyl group in trehalose 6-monopalmitate was easily exchangeable. There was no TM acylhydrolase activity in the purified enzyme, suggesting that it is probably associated with the anabolic pathway of mycolic acid metabolism. We postulate the formation of a mycolyl-enzyme intermediate in this reaction. Such an intermediate could play a central role in the transfer of mycolic acid to form the prominent cell wall components of mycobacterial TD and possibly murein-arabinogalactan-mycolate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号